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Abstract:



The analogy between the electron wave nature in graphene electronics and the electromagnetic waves in dielectrics has suggested a series of optical-like phenomena, which is of great importance for graphene-based electronic devices. In this paper, we propose an asymmetric double-well potential on graphene as an electronic waveguide to confine the graphene electrons. The guided modes in this graphene waveguide are investigated using a modified transfer matrix method. It is found that there are two types of guided modes. The first kind is confined in one well, which is similar to the asymmetric quantum well graphene waveguide. The second kind can appear in two potential wells with double-degeneracy. Characteristics of all the possible guide modes are presented.
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1. Introduction


A two-dimensional layer of carbon atoms known as graphene [1] has been investigated widely both theoretically and experimentally. Graphene has a unique band structure for which the electron and hole bands meet at two inequivalent points in the Brillouin zone. At these Dirac points, the electrons behave like quasi-particles according to the massless Dirac equation, which leads to a linear dispersion relation. The analogy between the electron wave nature in graphene electronics and the electromagnetic waves in dielectrics has suggested a series of optical-like phenomena, such as the Goos–Hänchen effect [2,3], negative refraction [4], collimation [5], birefringence [6], and the Bragg reflection [7] reported in recent papers.



Another analogy is the graphene-based electron waveguides [8,9,10,11,12,13,14,15,16,17,18], which will be useful for various graphene-based devices, such as electronic fiber [19]. The crux of such an electronic waveguide is the confinement of Dirac fermions in graphene. There are many schemes to confine electrons in graphene, e.g., electric confinement [20,21], magnetic confinement [22] and strain-induced confinement [16,17,18]. By having a quantum well in graphene to confine massless Dirac fermions, the guided modes in graphene-based waveguides with quantum well structure induced by an external electrical field have been investigated in detail [8,9,10]. Experimentally, gate-controlled electron guiding in graphene by tuning the carrier type and its density using local electrostatic fields has been achieved [12]. However, the confinement of the quasi-particles is not strong enough due to the Klein tunneling.



Another effective way to confine the electrons in graphene is by applying a uniform magnetic field [22] and the characteristics of magnetic waveguides in graphene have also been studied [13,14]. Recently, the strain-induced graphene waveguides has also attracted much attention [16,17,18]. Contrary to the electric or magnetic waveguide in graphene, the strain-induced waveguide confines electrons without any external fields. It confines the quasi-particles with the pseudo-magnetic field [23], which arises from the applied mechanical strain. The bound states of the strain-induced waveguides are dependent on the valleys, which is different from the electric and magnetic waveguides (valley independent). Furthermore, smooth one-dimensional potential [15,24,25,26] and velocity barriers [27] have been proposed to confine the Dirac fermions in graphene. Electrons can also be guided in nano-structured graphene, such as graphene nano-ribbons [28] and antidot lattice [29]. Recently, Allen et al. demonstrated the confinement of electron waves in graphene with the use of superconducting interferometry in a graphene Josephson junction [30].



For a given graphene waveguide with quantum well structures, the dispersion equation for its guided modes is normally determined by applying the continuity of wave function at the interfaces of the quantum well. This method is easy for one quantum well structure, but not for multiple or more complicated quantum well structures, e.g., a double-well potential. In this paper, we will apply a transfer matrix method [31,32,33] to deduce the dispersion equation for guided modes in a double-well potential structure. From the calculation, we will present the characteristics of the guided modes in detail, and report its novel properties as compared to other graphene-based waveguides.



In the present work, we focus on the properties of guided modes in a double-well asymmetric potential that acts as a slab waveguide for electron waves (based on Dirac solution) in a form similar to that in integrated optics. However, it should be noted that the optical properties or optical waves in graphene have also been investigated [34,35,36,37,38,39,40,41]. This work shows an analogy between the electron wave nature in graphene electronics and the electromagnetic waves in dielectrics.




