
electronics

Article

AgPi: Agents on Raspberry Pi

Tushar Semwal * and Shivashankar Bhaskaran Nair *

Department of Computer Science and Engineering, Indian Institute of Technology Guwahati, 781039, India
* Correspondence: t.semwal@iitg.ernet.in (T.S.); sbnair@iitg.ernet.in (S.B.N.); Tel.: +91-908-528-5069 (T.S.);

+91-361-258-2356 (S.B.N.)

Academic Editor: Mostafa Bassiouni
Received: 4 June 2016; Accepted: 30 September 2016; Published: 19 October 2016

Abstract: The Raspberry Pi and its variants have brought with them an aura of change in the
world of embedded systems. With their impressive computation and communication capabilities
and low footprint, these devices have thrown open the possibility of realizing a network of things in
a very cost-effective manner. While such networks offer good solutions to prominent issues, they are
indeed a long way from being smart or intelligent. Most of the currently available implementations
of such a network of devices involve a centralized cloud-based server that contributes to making the
necessary intelligent decisions, leaving these devices fairly underutilized. Though this paradigm
provides for an easy and rapid solution, they have limited scalability, are less robust and at
times prove to be expensive. In this paper, we introduce the concept of Agents on Raspberry Pi
(AgPi) as a cyber solution to enhance the smartness and flexibility of such embedded networks
of physical devices in a decentralized manner. The use of a Multi-Agent System (MAS) running
on Raspberry Pis aids agents, both static and mobile, to govern the various activities within the
network. Agents can act autonomously or on behalf of a human user and can collaborate, learn,
adapt and act, thus contributing to embedded intelligence. This paper describes how Tartarus, a
multi-agent platform, embedded on Raspberry Pis that constitute a network, can bring the best out
of the system. To reveal the versatility of the concept of AgPi, an application for a Location-Aware
and Tracking Service (LATS) is presented. The results obtained from a comparison of data transfer
cost between the conventional cloud-based approach with AgPi have also been included.

Keywords: Multi-Agent Systems; Cyber Physical Systems; Mobile Agents; Raspberry Pi; Internet of
Things (IoT); BLE (Bluetooth Low Energy); Fog Computing

1. Introduction

The advent of the Internet of Things (IoT) [1] has facilitated devices to be connected with
ease and enhanced to communicate and share data. Gartner Inc. (Stamford, CT, USA) [2] has
predicted that by 2020, the IoT will form the basis for most business processes and systems. It
has also conjectured that, by this year, more than 6.4 billion such devices will become connected.
This drastic increase in connected devices is bound to revolutionize and greatly enhance Information
and Communication Technologies (ICT) [3]. The Internet serves as an easy, reliable and accessible
means for communication but is not without issues. Two of the major issues that crop up in the
implementation of a typical IoT are security and the cost incurred in cellular communication. For
applications such as a cab enquiry and booking system, which involves devices spread across an
enormous geographic area, the use of the Internet can be traded off with some aspects in security.
This may not be true for critical areas such as in military applications, hospitals, industries, smart
buildings, etc. where security could be the major concern. Current IoT architecture [4,5] makes use
of cloud-based solutions for imparting services to the users. The integrity, safety and insecurity of
data stored in a cloud, along with the associated services for sensitive domains like medical and

Electronics 2016, 5, 72; doi:10.3390/electronics5040072 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
http://www.mdpi.com/journal/electronics

Electronics 2016, 5, 72 2 of 21

industrial ones, remain matters of concern. The other issue is that in the conventional cloud-based
IoT architecture, a device communicates through a central server supporting the cloud platform.
This increases the cellular communication costs. A set of devices within a networked infrastructure
can communicate locally and also perform computations, thus preventing a very large number of
interactions with the cloud [6]. For scenarios such as an IoT for military or health care application, an
Intranet based solution could perform effectively. Issues like security and communication expenses
in an Intranet can be greatly contained. Another important issue is data privacy which is crucial in
the case of medical hospitals, government and also for a consumer. Leakage of personal information
and data ownership are at risk in a cloud-based centralized architecture.

In cloud-based systems, most of the data and intelligence churning activities are performed by
a server hosted elsewhere in a centralized manner. For an Intranet-based solution, a framework that
can facilitate this in a decentralized manner needs to be evolved. The devices participating in such
an Intranet of Things, could include a range of connected embedded devices with their associated
interfaces that connect them to the real physical world through sensors and actuators. The word
“things” in an IoT refers to passive devices which seldom inherit any form of smartness within them.
This is due to the fact that it is the cloud which is responsible for the intelligence and not the actual
device. What is thus required to make an intelligent Intranet of Things is a cyber counterpart that
can induce and embed intelligence into these devices. Multi-Agent Systems (MAS) [7] can act and
provide as a fitting solution for realizing embedded intelligence. If such agents are made to operate
on top of each embedded device, they can make decisions autonomously at the lower levels, thus
transforming a network of such devices into a smart Cyber-Physical System (CPS). Figure 1 depicts
such a CPS wherein the core comprises the real physical world being sensed and controlled via the
sensors and actuators. The actual decision making and intelligence churning process is carried out
by the agents (static and mobile) within the cyber world. These agents are programs that run on the
connected embedded devices.

Figure 1. An agent-based Cyber-Physical System.

The concept of using agents in an Intranet of Things is very similar to an implementation of
a Fog Computing environment [8]. The cloud is extended to the user side and constitutes a set of
distributed and decentralized computing nodes which form the edge of the network. Such a concept
has several advantages which include:

1. Privacy: Most of the cloud servers are owned by multinational corporations such as Amazon
(Seattle, WA, USA), Google (Mountain View, CA, USA), Microsoft (Redmond, WA, USA), Cisco
(San Jose, CA, USA), etc. which continuously receive data from the user side. Leakage of

Electronics 2016, 5, 72 3 of 21

personal information and data ownership becomes a critical issue when all of the user’s data
is collected for analytics purpose in the cloud [6]. A safer solution would be to have a local
infrastructure on which the user has more control than the cloud server. This would allow local
data filtering and computation before sending it over to the cloud. An agent-based system could
be a better solution for ensuring privacy.

2. Cost: Cloud services follow a “Pay-as-you-go” model which adds to the cost as the storage and
network communication increases [8]. In a local computational infrastructure model, these costs
can be reduced if the data collected is filtered locally and only pertinent information is sent to
the cloud.

3. Network Latency: A cloud has inherent latency issues and thus may not be a viable solution for
applications such as live video streaming in connected vehicles, real-time data analytics in smart
grids [8], etc., all of which require a rapid response. An Intranet of Things that uses agents,
on the contrary, can provide fast local computations, thereby decreasing latency.

4. Energy: As already mentioned, agents in an Intranet of Things can filter the acquired data prior
to sending it over to the cloud. Since this reduces communication overheads, it also reduces
the energy consumed and consequently increases the battery life of the devices constituting the
network [9].

In this paper, we emphasize the importance of agents (both static and mobile) and describe the
use of Tartarus (Version 1.1, Robotics Lab., IIT Guwahati, India) [10], a Multi-Agent platform, on the
Raspberry Pi (Raspberry Pi Foundation, London, UK). With a Location-Aware and Tracking Service
(LATS) as a CPS application using Tartarus running on Raspberry Pi (henceforth, in this paper, Pi
strictly refers to the Raspberry Pi) boards, we demonstrate the viability and versatility of the use
of agents. The Tartarus agents are responsible for monitoring and tracking people within an indoor
environment. Providing LATS is a challenging task in a dynamic environment [11]. Such scenarios
call for queries that relate to where and when a person was or is in the area being monitored, what
is the direction of the person’s movement, etc. Firing queries to a database of related information
stored centrally is fairly simple. However, if the person being tracked is in continuous motion,
the database becomes dynamic in nature, which makes the task of querying, a complex one. This
complexity further increases when the devices that track and store the data are numerous and have
limited computational and storage resources. Data, in this case, is thus both dynamic and distributed
across a network. Furthermore, new queries may also need to be fired at any point of time, which
adds to the complexity of the system. This agent-based LATS portrays how agents, both static and
mobile, can aid in satisfying such queries.

