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Abstract: The analogy between the electron wave nature in graphene electronics and the
electromagnetic waves in dielectrics has suggested a series of optical-like phenomena, which is
of great importance for graphene-based electronic devices. In this paper, we propose an asymmetric
double-well potential on graphene as an electronic waveguide to confine the graphene electrons.
The guided modes in this graphene waveguide are investigated using a modified transfer matrix
method. It is found that there are two types of guided modes. The first kind is confined in one
well, which is similar to the asymmetric quantum well graphene waveguide. The second kind can
appear in two potential wells with double-degeneracy. Characteristics of all the possible guide modes
are presented.
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1. Introduction

A two-dimensional layer of carbon atoms known as graphene [1] has been investigated widely
both theoretically and experimentally. Graphene has a unique band structure for which the electron and
hole bands meet at two inequivalent points in the Brillouin zone. At these Dirac points, the electrons
behave like quasi-particles according to the massless Dirac equation, which leads to a linear dispersion
relation. The analogy between the electron wave nature in graphene electronics and the electromagnetic
waves in dielectrics has suggested a series of optical-like phenomena, such as the Goos–Hänchen
effect [2,3], negative refraction [4], collimation [5], birefringence [6], and the Bragg reflection [7]
reported in recent papers.

Another analogy is the graphene-based electron waveguides [8–18], which will be useful
for various graphene-based devices, such as electronic fiber [19]. The crux of such an electronic
waveguide is the confinement of Dirac fermions in graphene. There are many schemes to confine
electrons in graphene, e.g., electric confinement [20,21], magnetic confinement [22] and strain-induced
confinement [16–18]. By having a quantum well in graphene to confine massless Dirac fermions,
the guided modes in graphene-based waveguides with quantum well structure induced by an external
electrical field have been investigated in detail [8–10]. Experimentally, gate-controlled electron
guiding in graphene by tuning the carrier type and its density using local electrostatic fields has
been achieved [12]. However, the confinement of the quasi-particles is not strong enough due to the
Klein tunneling.

Another effective way to confine the electrons in graphene is by applying a uniform magnetic
field [22] and the characteristics of magnetic waveguides in graphene have also been studied [13,14].
Recently, the strain-induced graphene waveguides has also attracted much attention [16–18].
Contrary to the electric or magnetic waveguide in graphene, the strain-induced waveguide confines
electrons without any external fields. It confines the quasi-particles with the pseudo-magnetic
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field [23], which arises from the applied mechanical strain. The bound states of the strain-induced
waveguides are dependent on the valleys, which is different from the electric and magnetic waveguides
(valley independent). Furthermore, smooth one-dimensional potential [15,24–26] and velocity
barriers [27] have been proposed to confine the Dirac fermions in graphene. Electrons can also
be guided in nano-structured graphene, such as graphene nano-ribbons [28] and antidot lattice [29].
Recently, Allen et al. demonstrated the confinement of electron waves in graphene with the use of
superconducting interferometry in a graphene Josephson junction [30].

For a given graphene waveguide with quantum well structures, the dispersion equation for its
guided modes is normally determined by applying the continuity of wave function at the interfaces
of the quantum well. This method is easy for one quantum well structure, but not for multiple or
more complicated quantum well structures, e.g., a double-well potential. In this paper, we will apply a
transfer matrix method [31–33] to deduce the dispersion equation for guided modes in a double-well
potential structure. From the calculation, we will present the characteristics of the guided modes in
detail, and report its novel properties as compared to other graphene-based waveguides.

In the present work, we focus on the properties of guided modes in a double-well asymmetric
potential that acts as a slab waveguide for electron waves (based on Dirac solution) in a form similar
to that in integrated optics. However, it should be noted that the optical properties or optical waves in
graphene have also been investigated [34–41]. This work shows an analogy between the electron wave
nature in graphene electronics and the electromagnetic waves in dielectrics.