2. Guided Mode and Dispersion Equation for a Double-Well Potential


In the presence of an electrostatic potential V(x), electrons inside a monolayer graphene can be described by the Dirac-like equation:


[image: there is no content]



(1)




where [image: there is no content] are the Pauli matrices, and [image: there is no content] m/s is the Fermi velocity. [image: there is no content] is a two-component pseudo-spinor wave function, and [image: there is no content] are the smooth enveloping functions for two triangular sublattices in graphene, which can be expressed as [image: there is no content] due to its translation invariance in the direction. In terms of [image: there is no content], Equation (1) is written as


[image: there is no content]



(2)







By using the transfer matrix method [31,32,33], we obtain a matrix M to connect the wave functions [image: there is no content] at the two boundaries at [image: there is no content] and [image: there is no content]:


[image: there is no content]



(3)






M=cos(kxd−θ)cosθsisin(kxd)cosθsisin(kxd)cosθcos(kxd+θ)cosθ,



(4)




where [image: there is no content], [image: there is no content], [image: there is no content]. By solving Equation (3), one can immediately obtain the dispersion equation of a graphene waveguide (see below).



Here, we consider a double-well asymmetric potential for graphene waveguide as plotted in Figure 1a, where its potential distribution [image: there is no content] is denoted by


[image: there is no content]



(5)






Figure 1. Schematic diagram of (a) a double-well potential on graphene; (b) guided modes in the region [image: there is no content]; (c) guided modes in the region [image: there is no content].



[image: Electronics 05 00087 g001]






The proposed waveguide configuration can be realized by applying four gate-tunable potential barriers on single-layer graphene [42]. By tuning the applied voltage on the gate, a double-well asymmetric potential can be formed on graphene. For simplicity, we have [image: there is no content] unless it is specified elsewhere. In this model, we have neglected the microscopic details of the interaction effects such as the inter-valley coupling [43,44] and inter-valley scattering in the potential steps [44,45]. The electron wave incident into the quantum well (region 2) with an angle θ respect to the x-axis, and the guided modes are propagating in the y-direction. The critical angle of the incident electron waves from region i to region j is defined by


[image: there is no content]



(6)




where [image: there is no content], E is the energy of incident electron and [image: there is no content] is the electrostatic potential in the respective region [image: there is no content]. The critical angle [image: there is no content] is shown in Figure 2 as a function of the incidence energy E for V1=V4=100meV, V2=0meV, V3=60meV, h1=100nm, and h2=80nm.


Figure 2. The critical angle [image: there is no content] as a function of the incidence energy E. The physical parameters are: [image: there is no content] meV, [image: there is no content] meV, [image: there is no content] meV, [image: there is no content] nm, [image: there is no content] nm.



[image: Electronics 05 00087 g002]






For a given guided mode, there will be total internal reflection of electron waves at both the two interfaces of a waveguide. For example, at large incidence angles [image: there is no content], total reflection occurs in a specific range (marked with “slanted lines”) as plotted in Figure 2. In this range, the electron waves will be reflected at the interfaces back and forth with an angle of in region 2 ([image: there is no content]) with a guided wave propagating in the axis as shown in Figure 1b.



For the angle within [image: there is no content] in region 2 and the angle [image: there is no content] in region 3, which lies in a range marked with “vertical lines” in Figure 2, the electron waves will refract into region 3, and total internal reflection occurs at the interface [image: there is no content]. The electron wave will oscillate in the region of [image: there is no content] as shown in Figure 1c. It is important to note that there are no guided modes within [image: there is no content], as there is no angle θ to fulfill the condition [image: there is no content]. Thus, there are only two types of guided modes in a double-well potential. The first one is the guided modes in [image: there is no content], and the other is the guided modes in [image: there is no content].



To derive the dispersion equation, the electron wave function [image: there is no content] in the double-well potential can be written as:


[image: there is no content]



(7)






[image: there is no content]



(8)







Here, we have [image: there is no content], [image: there is no content][image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content]. And [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content].



Based on the transfer matrix method, we have:


[image: there is no content]



(9)




where M2(3)=cosk2x(3x)h1(2)−θ2(3)cosθ2(3)s2(3)isink2x(3x)h1(2)cosθ2(3)s2(3)isink2x(3x)h1(2)cosθ2(3)cosk2x(3x)h1(2)+θ2(3)cosθ2(3), and [image: there is no content].