The rest of the paper is organized as follows. Section 2 provides a brief overview of Multi-Agent
Systems (MAS) and the related platforms, while Section 3 gives the background on earlier realized
LATS applications. Section 4 describes the architecture of AgPi and is followed by the LATS
application in Section 5. The paper culminates with the results obtained and conclusions reached.

2. Multi-Agent Systems (MAS)

Agents are software entities that are capable of performing task(s) on behalf of a user [12].
They are autonomous and possess the ability to make their own decisions and drive themselves
towards a goal. Maes et al. [13] refer to agents as computational systems that can sense and act
autonomously in an environment in order to realize a set of goals. Just as human beings and robots
form entities in the Physical world, these agents can be considered to be their counterparts in the
Cyber world.

Multi-Agent Systems (MAS) can be defined as a compendium of different agents with their
own problem solving capabilities and goals [14]. An MAS aids in abstracting a complex system into
subsystems, each of which is represented by an agent. It is not just a collection of agents, but a system
where agents coordinate to achieve a common goal. An agent may in addition possess the ability to
migrate from one node to another in a network. Such Mobile Agents carry all their functionalities

Electronics 2016, 5, 72 4 of 21

with them to enable execution at remote locations. Since the work described herein exploits mobile
agents to accomplish data processing and dissemination, a brief description of such agents has been
provided in the next subsection.

2.1. Mobile Agents

A mobile agent [15] is basically a piece of code that has the ability to migrate from one node
in a network to another and carry out certain task(s). In addition to exhibiting mobility, a mobile
agent can also clone and multiply itself, carry a payload (data or a program), make local decisions,
execute a program on a remote site or node, etc. Mobile agents can also be used to churn out and
carry intelligence along with them as they migrate within a network [16]. They have been used
in a wide range of applications which include wireless sensor networks [17], robot control [18,19],
e-commerce [20], security [21,22], e-learning [23], robotics [24,25], IoT [10,26], etc. Some of the major
advantages of using mobile agents are:

1. Bandwidth and latency reduction: A mobile agent has the innate ability to carry the computation
in the form of code to a remote site. Instead of fetching the whole raw or unprocessed data from
a remote site, the mobility allows for the computing program or logic to migrate to this site and
process the data therein. This results in reducing network traffic and latency.

2. Discontinuous operation: In a dynamic network where the devices are mobile, it is rare that a
continuous connection is maintained between two nodes for a long time. In a conventional
client-server system, a sudden disconnection may cause the server to resend the whole data,
making it an expensive affair. On the contrary, in a mobile agent-based scenario, migration
occurs only when a connection is established. The mobile agent then resides in the new node till
the connection to the next node is available. Unlike the large amount of data to be processed,
a mobile agent is comparatively lightweight. Thus, a failure in migration does not compound
into large losses in bandwidth and time.

3. Adaptivity and flexibility: In a traditional centralized system, any upgrade would require the
system to be brought down, changes made and then restarted. In a mobile agent-based
system, upgrades could be packaged within the mobile agent and released into the network.
This On-The-Fly Programming (OTFP) [10] support facilitates a higher amount of flexibility.
Agents have the ability to sense and perceive their environment and change their behaviours
accordingly. A mobile agent can add new behaviours in the form of a payload and can also
adapt to different situations.

Mobile agents thus have the potential to provide a viable distributed solution to problems related
to a network [27].

2.2. Multi-Agent Frameworks

Agent related processes such as its creation, programming, migration, cloning, etc., require a
software environment or framework that runs on the supporting hardware platform. A Multi-Agent
Framework (MAF) provides for such an environment and facilitates the rapid development and
deployment of agent-based systems. These frameworks allow users to create, program and release
mobile agents into a network and also aid the execution of the relevant programs within JADE [28],
JADE-LEAP [29], TACOMA [30], Agent TCL [31], AgentSpace [32], Aglets [33], etc., are Java based
MAFs. Mobile-C is an agent framework that is written purely in C/C++ programming language.
Its light footprint makes it ideally suited to small embedded systems. Some of the real world
deployments where such frameworks have been used include a taxi booking system developed over
JADE-LEAP (Multi-Agent Systems Group, University Rovira i Virgili (URV), Tarragona, Spain) [34],
a multi-agent traffic control system [35], etc. C/C++ and Java are basically structural and functional
programming paradigms on which such event-based applications are developed. A majority of
MAFs are based on such languages and thus do not inherit the semantic structure available in logical

Electronics 2016, 5, 72 5 of 21

languages such as Prolog [36]. Prolog is widely used in applications involving Artificial Intelligence
(AI) [37] techniques, natural language processing [38], intelligent searching in databases [39], rule
based logical queries [40], etc. Some of the multi-agent platforms built over logical languages include
Jinni [41], ALBA [42], IMAGO [43], Typhon (Robotics Lab., IIT Guwahati, India) [44] and Tartarus [10].
In this work, we have used Tartarus, a multi-agent platform developed using SWI-Prolog
(Version 7.2.3, University of Amsterdam, Amsterdam, Netherlands) [45]. Tartarus and its
former version Typhon has been used in a variety of applications ranging from multi-robot
synchronization [46], learning using sharing [47], realizing a green-corridor for emergency
services [48], rescue robots [10], monitoring from a remote base station [49], etc. It thus forms a
fitting cyber counterpart for applications that involve AI, distributed data processing and search.

3. Location-Aware and Tracking Service (LATS)

Since the work described herein uses LATS as an agent-based application embedded on Pi, a brief
survey on the same is presented below. Location-dependent services are part of a dynamic model
where either the object or the observer or both can be mobile with respect to their geo-location [50].
Some of the classical approaches for tracking of a moving object include the use of GPS, RFID,
camera, etc. The most popular method of positioning is by using a GPS on board a mobile phone.
This method is however, effective mainly outdoors where the device can reach out to the satellites.
Indoor localization using such GPS is unreliable due to the topology of the rooms and the erratic and
low intensity satellite signals received within. This calls for an efficient yet cost-effective solution to
provide for a reliable indoor positioning and tracking system. Catarinucci et al. [51] have proposed an
IoT-aware architecture for smart healthcare. They have leveraged the use of combining UHF RFIDs
[52] and WSNs [53] for deploying a healthcare system. Each patient has an RFID tag that transmits its
data to an RFID receiver, which, in turn, transmits the data to the associated doctor. Since RFID tags
are passive devices, the system uses minimum power and is thus quite efficient in terms of energy
consumption. The major drawback is that, for proper data transfer, the patient has to be in very close
proximity to the RFID receiver.

Bluetooth Low Energy (BLE) technologies [54] can offer a far more superior solution than RFIDs.
Yoshimura et al. [55] portray a system for analyzing the visitors’ length of stay in an art museum
through the use of non-invasive Bluetooth based monitoring. In their work, eight Bluetooth sensors
were installed in the busiest locations at the Denon wing of the Louvre museum. The data on the
number of visitors visiting these places was collected for a period of five months and then analyzed
to get meaningful results. They have claimed that the use of non-invasive technologies (such as
Bluetooth) allows them to gather honest results. This is so since visitors change their behaviours if
they are aware of the fact that they are being tracked.