By multiplying Equation (9) with matrix [image: there is no content], we obtain


[image: there is no content]



(10)







From Equation (10), we obtain the dispersion equation for the guided modes in a double-well potential, which is


[image: there is no content]



(11)




and [image: there is no content], [image: there is no content], [image: there is no content], [image: there is no content], and [image: there is no content]. The dispersion equation for the guided modes obtained with the transfer matrix method is more convenient than the usual method that solving the Dirac equations from the continuity of wave function at the interfaces of quantum wells. The dispersion equation (Equation (11)) obtained for the double-well asymmetric potential can be recovered to that of the symmetric quantum well-based graphene waveguide by setting [image: there is no content] and h2=0nm. Thus, we have


[image: there is no content]



(12)




which is the dispersion equation for a symmetric quantum well, as reported in Ref. [8]. Equation (12) can also be directly obtained by using the transfer matrix method:


[image: there is no content]



(13)








3. Characteristics of the Guided Modes in a Double-Well Potential


For the guided mode in the region [image: there is no content], the electron waves are evanescent in the other three regions, namely [image: there is no content], where [image: there is no content] is an imaginary number, and [image: there is no content], [image: there is no content] are real. Thus, we have the following conditions:


[image: there is no content]



(14)




which is used to determine the range of [image: there is no content].



There are three energy ranges for a guided mode in this region: (i) [image: there is no content]; (ii) [image: there is no content]; and (iii) [image: there is no content], as shown Figure 2 (marked with oblique lines). To show the values of [image: there is no content], Equation (11) (LHS: [image: there is no content] and RHS: [image: there is no content]) are plotted in Figure 3 as a function of [image: there is no content] for three energy levels: [image: there is no content], 94 and 110 meV. The intersections of [image: there is no content] and [image: there is no content] give the specific values for the guided modes.


Figure 3. Graphical determination of [image: there is no content] for guided modes in [image: there is no content]. The red and blue curves correspond to [image: there is no content] and [image: there is no content], respectively. The energy of incident electron is (a) [image: there is no content] meV; (b) [image: there is no content] meV; and (c) [image: there is no content] meV. The other parameters are the same as those in Figure 2.



[image: Electronics 05 00087 g003]






For the [image: there is no content] case, we have [image: there is no content] and [image: there is no content], which corresponds to the regime of Klein tunneling. Here, we set [image: there is no content] meV, and there is only one intersection ([image: there is no content]), as shown in Figure 3a. The corresponding wave function distribution is plotted in Figure 4a. Similar to the optical waveguide, the guided modes is defined by the number of the nodes of the spinor wave function [image: there is no content]. The spinor components [image: there is no content] and [image: there is no content] represent electron and hole states, respectively. It is clearly seen from Figure 4a that there is no fundamental mode in this case since only Klein tunneling occurs in the double-well potential. The probability current density of the guided mode is plotted in Figure 4b, which can be calculated by the definition in the Dirac equation, [image: there is no content] with [image: there is no content], [image: there is no content]. This finding indicates that the Dirac fermions can be well-localized in the double-well potential.


Figure 4. (a) the wave function of guided modes as a function of distance corresponding to the intersection [image: there is no content] in Figure 3a. The solid curve and the dashed lines corresponds to [image: there is no content] and [image: there is no content], respectively. The vertical lines represent the boundaries of the waveguide; and (b) the corresponding probability current density within the graphene waveguide for the guided mode. The solid black lines represent boundaries of the waveguide.
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For the [image: there is no content] case, we have [image: there is no content], [image: there is no content]. Both Klein tunneling and classical motion are present in the double-well potential. Here, we choose [image: there is no content] meV, and there are four intersections, as shown in Figure 3b. The corresponding wave functions of the four guided modes are presented in Figure 5: (a) [image: there is no content]; (b) [image: there is no content]; (c) [image: there is no content]; and (d) [image: there is no content]. The figure shows different mode structures and characteristics between [image: there is no content] and [image: there is no content]. For [image: there is no content], the double-well potential can support the fundamental mode, first-order mode, second-order mode, and third-order mode. However, there is no fundamental mode in the waveguide for [image: there is no content] (see Figure 5a, a small peak appears in wave functions for [image: there is no content] on the left interface of the waveguide), and it only supports first-order mode, second-order mode, third-order mode, and fourth-order mode. This finding suggests that the electrons and holes have different behaviors under the same conditions, which is similar to the mixing case of classical motion and Klein tunneling that appeared in an asymmetric quantum well graphene waveguide [9,10].