Early work in location-aware services by Wolfson et al. [11] describe a mechanism for tracking
moving objects through the use of database. They present a Database for Moving Objects (DOMINO)
on top of an existing database, which allows the database management system to predict the future
location of the moving object. Every time the object in motion updates its location, its future location
is also predicted.

Wolfson et al. [56] has also proposed a trajectory location management system to model the
moving object. They highlight the critical issues associated with the point-location management
model [56]. A point-location model does not provide facilities for interpolation or extrapolation of
location data of the moving object and is not accurate.

In a trajectory location model, an estimate of the source and destination of a moving object
is determined. This information is coupled with an electronic map and a trajectory is constructed
based on the travel time information. In the real world, the relevant data is not always available at
a centralized location. Wolfson et al. [56] conclude that their model needs to be improved to suit
scenarios where data is available in a distributed form. In the latter part of this paper, we show how
LATS can be implemented when the data is distributed across a network of devices.

Electronics 2016, 5, 72 6 of 21

4. AgPi: The Cyber and Physical Confluence

The Pi is an inexpensive low footprint mini-computing device. It boasts of a System-On-Chip
(SOC) architecture that includes a 64-bit microprocessor, a Graphical Processing Unit (GPU) and
peripherals, making it compact in size. It can be used in conjunction with a TV or a computer monitor.
The Pi has a range of peripherals to allow use of input and output devices [57]. It comes in different
versions, the more recent ones being the Raspberry Pi 3 (Raspberry Pi Foundation, London, UK) and
the Raspberry Pi Zero (Raspberry Pi Foundation, London, UK). The latter Zero version costs just
around US $5, possibly making it one of the cheapest and most affordable mini-computing devices
[58]. The availability of General Purpose Input and Output (GPIO) pins along with multiplexed I2C,
SPI and UART pins, which can be easily accessed through an open source Linux operating system
running on it, makes the Pi an appropriate device to sense and control an environment. Such high
end features allow a user to create and deploy systems in the real world, making the Pi an ideal device
for IoT applications.

Features such as autonomous decision making, robustness, flexibility, intelligence, etc. which
are generally associated with agents are seldom found in current IoT solutions. In this paper, we
have described the working of a full-fledged MAS-based IoT application by leveraging the use of
Tartarus running on Pi. The application has been described with a view to enthuse Pi developers and
users to create new and intelligent applications using the concept of Agents on Pi (AgPi). The mobile
agent framework used, Tartarus plays the role of controlling the Cyber entities (agents), which, in turn,
command their physical counterparts (sensors and actuators). Tartarus comes with a dedicated plugin
to access peripherals within the Pi. This facility provides for a coupling between the Pi and its cyber
counterpart, Tartarus. Figure 2 shows how several Pis, each running Tartarus, are connected to form
a network. It also depicts static agents residing at some nodes and migrating mobile agents. It may
be noted that these mobile agents can move over to any node, sense the data within (as also actuate
a motor for instance, if required), take a decision and then move on in the network. Figure 2 thus
conforms to the agent-based CPS depicted in Figure 1. Unique behaviours could be programmed and
embedded within each agent, thus allowing for an autonomous or semi-autonomous control of the
physical world.

Figure 2. Top level architecture of AgPi (Agents on Pi).

In the next section, we describe an application that will throw more light on the benefits of using
agents on a network of Pis. This application is a multi-agent-based distributed and decentralized
solution for LATS for an indoor environment using the AgPi concept.

Electronics 2016, 5, 72 7 of 21

5. AgPi in the Real World

A complex system can be divided into subsystems, each controlled by an agent. This form of
abstraction eases the designing and realization of systems. With Pi in the scenario, such complex
systems can now be deployed as real-world applications. One of these applications for LATS that
uses the AgPi concept is described below.

5.1. AgPi based LATS application

As a proof-of-concept, we have implemented an LATS for dynamic tracking of users in a corridor
of a building. The following subsections describe the detection mechanism and the main units that
comprise the application.

5.1.1. Detection Mechanism

The lower portion of Figure 3 portrays the manner in which Pi-nodes have been deployed along
the corridor. A Pi-node consists of a Pi interfaced to a BLE receiver and Wi-Fi adaptor. A Cyber
Computing Unit comprising Tartarus and its associated plugins runs on the Pi. Each Pi-node within
the corridor is connected to its neighbour(s) through Wi-Fi.

A person who is to be tracked (depicted as a stick figure with a red band on the wrist in the
figure) needs to wear a BLE tag that emits beacons at a certain rate. This BLE tag along with the
Pi-node forms a Wearable and Acquisition Unit (WAU).

Users who need to track a person(s) are provided with a User Interaction Unit (UIU) running on
their respective computing machine. The functioning of the WAU, CCU (Bluetooth Low Energy) and
UIU shown in the upper portion of the Figure 3 has been detailed in the subsequent subsections. As
can be seen in the lower portion of the figure, the corridor is divided into virtual zones (indicated by
different colours) whose areas are preset based on the RSS (Received Signal Strength) values from the
BLE tag received by the associated Pi-node.

Figure 3. AgPi based LATS (Location-Aware and Tracking Services) application.

When a person enters a zone within the corridor, the BLE receiver of the Pi-node within that
zone detects his/her presence in that zone. As the person moves away from this zone and enters the
neighbouring one, the RSS in the new zone increases while in the former’s decreases. This indicates
the transition of the user from one zone to another. Eventually, when the RSS detected at the previous

Electronics 2016, 5, 72 8 of 21

zone becomes minimum and that at the next zone becomes maximum, the system detects the presence
of the person in the latter zone.

5.1.2. Wearable and Acquisition Unit (WAU)

This unit includes a wearable Bluetooth Low Energy (BLE) device (HM-10) that emits data
packets in the form of beacons at preset intervals. These packets are received by a BLE receiver
interfaced to a Pi via its on-board UART module. Figure 4a,b show a BLE tag (comprising a
BLE device and a battery) as a wearable unit (configured as a beacon transmitter) and a Pi-node
comprising a Pi interfaced to a BLE receiver as the acquisition unit. The Pi also has a USB Wi-Fi
adaptor. Each data packet transmitted by the wearable BLE device is 30 bytes long and contains
five fields of information as given below:

1. Preamble: This read-only field is 9 bytes wide and contains the manufacturer’s data.
2. Universally Unique Identifier (UUID): This field, which is 16 bytes wide, can be preset to contain

the identity of the BLE device.
3. Major: This is a user writable field which helps in identifying a subset of such devices within a

large group.
4. Minor: It is also a writable field which is used for specifying a subset of the Major field.
5. Tx Power: This field is a calibrated 2’s complement value denoting the signal strength at 1 m

from the device. This field is compared with the measured signal strength at the receiving end
in order to ascertain the distance between the transmitter and receiver.

The BLE receiver extracts the information within these five fields and forwards it to the CCU.

(a) (b)

Figure 4. (a) a BLE (Bluetooth Low Energy) tag; (b) A Pi-node.

5.1.3. Cyber Computing Unit (CCU)

A CPS is a tight coupling between the physical and the cyber worlds. The Tartarus platform serves
the purpose of a cyber unit which runs on top of the physical unit (Pi in the present case). Tartarus
comes with a plugin to access the peripherals on board the Pi. A static agent named a Database agent
within a Tartarus instantiation running on a Pi fetches the beacon data from the buffer register within
the BLE receiver via the UART [59] interface. The Database agent then stores the data in an SQL
database along with the time-stamp on the memory card in the Pi. If a user remains within a zone
for a long period, there will be a large accumulation of data, most of which could be redundant. To
avoid this, beacon data is read always but stored only under some conditions. Thus, data is logged
only when there is considerable change in the RSS of the beacon. Furthermore, instead of making
decision based on the normally noisy RSS values, three regions—Beyond, Far and Near have been
used to describe the position of a user within a zone. The three regions can be defined as follows:

Electronics 2016, 5, 72 9 of 21

(i) Beyond: When the RSS value is zero, it means that the person is not detected and is beyond the
concerned zone.