Figure 5. The wave function [image: there is no content] (solid) and [image: there is no content] (dashed) of guided modes as a function of distance corresponding to the intersections in Figure 3b: (a) [image: there is no content], [image: there is no content]; (b) [image: there is no content], [image: there is no content]; (c) [image: there is no content], [image: there is no content]; and (d) [image: there is no content], [image: there is no content].



[image: Electronics 05 00087 g005]






For large electron energy [image: there is no content] meV in the [image: there is no content] case, we have [image: there is no content]. The dependencies of [image: there is no content] and [image: there is no content] on [image: there is no content] are shown in Figure 3c. In this case, it is clearly seen from Figure 6 that the wave functions [image: there is no content] and [image: there is no content] of guided modes for the five intersection points: (a) [image: there is no content]; (b) [image: there is no content]; (c) [image: there is no content]; (d) [image: there is no content]; and (e) [image: there is no content] have very similar characteristics. The waveguide can support the fundamental mode, first-order mode, second-order mode, third-order mode, and fourth-order mode for the electrons and the holes. It must be pointed out that the guided modes in region 2 have similar characteristics with those in asymmetric quantum well graphene waveguide [9,10].


Figure 6. The wave function [image: there is no content] (solid) and [image: there is no content] (dashed) of guided modes as a function of distance corresponding to the intersections in Figure 3c: (a) [image: there is no content], [image: there is no content]; (b) [image: there is no content], [image: there is no content]; (c) [image: there is no content], [image: there is no content]; (d) [image: there is no content], [image: there is no content]; and (e) [image: there is no content], [image: there is no content].



[image: Electronics 05 00087 g006]






For the guided modes in the region of [image: there is no content], [image: there is no content], [image: there is no content] and [image: there is no content] should be real. The transverse wavenumber [image: there is no content] in region 2 must fulfills the following condition:


[image: there is no content]



(15)







For the incident electrons with low energy [image: there is no content] meV, the double-well potential cannot support a guided mode. Thus, only a dispersion equation at higher energy [image: there is no content] meV and [image: there is no content] meV are plotted in Figure 7a,b, respectively. Each of them has three intersection points. For [image: there is no content] meV (from Figure 7a), the intersections are (a) [image: there is no content]; (b) [image: there is no content]; and (c) [image: there is no content], which are plotted in Figure 8. For [image: there is no content] meV (from Figure 7b), we have (a) [image: there is no content]; (b) [image: there is no content]; and (c) [image: there is no content], which are plotted in Figure 9.


Figure 7. Graphical determination of [image: there is no content] for guided modes in [image: there is no content]. The red and blue curves correspond to [image: there is no content] and [image: there is no content], respectively. The energy of incident electron is (a) [image: there is no content] meV and (b) [image: there is no content] meV. The other parameters are the same as those in Figure 2.



[image: Electronics 05 00087 g007]





Figure 8. The wave function [image: there is no content] (solid) and [image: there is no content] (dashed) of guided modes as a function of distance corresponding to the intersections in Figure 7a: (a) [image: there is no content], [image: there is no content]; (b) [image: there is no content], [image: there is no content]; and (c) [image: there is no content], [image: there is no content].



[image: Electronics 05 00087 g008]





Figure 9. The wave function [image: there is no content] (solid) and [image: there is no content] (dashed) of guided modes as a function of distance corresponding to the intersections in Figure 7b: (a) [image: there is no content], [image: there is no content]; (b) [image: there is no content], [image: there is no content]; and (c) [image: there is no content], [image: there is no content].