(ii) Far: This is a case when the person being tracked is far from the Pi-node. This is detected by a
weak RSS value at the Pi-node of the concerned zone and would mean that the person wearing
the BLE tag is in between 2 m to 5 m of the radial distance from the associated Pi-node.

(iii) Near: A strong RSS value indicates the person to be well within the range i.e., less than 2 m in
the present case.

Each SQL entry comprises a total of six fields of information — the Timestamp, UUID, Major,
Minor, RSS and Region. A sample snapshot of the data entered at a Pi-node is shown in Figure 5.

Figure 5. A sample snapshot of the part of the database maintained at a Pi-node.

An entry is made to the SQL database only when the value of the sixth field changes in terms of
the Region. For instance, if the sixth field changes from beyond to near, an entry is logged with the new
Region. If the next consecutive entry is also near, then no entry to the database is made. Similarly,
if the sixth field changes to either far or beyond, an entry is made. It may be observed that from the
database the information about the period of stay of a user in a particular region or zone can be easily
computed. Furthermore, a person may also be tracked as s/he moves from one zone to another. One
may also easily infer as to exactly when s/he entered a zone, the amount of time spent within that
zone and when s/he exited the same. Thus, as a person passes through a corridor comprising several
such zones, the respective Pi-nodes keep track of the next zone to which the person has moved. This
is done through the concept of a Motion Vector which has been described below.
Motion Vector: Let Z = ZP1 , ZP2 , ZP3 , . . . , ZPn be a set of zones, where Pj represents the jth Pi-node and

n is the total number of Pi-nodes in the network (one per zone). A Motion Vector (
−−→
MV) describes the

movement of a person wearing the BLE tag, from one zone to another and is given by,
−−→
MV = ZPa → ZPb ; a, b ε {1, 2, . . . , n}.

Each Pi-node in a CCU stores and updates two types of Motion Vectors—Motion Vector Forward
(
−−→
MVF) and Motion Vector Backward (

−−→
MVB). When a person wearing the BLE tag moves from the far

region to the beyond region of a certain zone, say ZPx , the corresponding Pi-node, Px within that zone,
sends a message to all its neighbouring Pi-nodes announcing that the person bearing the specific
UUID is now in the process of leaving its zone ZPx . If any of the neighbouring Pi-nodes, say Py,
detects this UUID within its zone, ZPy , it will acknowledge the presence of the person to the Pi-node,

Px. This causes the Pi-node, Px to update its Motion Vector Forward,
−−→
MVF = ZPx → ZPy , against the

associated person. Similarly, the Pi-node Py updates its
−−→
MVB = ZPx → ZPy and

−−→
MVF = ZPy → ZPy .

The
−−→
MVF = ZPy → ZPy represents a transition from ZPy to itself. This indicates that the user is

currently in that zone and acts as a presence indicator. Table 1 shows the Motion Vectors at Pi-nodes

Electronics 2016, 5, 72 10 of 21

Px and Py after a user transits from zone ZPx to zone ZPy (zone ZPx is assumed to be the very first
entry zone). Here, INFINITY represents that a user is not traceable at any of the zones, and thus can
be considered to be outside of the infrastructure where agent-based LATS is deployed.

Table 1. Motion vectors at Pi (Raspberry Pi)-nodes Px and Py after an inter-zonal transition.

INFINITY→ Zone ZPx → Zone ZPy

MVF ZPx → ZPy ZPy → ZPy

MVB INFINITY→ ZPX ZPx → ZPy

The UUID and Major-Minor values allow for classifying a particular BLE device wearer.
For example, one can track the faculty members and students in an academic department using the
content within these fields. This makes the database contain finer details and thus allow a range of
queries to be satisfied. As can be seen, the database agent thus manages the database and the Motion
Vectors within the associated Pi-node.

5.1.4. User Interaction Unit (UIU)

This unit provides an interface for the users to access the tracking service of the agent-based
LATS. The interface could be in the form of a mobile app or a Graphical User Interface (GUI) running
on a Pi, a laptop or a PC, all connected to the same network as that of WAU. We have used a Tartarus
instantiation running on a Pi and a laptop to fire queries to the system. To fire a query, a user can
release an agent from the same Tartarus instantiation. The UIU was populated with mobile agent
programs for a set of queries. Since Tartarus facilitates agent programming [10], users and developers
could write custom mobile agent programs for a range of queries and add them to the UIU to improve
its functionality. The code for the agent of the associated query shall be already available with the
Tartarus as part of the UIU.

Querying: A mobile agent serves the purpose of query processing. Since the databases are distributed
over the various Pi-nodes, these mobile agents move from one such node to another and search
and retrieve the information that can satisfy the user’s query. The mobile agent then aggregates
the relevant data concerning the person being tracked and delivers it to the UIU for processing and
rendering. A user wearing the BLE device or a third party may wish to query this LATS to gather a
range of information which include:

1. Where am I?: Such a query invariably emanates from a person who is lost within the building
or does not know how to move around or needs to convey his/her bearings to someone else.
Under such conditions, the user can fire an SQL query packaged in a mobile agent to the nearest
one-hop neighbouring Pi-node. Once the mobile agent enters this Pi-node, it executes its code
and eventually lands up in the Pi-node of the zone in which the person is currently present.
The agent then retrieves the location information stored a priori within this Pi-node and provides
it to the user. A segment of the relevant mobile agent code is presented in Figure 6.

2. Where is X?: A query of this kind is required for a person to know whether X is within the
building under consideration and, if so, where. This agent-based LATS allows for a non-intrusive
mechanism to find the location of X. The user packs this query into a mobile agent and transmits
it onto the Tartarus platform of the closest Pi, the one within the zone s/he is in currently.
On reaching this Pi, the mobile agent scans the database within it to find whether X is/was
in this zone. (i) If it discovers that X is within a particular zone currently, it retrieves the location
information from the Pi-node and backtracks its path to the user’s system and provides the
information on X; (ii) if the agent finds a Motion Vector Forward for X in that zone, then it uses
the vector to find the next zone visited by X and migrates to the concerned Pi-node of this zone.
It continues to do so until it eventually lands in a Pi-node of a zone where X is currently present.

Electronics 2016, 5, 72 11 of 21

On reaching this, it retrieves the relevant information and retraces its path back to the user’s
system to provide the information on X. In case X has left the place, the Motion Vector Forward
within the Pi-node in the zone where X was last present will point to INFINITY. The agent would
then assume that X is no more in the area and report accordingly to the user; (iii) if no trace of
X is found in the database, the mobile agent continues its migration along the Pi-nodes in a
conscientious manner [60] (Appendix A) until it eventually finds that X has been within the
zone of some Pi or left the place. It may be noted that a user who wishes to know the bearings
of another can alter his query to extract a range of information on the person being tracked.

3. Trace(X): This query will provide a list of locations associated with all those zones which X visited
in order. The query can again be packed into a mobile agent and sent to the network of Pi-nodes
to search the individual databases and retrieve the list. A mobile agent algorithm to trace the
path of a BLE tag bearer is shown in Algorithm 1 and an example of mobile agent routing for the
same is described in Appendix B.

Result: Path followed by X ; // X is a person whose path is to be traced
Stack S = Empty;
Queue Q = Empty;
while while Path followed by X is not retrieved by Agent ; // Agent continues the search

// until the total path traced by X is found
do

MVF(X) = Motion Vector Forward of X at visited Pi-node, Pv ;
MVB(X) = Motion Vector Backward of X at visited Pi-node, Pv ;
if (MVF(X) = Nil) OR (MVB(X) = Nil) ; // If trace is not found by the agent
then

Select a neighbouring node at random and migrate to it ; // Agent migrates
// to another node

else
if (MVF(X) = ZPv → ZPv) OR (MVF(X) = ZPv → INFINITY) ; // If agent has found last node

// visited by X
then

insertStack(S , v) ; // Agent inserts the node ID into its internal stack
while X’s starting position is not found do

Use MVB of each earlier visited Pi-nodes to trace back the path;
insertStack(S , Pi-nodes visited before v);

end
Path followed by X = getStack(S);
return Path followed by X ; // Agent returns the path followed by X

else
if (MVF(X) = ZPv → ZPw); // If Agent finds the intermediate node visited

// by X
then

while X’s starting position is not found do
Use MVB(X) of each earlier visited Pi-nodes to find the start position ;

end
while X’s last/current position is not found do

Use MVF(X) of each next visited Pi-nodes to reach the last/current position ;
insertQueue(Q , Pi-nodes visited from the start position);

end
Path followed by X = getQueue(Q);
return Path followed by X;

else

end
end

end
end
Algorithm 1: An algorithm performed by an agent to trace the path of a BLE tag bearer.

Electronics 2016, 5, 72 12 of 21

Figure 6. Mobile Agent code snippet for the query, Where am I?.

6. Experiments and Results

Experiments conducted involved users who were asked to move from one zone to another.
In addition, experiments involving acquisition of raw BLE data were also conducted to get more
insights into the behavior of the device. In subsequent sub-sections, we discuss the experiments
conducted to acquire and store tracking information, which, in turn, are used and processed by
mobile agents to satisfy user queries.

6.1. Data Acquisition

A BLE tag bearer was asked to move back and forth across the radial axis of a Pi-node. The actual
RSS values received at the Pi-node nominally ranged from −40 dBm to +20 dBm (depending upon
the manufacturer, the actual raw RSS values for a BLE device may range from −80 dbm to +25 dbm).
In order to portray the graph in the 1st quadrant for clarity, we biased these values by adding
+200 dBm to each of the data points. Figure 7 shows the biased raw and filtered BLE data taken
over a certain number of sample points. As expected, a trend similar to a sinusoidal wave can be
observed in the figure thereby validating the performance of the BLE. The RSS received from a BLE
device is subject to noise due to various reasons such as multi-path propagation, signal absorption,
signal interference, etc. Based on the analysis by Faragher et al. [61], different filters may be applied
to the raw BLE data. After a series of empirical experimentation on data filtering, it was found that a
moving average filter with a window size of 6 samples at a time provides satisfactory results. Analysis
revealed a rule of thumb that indicates that as the window size increases, the filtered data becomes
more stable. However, this may take more time to produce tracking results. Hence, a compromise
needs to be made in terms of accuracy and reactiveness of the deployed tracking system.

An experiment wherein each user was made to wear a BLE tag and asked to move from one
zone to another in order to obtain their respective tracking profiles was performed. The experiment
was conducted at the ground floor of the Department of Computer Science and Engineering block of
the Indian Institute of Technology Guwahati. Since it is logical to assume that the profile generated
between two consecutive zones can be extended to other such multiple consecutive zones, we
describe herein the inter-zonal movement for a single user. The results portraying a user’s movement
within two zones, ZP1 and ZP2 along with the three regions, beyond, far and near, categorized on the
basis of RSS is shown is shown in Figure 8. As in Figure 7, the y-axis denotes the filtered and biased

Electronics 2016, 5, 72 13 of 21

RSS values from the BLE receiver at the Pi-node, while the x-axis indicates the sampling index ranging
from 1 to the number of samples taken at a sampling rate of 1 s.

Figure 7. BLE raw and filtered data.

Figure 8. Graph showing inter-zonal movement for a single BLE tag bearer.

The graph shows two different coloured series each corresponding to the RSS at Pi-node within a
particular zone. The orange coloured series denotes the same for Zone 1 (ZP1) while the blue coloured
series indicates that for Zone 2 (ZP2). Initially, the user is outside the coverage area of both ZP1 and ZP2 .
As seen from Figure 8, when the user starts moving towards ZP1 , the RSS (orange colour) increases
from sample number 41 onwards and attains a maximum when the user is nearest to the associated
Pi-node of ZP1 . It then starts to decrease as the user moves away from the Pi-node in ZP1 . When the
user enters the periphery of ZP2 , where both the zones overlap to an extent, an increase in the RSS
at ZP2 is observed with a corresponding decrease of the same at ZP1 . A similar pattern is exhibited
when the user moves away from ZP2 to the next neighbouring zone. A similar experiment that was
conducted when the person moved from ZP2 to ZP1 is recorded with ZP2 as entrance zone and ZP1 as
the exit zone. The relevant plots are depicted in the latter part of Figure 8. It may be observed that
there are some random spikes generated due to noise and reflections. Since these peaks cross from

Electronics 2016, 5, 72 14 of 21

the beyond region to the far region and again go back within a second, the corresponding vectors are
not stored in the database.

6.2. Query Processing

The post data acquisition step involves satisfying queries fired from the user side. In order
to compare the results of query processing using the conventional cloud-based method and the
distributed AgPi approach, we conducted experiments for the two scenarios described in this section.
Since testing on a real system would mean the requirement of a large number of Pis, for both of the
experiments, we emulated a multi-floor building using a 50-node overlay network [62] using Tartarus,
formed over a network of four Pi-nodes and two PCs. Each PC hosted 23 emulated Pi-nodes. The
BLE tag bearers who move around in the building and need to be tracked, were emulated by mobile
agents that move from one node to another. A total of 10 BLE tag bearer were introduced into the
network, out of which six were made to move randomly within the building. The remaining four,
designated as Head, Professor, Janitor and Guard, were programmed to have predefined movements.
In addition, a separate dedicated server acted as the Cloud for both the systems. Figure 9 portrays
the conceptual layout of the network deployed in a building. For the conventional cloud-based
method, the Pi-nodes may or may not be connected to one another. For the AgPi approach (as shown
in Figure 9), these connections are mandatory since there needs to be paths for the mobile agents
to migrate.

Figure 9. AgPi deployed in a multi-floor building.

Scenario 1: Conventional Cloud Approach

In this approach, every Pi-node was capable of directly communicating with the Cloud. As
the BLE tag bearers (mobile agents) move around the building (network), all pertinent data within
the Pi-node (such as Timestamp, UUID, Motion Vectors, etc.) are directly sent to the Cloud. This is

Electronics 2016, 5, 72 15 of 21

done by each of the Pi-nodes as and when new data is generated within them. Thus, all the data
acquired and generated at the Pi-nodes is stored and managed at the cloud. All queries in this
scenario are directly sent to the cloud, which are, in turn, processed at the cloud and returned to the
concerned user.

Scenario 2: AgPi Scenario

In this scenario, a user fires a query in the form of a program within a mobile agent via the
UIU. This agent then knits through the connected Pi-nodes in the network, performs the concerned
task(s) and processes the data within these nodes, thereby processing the query. While doing so, it
also sends the acquired data at each node to the cloud. It may be noted that, in this case, the cloud is
updated only with the relevant information pertaining to the query. Unlike the previous centralized
scenario, the cloud connectivity is made only from those Pi-nodes where the mobile agent finds
query related information. This drastically reduces data traffic between the networked devices and
the cloud.