[image: Electronics 05 00087 g009]






From the figure, we see that the electrons and holes have similar mode structure and motion characteristics. For the [image: there is no content] meV case, the double-well potential is able to support a higher order mode, such as the sixth-order mode (Figure 8b,c). This is known as mode double-degeneracy, which is similar to the oscillating guided modes in a symmetric five-layer left-handed waveguide [46]. For [image: there is no content] meV, we have fifth-order mode, sixth-order mode, and seventh-order mode, as shown in Figure 9. For completeness, the probability current density of some specific guided modes is plotted in Figure 10, which shows good confinement.


Figure 10. Probability current density within the graphene waveguide for the guided modes: (a) [image: there is no content] meV, [image: there is no content]; (b) [image: there is no content] meV, [image: there is no content]; (c) [image: there is no content] meV, [image: there is no content]; and (d) [image: there is no content] meV, [image: there is no content].



[image: Electronics 05 00087 g010]






In general, for the electrons in this graphene waveguide with [image: there is no content] meV, the double-well potential supports the fundamental mode, first-order mode, second-order mode, third-order mode, fifth-order mode and sixth-order mode for [image: there is no content], while it supports the first-order mode, second-order mode, third-order mode, fourth-order mode, fifth-order mode and sixth-order mode for [image: there is no content]. The fourth-order mode is absent for [image: there is no content], while the fundamental mode is absent for [image: there is no content]. Mode double-degeneracy appears for the sixth-order mode for both [image: there is no content] and [image: there is no content]. The order of the guided modes is dependent on the incident energy and incidence angle for a given quantum well electron waveguide. The reason for the absence of some guided modes is that the incident energy is not sufficiently large with respect to the critical angle for the certain guided mode [8]. The absence of guided modes is similar to the situations in negative-refractive-index waveguides [46,47]. For the [image: there is no content] meV case, the guided modes for [image: there is no content] and [image: there is no content] have similar mode structure. The waveguide can support the fundamental mode, first-order mode, second-order mode, and up to the seventh-order mode for the electrons and the holes. There is no mode absent in this condition.



For many applications, it is desired to have mode tuning either by potential, the incident energy, or the well width. In Figure 11, the solutions to the guided modes at different values of well width [image: there is no content], 40, 100, 160 nm are presented. For the guided modes in [image: there is no content], the results (see Figure 11a) show that changing [image: there is no content] has no effect on the number of guided modes. However, for the guided modes in [image: there is no content], we have more guide modes at higher [image: there is no content], as shown in Figure 11b. For example, at [image: there is no content] nm, we have three guided modes in the region [image: there is no content], which is higher than two modes for [image: there is no content] nm, and only one mode for [image: there is no content] nm. Obviously, there are no intersections for guided modes in the region [image: there is no content] with [image: there is no content] nm. In comparison with the quantum well graphene waveguide, the double-well graphene waveguide can support some higher order guided modes in a wider range.


Figure 11. Graphical determination of [image: there is no content] and [image: there is no content] for guided modes in (a) [image: there is no content] and (b) [image: there is no content] with different values of [image: there is no content]. Here, the incident energy of electrons is fixed at [image: there is no content] meV. The other parameters are the same as those in Figure 2.
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4. Conclusions


We have determined the guided modes in a double-well asymmetry potential with a transfer matrix method over a wide range of parameters. Two types of guide modes were found in the proposed structures, one of which was similar to the characteristics with those in the graphene waveguide with asymmetric quantum well structure. It was found that the proposed graphene based electron waveguides can support some higher order nodes (up to the 7th order). Mode double-degeneracy appeared under some conditions. For some given incident energy of electrons, some modes are absent. Furthermore, the tuning of the number of guided modes by the well width was also studied. These novel properties of the guided modes in the double-well potential may provide potential applications for various graphene-based electronic devices. Electron waveguides are examples of various graphene-based electronic devices; however, the transfer matrix method may not be suitable for simulating other graphene-based electronic devices, such as graphene-based field effect transistors. Hence, we will seek other methods to solve the Dirac equation in graphene in order to simulate graphene-based electronic devices in our future research work.
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