Comparison of Scenario 1 with Scenario 2

Experiments were performed where queries were fired by the user in both the centralized
cloud-based and AgPi scenarios. Data transfer cost in terms of the number of times the Pi-nodes
connect to the cloud was logged in both these cases. Figure 10 shows the cumulative number of
connections made between the Pi-nodes and the cloud server for a set of Trace (X) queries, where X
is the person being tracked.

Figure 10. Traffic flow for centralized cloud-based and AgPi systems.

In the case of a centralized cloud-based approach, one can infer that the cumulative number of
connections made to the cloud increases steadily with time. As mentioned earlier, this is because, for
every new data generated at a Pi-node, a connection is made to the cloud.

On the contrary, in the case of AgPi, such connections are made to the cloud only when
information found is relevant to the query fired. The cumulative number of connections made by
the mobile agents during the execution of the queries Trace (Head), Trace (Janitor), Trace (Guard) and
Trace (Professor) are shown in the figure. These numbers are far lower than that for the centralized
scenario, clearly indicating the viability of the AgPi approach. The horizontal flat portions, termed as

Electronics 2016, 5, 72 16 of 21

voids in the curves, denote the absence of any connections made to the cloud. Such portions could
occur in the centralized scenario when the BLE tag bearers are stationary i.e., when no new data is
generated at the Pi-nodes. For the AgPi scenario too, such voids could occur provided no queries
are fired.

7. AgPi: Applications Envisaged

The concept of AgPi opens up a plethora of areas where the characteristics of agents, both static
and mobile, can be exploited. As mentioned earlier, our stress in this paper is to generate more
interest in the use of agents on Pi and encourage the creation of real and working systems. The
following are some of the areas where agents and Pi could blend well to produce such systems:

Health Care: One of the most sensitive areas where AgPi can be envisaged is in the unobtrusive
monitoring of the health of a patient. For instance, a wearable Bluetooth based wrist band equipped
with a pulse monitor, temperature sensor, pedometer and similar medical sensors could feed the
live data to an agent on a Pi. This static agent could be programmed to cross check this data, make
a report on the status of the health of the person and then forward the same to a doctor, if required.
In an alternative scenario, a mobile agent can be programmed to continuously patrol the network of
such Pi-nodes set up in a hospital, gather the health information and status of the concerned patients
and deliver the reports to the concerned doctors on their mobile devices. Mobile agents could also
track, trace and inform a doctor in case of an emergency. With AgPi on an Intranet of Things in a
health care scenario, information could be filtered and then sent to a cloud, thereby ensuring the
integrity and security of a patient’s medical data.

Vehicular Networks: The concept of Vehicular Networks (VANET) and connected cars have opened
up numerous application domains. Vehicles, which constitute a node in the network, could have
an on-board Pi with all networking facilities. Such vehicles can form a network among themselves
to allow inter-vehicle communications. This can aid in solving a variety of problems associated
with urban traffic conditions. Agents within such Pi-nodes can migrate around the network to
learn about the traffic conditions in advance and provide valuable route information to the driver.
Such information could also be disseminated to other cars by the agents. Agents can also aid in the
generation of partial green-corridors for the movement of emergency vehicles [48].

Robotics: An intranet of Pi-nodes connected to a network of robots can aid the latter in carrying
out tasks in a coordinated manner. Semwal et al.[10] portray how agents can search and guide a
rescue robot to an area where they are required. Mobile agents can also be used to synchronize tasks
performed by a set of robots [46]. Sharing information using mobile agents can facilitate learning
from within a network as has been described by Jha et al. [47].

The concept of AgPi thus can be used to churn out as well as embed intelligence in a network of
embedded systems.

8. Conclusions

The paper introduces the concept of Agents on Pi (AgPi) and describes how it can be realized
by using Tartarus, a multi-agent platform running on a Raspberry Pi. The platform supports both
static and mobile agents and also allows them to access and control the various ports and peripheral
devices on the Pi through a dedicated plugin. This allows for the creation of a CPS that has both the
hardware and software constituents. An agent-based Location-Aware and Tracking Service (LATS)
application has also been described to bring out the versatility of using agents on a Pi. The system
can track people wearing a BLE device indoors with fair reliability and accuracy and also provide
answers to a range of queries as regards the person being tracked. Experimental results reveal that the

Electronics 2016, 5, 72 17 of 21

AgPi approach seems to perform better than the conventional cloud-based method. In addition, the
use of mobile agents allows multiple queries to be fired using multiple agents concurrently. Queries
need not be pre-programmed or preset. Since mobile agents can be released even during run time,
these queries can be fired on-the-fly. The use of agents on Pi can thus make a network of things
smarter and flexible unlike those that do not use agents. Since agents in Tartarus can be created and
released even during run-time [10], the AgPi based system can be scaled, upgraded and programmed
to be adaptable. The range of diverse areas where agents have been used until the date makes the
concept of AgPi a powerful mechanism to realize intelligent applications in the realm of embedded
and connected devices.

Acknowledgments: The first author would like to acknowledge Tata Consultancy Services (TCS) and the
Ministry of Human Resource Development (MHRD), Govt. of India for providing the support during the
research reported in this paper.

Author Contributions: Both the authors, Tushar Semwal and Shivashankar B. Nair, together conceived the
idea of AgPi based indoor localization portrayed in this paper. The making of the hardware test-bed and the
associated programming were carried out by Tushar Semwal. Both authors were involved in the analysis of the
data churned out, the interpretations of the outcome and also in the writing of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

Pi: Raspberry Pi
AgPi: Agents on Pi
BLE: Bluetooth Low Energy
IoT: Internet of Things
CPS: Cyber-Physical System
MAS: Multi-Agent Systems
GPS: Global Position System
LATS: Location-Aware and Tracking Services
SQL: Structured Query Language
RSS: Received Signal Strength
PC: Personal Computer (Desktop)
UHF: Ultra High Frequency
RFID: Radio Frequency Identification
I2C: Inter-Integrated Circuit
UART: Universal Asynchronous Receiver Transmitter
SPI: Serial Peripheral Interface
WSN : Wireless Sensor Network

Appendix A. Conscientious Migration Strategy

In the Conscientious Migration Strategy [60], the mobile agents migrate to the neighbouring
node only when that node has not been not visited or happens to be the least visited one. In order to
keep track of the visited nodes, a mobile agent appends the recently visited node to a list, comprising
the nodes already visited, maintained within itself. Thus, before moving to the next node, an agent
checks if the next visited node is a member of this list. If so, it chooses another neighbouring node or
the least visited neighbour.

Appendix B. Query Processing

Figure A1 shows 10 Pi-nodes connected to each other in a topology similar to the geographical
map of a floor of a building. The 10 Pi-nodes are denoted by a, b, c, d, e, f , g, h, i, j and their

Electronics 2016, 5, 72 18 of 21

corresponding zonal areas by ZPa , ZPb ,.., and ZPj , respectively. For the sake of simplicity, only part of
the database relevant to agent routing is shown in each Pi-node. Let us assume that the path followed
by a BLE tag bearer X is: d→ e→ f → i→ h.

In the figure, MVF(X) and MVB(X) denotes Moving Vector Forward and Moving Vector
Backward for X, respectively. Imagine a user fires a query from node a to trace X. The associated
mobile agent now has three neighbouring nodes (b, c and d) to migrate. Since there is no motion
vector for X in the node a, the mobile agent opts for the conscientious strategy and chooses one of
these neighbours. Assume that it chooses node b and migrates to it. Since the motion vectors for X are
absent in b, the conscientious strategy forces it to backtrack to a. If it now selects node d and migrates
to it, the motions vectors of X within d will force the agent to switch to the strategy of following
motion vectors. From d onwards, the motion vectors will guide the agent through nodes e, f, i and h
in that order and thereby retrieve the trace for X.

Figure A1. Agent migration an AgPi network.

If the query was fired from node e, since the MVB for X point to node d, the agent migrates to d,
after which it follows the MVFs to discover the trace d→ e→ f → i→ h as in the previous case.

Handling Failures

In the current implementation of AgPi system, handling node failures are implemented in
a very naive manner. A simple handshake protocol is used where mobile agents first ping the
neighbouring node. If an acknowledgment is received from this node, the mobile agent migrates to
that node; otherwise, it informs a local server about this potentially faulty node and chooses another
neighbouring node to migrate.

References

1. Atzori, L.; Iera, A.; Morabito, G. The internet of things: A survey. Comput. Netw. 2010, 54, 2787–2805.
2. Gartner. Gartner Says By 2020, More Than Half of Major New Business Processes and Systems Will

Incorporate Some Element of the Internet of Things, 2016. Available online: http://www.gartner.com/
newsroom/id/3185623 (accessed on 3 June 2016).

Electronics 2016, 5, 72 19 of 21

3. Schreyer, P. The contribution of information and communication technology to output growth. OECD Sci.
Technol. Ind. Working Pap. 2000, doi:10.1787/18151965.

4. Gubbi, J.; Buyya, R.; Marusic, S.; Palaniswami, M. Internet of Things (IoT): A vision, architectural elements,
and future directions. Future Gener. Comput. Syst. 2013, 29, 1645–1660.

5. Khan, R.; Khan, S.U.; Zaheer, R.; Khan, S. Future Internet: The Internet of Things Architecture, Possible
Applications and Key Challenges. In Proceedings of the 10th International Conference on Frontiers of
Information Technology (FIT), Islamabad, Pakistan, 17–19 December 2012; pp. 257–260.

6. Vaquero, L.M.; Rodero-Merino, L. Finding Your Way in the Fog: Towards a Comprehensive Definition of
Fog Computing. SIGCOMM Comput. Commun. Rev. 2014, 44, 27–32.

7. Wooldridge, M. An Introduction to MultiAgent Systems; John Wiley & Sons: Hoboken, NJ, USA, 2009.
8. Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog Computing and Its Role in the Internet of Things.

In Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, MCC’ 12, Helsinki,
Finland, 17 August 2012; ACM: New York, NY, USA, 2012; pp. 13–16.

9. Calle, M.; Kabara, J. Measuring Energy Consumption in Wireless Sensor Networks Using GSP. In
Proceedings of the 2006 IEEE 17th International Symposium on Personal, Indoor and Mobile Radio
Communications, Helsinki, Finland, 11–14 September 2006; pp. 1–5.

10. Semwal, T.; Bode, M.; Singh, V.; Jha, S.S.; Nair, S.B. Tartarus: A Multi-Agent platform for integrating
Cyber-Physical Systems and Robots. In Proceedings of the 2015 Conference on Advances in Robotics, Goa,
India, 2–4 July 2015.

11. Wolfson, O.; Sistla, P.; Xu, B.; Zhou, J.; Chamberlain, S.; Yesha, Y.; Rishe, N. Tracking moving objects using
database technology in DOMINO. In Next Generation Information Technologies and Systems; Springer: Berlin,
Germany, 1999; pp. 112–119.

12. Franklin, S.; Graesser, A. Is it an Agent, or just a Program? A Taxonomy for Autonomous Agents.
In Intelligent Agents III Agent Theories, Architectures, and Languages; Springer: Berlin, Germany, 1996;
pp. 21–35.

13. Maes, P. Artificial Life Meets Entertainment: Lifelike Autonomous Agents. Commun. ACM 1995, 38,
108–114.

14. Ferber, J. Multi-Agent System: An Introduction to Distributed Artificial Intelligence; Addison-Wesley Longman
Publishing Co., Inc.: Boston, MA, USA, 1999.

15. White, J.D.; Davies, M.; Mcgeachie, J.; Grounds, A.D. Mobile Agents. In Software Agents; AAAI/MIT Press:
Palo Alto, CA, USA, 1997; pp. 437–472.

16. Harrison, C.G.; Chess, D.M.; Kershenbaum, A. Mobile Agents: Are They a Good Idea? IBM TJ Watson Research
Center Yorktown Heights: New York, NY, USA, 1995.

17. Chen, M.; Gonzalez, S.; Leung, V. Applications and design issues for mobile agents in wireless sensor
networks. IEEE Wirel. Commun. 2007, 14, 20–26.

18. Kambayashi, Y.; Takimoto, M. Higher-order mobile agents for controlling intelligent robots. Int. J. Intell.
Inf. Technol. (IJIIT) 2005, 1, 28–42.

19. Takimoto, M.; Mizuno, M.; Kurio, M.; Kambayashi, Y. Saving energy consumption of multi-robots using
higher-order mobile agents. In Agent and Multi-Agent Systems: Technologies and Applications; Springer:
Wroclaw, Poland, 2007; pp. 549–558.

20. Maes, P.; Guttman, R.H.; Moukas, A.G. Agents That Buy and Sell. Commun. ACM 1999, 42, 81–91.
21. Boukerche, A.; Machado, R.B.; Jucá, K.R.; Sobral, J.B.M.; Notare, M.S. An agent-based and

biological inspired real-time intrusion detection and security model for computer network operations.
Comput. Commun. 2007, 30, 2649–2660.

22. Machado, R.B.; Boukerche, A.; Sobral, J.; Juca, K.; Notare, M. A hybrid artificial immune and mobile
agent intrusion detection based model for computer network operations. In Proceedings of the 19th IEEE
International Proceedings on Parallel and Distributed Processing Symposium, 4 April 2005; pp. 1–8.

23. Kawamura, T.; Sugahara, K. A Mobile Agent-Based P2P e-Learning System. IPSJ J. 2005, 46, 222–225.
24. Godfrey, W.W.; Nair, S.B. An Immune System Based Multi-robot Mobile Agent Network. In Artificial

Immune Systems; Springer: Berlin, Germany, 2008; pp. 424–433.
25. Godfrey, W.W.; Nair, S.B. Mobile Agent Cloning for Servicing Networked Robots. In Principles and Practice

of Multi-Agent Systems; Springer: Berlin, Germany, 2010; pp. 336–339.

Electronics 2016, 5, 72 20 of 21

26. Godfrey, W.W.; Jha, S.S.; Nair, S.B. On a mobile agent framework for an internet of things. In Proceedings
of the International Conference on Communication Systems and Network Technologies (CSNT), Gwalior,
India, 6–8 April 2013; pp. 345–350.

27. Satoh, I. MobileSpaces: A framework for building adaptive distributed applications using a hierarchical
mobile agent system. In Proceedings of 20th International Conference on Distributed Computing Systems,
Taipei, Taiwan, 10–13 April 2000; pp. 161–168.

28. Bellifemine, F.; Poggi, A.; Rimassa, G. JADE: a FIPA2000 compliant agent development environment. In
Proceedings of the Fifth International Conference on Autonomous Agents, Madrid, Spain, 10–11 September
2001; pp. 216–217.

29. Bellifemine, F.L.; Caire, G.; Greenwood, D. Developing Multi-Agent Systems with JADE; Volume 7; John Wiley
& Sons: Hoboken, NJ, USA, 2007.

30. Johansen, D.; Renesse, R.; Schneider, F.B. An Introduction to the TACOMA Distributed System; Technical
Report; University of Tromsø and Cornell University: Ithaca, NY, USA, 1995.

31. Kotz, D.; Gray, R.; Nog, S.; Rus, D.; Chawla, S.; Cybenko, G. Agent Tcl: Targeting the needs of mobile
computers. IEEE Internet Computing 1997, 1, 58–67.

32. Silva, A.; Da Silva, M.M.; Delgado, J. An overview of AgentSpace: Next-generation mobile agent system.
In Mobile Agents; Springer: Berlin, Germany, 1998; pp. 148–159.

33. Lange, D.B.; Oshima, M.; Karjoth, G.; Kosaka, K. Aglets: Programming mobile agents in Java. In Worldwide
Computing and Its Applications; Springer: Berlin, Germany, 1997; pp. 253–266.

34. Moreno, A.; Valls, A.; Viejo, A. Using JADE-LEAP to implement agents in mobile devices; Universitat Rovira i
Virgili: Tarragona, Spain, 2003.

35. Chen, B.; Cheng, H.H.; Palen, J. Integrating mobile agent technology with multi-agent systems for
distributed traffic detection and management systems. Transp. Res. Part C Emerg. Technol. 2009, 17, 1–10.

36. Clocksin, W.; Mellish, C.S. Programming in PROLOG; Springer Science & Business Media: Berlin,
Germany, 2003.

37. Bratko, I. Prolog Programming for Artificial Intelligence; Pearson Education: Upper Saddle River, NJ,
USA, 2001.

38. Gal, A.; Lapalme, G.; Saint-Dizier, P.; Somers, H. Prolog for Natural Language Processing; Wiley: Chichester,
England, 1991.

39. Ceri, S.; Gottlob, G.; Wiederhold, G. Efficient database access from PROLOG. IEEE Trans. Softw. Eng. 1989,
15, 153–164.

40. van der Wilt, K. Knowledge systems and Prolog: A logical approach to expert systems and natural language
processing. Mach. Transl. 1990, 4, 329–331.

41. Tarau, P. Jinni: Intelligent mobile agent programming at the intersection of Java and Prolog. In Proceedings
of Practical Application of Intelligent Agents and Multi-Agent Technology (PAAM), London, UK, 19–21
Apirl 1999; Volume 99, pp. 109–123.

42. Devèze, B.; Chopinaud, C.; Taillibert, P. Alba: A generic library for programming mobile agents with
prolog. In Programming Multi-Agent Systems; Springer: Berlin, Germany, 2006; pp. 129–148.

43. Li, X. Imago: A Prolog-based system for intelligent mobile agents. In Mobile Agents for Telecommunication
Applications; Springer: Berlin, Germany, 2001; pp. 21–30.

44. Matani, J.; Nair, S.B. Typhon - A mobile agents framework for real world emulation in Prolog.
In Multi-Disciplinary Trends in Artificial Intelligence; Springer: Berlin, Germany, 2011; pp. 261–273.

45. Wielemaker, J.; Schrijvers, T.; Triska, M.; Lager, T. Swi-prolog. Theory and Practice of Logic Programming 2012,
12, 67–96.

46. Jha, S.S.; Godfrey, W.W.; Nair, S.B. Stigmergy-Based Synchronization of a Sequence of Tasks in a Network
of Asynchronous Nodes. Cybern. Syst. 2014, 45, 373–406.

47. Jha, S.S.; Nair, S.B. On a Multi-agent Distributed Asynchronous Intelligence-Sharing and Learning
Framework. In Transactions on Computational Collective Intelligence XVIII; Springer: Berlin, Germany, 2015;
pp. 166–200.

48. Bode, M.; Jha, S.S.; Nair, S.B. A Mobile Agent-based Autonomous Partial Green Corridor Discovery
and Maintenance Mechanism for Emergency Services amidst Urban Traffic. In Proceedings of the First
International Conference on IoT in Urban Space, Rome, Italy, 27–28 October 2014; pp. 13–18.

Electronics 2016, 5, 72 21 of 21

49. Semwal, T.; Nikhil, S.; Jha, S.S.; Nair, S.B. TARTARUS: A Multi-Agent Platform for Bridging the Gap
Between Cyber and Physical Systems (Demonstration). In Proceedings of the 2016 International Conference
on Autonomous Agents and Multiagent Systems, Singapore, 9–13 May 2016; International Foundation for
Autonomous Agents and Multiagent Systems: Richland, SC, USA, 2016; pp. 1493–1495.

50. Kinnunen, J.; Krishnamurthy, G.; Huhtanen, K.; Jussila, P.; Ratschunas, K. Location Dependent Services.
U.S. Patent 6,813,501, 2 November 2004.

51. Catarinucci, L.; De Donno, D.; Mainetti, L.; Palano, L.; Patrono, L.; Stefanizzi, M.L.; Tarricone, L.
An IoT-Aware Architecture for Smart Healthcare Systems. IEEE Internet Things J. 2015, 2, 515–526.

52. Dobkin, D.M. The RF in RFID: UHF RFID in Practice; Newnes: Burlington, VT, USA, 2012.
53. Yick, J.; Mukherjee, B.; Ghosal, D. Wireless sensor network survey. Comput. Netw. 2008, 52, 2292–2330.
54. Gomez, C.; Oller, J.; Paradells, J. Overview and Evaluation of Bluetooth Low Energy: An Emerging

Low-Power Wireless Technology. Sensors 2012, 12, 11734–11753.
55. Yoshimura, Y.; Krebs, A.; Ratti, C. An analysis of visitors’ length of stay through noninvasive Bluetooth

monitoring in the Louvre Museum. arXiv 2016, 1605.00108.
56. Wolfson, O.; Chamberlain, S.; Kalpakis, K.; Yesha, Y. Modeling moving objects for location based services.

In Developing an Infrastructure for Mobile and Wireless Systems; Springer: Berlin, Germany, 2001; pp. 46–58.
57. Raspberry Pi — Wikipedia. Available online: https://en.wikipedia.org/wiki/Raspberry_Pi (accessed on

2 June 2016).
58. Raspberry Pi Zero: The $5 Computer. Available online: https://www.raspberrypi.org/blog/raspberry-

pi-zero/ (accessed on 3 June 2016).
59. Michael, M.S. Universal Asynchronous Receiver/Transmitter. U.S. Patent 5,140,679, 18 August 1992.
60. Minar, N.; Kramer, K.; Maes, P. Cooperating mobile agents for mapping networks. In Proceedings of the

First Hungarian National Conference on Agent Based Computing, Budapest, Hungary, 29–31 May 1998.
61. Faragher, R.; Harle, R. An analysis of the accuracy of bluetooth low energy for indoor positioning

applications. In Proceedings of the 27th International Technical Meeting of the Satellite Division of the
Institute of Navigation (ION GNSS+’14), Tampa, FL, USA, 8–12 September 2014.

62. Lua, E.K.; Crowcroft, J.; Pias, M.; Sharma, R.; Lim, S. A survey and comparison of peer-to-peer overlay
network schemes. IEEE Commun. Surv. Tutor. 2005, 7, 72–93.

c© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Multi-Agent Systems (MAS)
	Mobile Agents
	Multi-Agent Frameworks

	Location-Aware and Tracking Service (LATS)
	AgPi: The Cyber and Physical Confluence
	AgPi in the Real World
	AgPi based LATS application
	Detection Mechanism
	Wearable and Acquisition Unit (WAU)
	Cyber Computing Unit (CCU)
	User Interaction Unit (UIU)

	Experiments and Results
	Data Acquisition
	Query Processing

	AgPi: Applications Envisaged
	Conclusions
	Conscientious Migration Strategy
	Query Processing