2. Guided Mode and Dispersion Equation for a Double-Well Potential

In the presence of an electrostatic potential V(x), electrons inside a monolayer graphene can be
described by the Dirac-like equation:

[−ih̄vF~σ · ∇+ V(x)]Ψ(x, y) = EΨ(x, y), (1)

where~σ = (σx, σy) are the Pauli matrices, and vF = 106 m/s is the Fermi velocity. Ψ = (Ψ̃A, Ψ̃B)
T is

a two-component pseudo-spinor wave function, and Ψ̃A,B are the smooth enveloping functions for
two triangular sublattices in graphene, which can be expressed as Ψ̃A,B(x, y) = ΨA,B(x)eikyy due to its
translation invariance in the direction. In terms of ΨA,B, Equation (1) is written as

dΨA,B

dx
∓ kyΨA,B = i

E−V(x)
h̄vF

ΨB,A. (2)

By using the transfer matrix method [31–33], we obtain a matrix M to connect the wave functions
ΨA,B(x) at the two boundaries at x = 0 and x = d:(

ΨA(d)
ΨB(d)

)
= M

(
ΨA(0)
ΨB(0)

)
, (3)

M =


cos(kxd− θ)

cos θ
s

i sin(kxd)
cos θ

s
i sin(kxd)

cos θ

cos(kxd + θ)

cos θ

 , (4)

where s = sgn(E− V), k = |E− V|/h̄vF, (kx, ky) = k(cos θ, sin θ). By solving Equation (3), one can
immediately obtain the dispersion equation of a graphene waveguide (see below).
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Here, we consider a double-well asymmetric potential for graphene waveguide as plotted in
Figure 1a, where its potential distribution V(x) is denoted by

V(x) =


V1 x < 0

V2 0 < x < h1

V3 h1 < x < (h1 + h2)

V4 x > (h1 + h2)

. (5)

Figure 1. Schematic diagram of (a) a double-well potential on graphene; (b) guided modes in the
region (0, h1); (c) guided modes in the region (0, h1 + h2).

The proposed waveguide configuration can be realized by applying four gate-tunable potential
barriers on single-layer graphene [42]. By tuning the applied voltage on the gate, a double-well
asymmetric potential can be formed on graphene. For simplicity, we have V1 = V4 unless it is specified
elsewhere. In this model, we have neglected the microscopic details of the interaction effects such as
the inter-valley coupling [43,44] and inter-valley scattering in the potential steps [44,45]. The electron
wave incident into the quantum well (region 2) with an angle θ respect to the x-axis, and the guided
modes are propagating in the y-direction. The critical angle of the incident electron waves from region
i to region j is defined by

θij = arcsin(|E−Vj|/|E−Vi|), (6)

where i, j = 1, 2, 3, 4(i 6= j), E is the energy of incident electron and Vi(j) is the electrostatic potential
in the respective region i(j). The critical angle θij is shown in Figure 2 as a function of the incidence
energy E for V1 = V4 = 100 meV, V2 = 0 meV, V3 = 60 meV, h1 = 100 nm, and h2 = 80 nm.

For a given guided mode, there will be total internal reflection of electron waves at both the two
interfaces of a waveguide. For example, at large incidence angles θ > max (θ21, θ23), total reflection
occurs in a specific range (marked with “slanted lines”) as plotted in Figure 2. In this range, the electron
waves will be reflected at the interfaces back and forth with an angle of in region 2 (0 < x < h1) with a
guided wave propagating in the axis as shown in Figure 1b.

For the angle within θ23 > θ > θ21 in region 2 and the angle θ3 > θ34 in region 3, which lies in a
range marked with “vertical lines” in Figure 2, the electron waves will refract into region 3, and total
internal reflection occurs at the interface x = h1 + h2. The electron wave will oscillate in the region of
0 < x < h1 + h2 as shown in Figure 1c. It is important to note that there are no guided modes within
h1 < x < h1 + h2, as there is no angle θ to fulfill the condition θ3 > max (θ32, θ34). Thus, there are only
two types of guided modes in a double-well potential. The first one is the guided modes in 0 < x < h1,
and the other is the guided modes in 0 < x < h1 + h2.
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Figure 2. The critical angle θij as a function of the incidence energy E. The physical parameters are:
V1 = V4 = 100 meV, V2 = 0 meV, V3 = 60 meV, h1 = 100 nm, h2 = 80 nm.

To derive the dispersion equation, the electron wave function ΨAB(x) in the double-well potential
can be written as:

ΨA(x) =


A1eα1x x < 0
A2eik2x(x−h1) + B2e−ik2x(x−h1) 0 < x < h1

A3eik3x(x−h1−h2) + B3e−ik3x(x−h1−h2) h1 < x < (h1 + h2)

A4e−α4(x−h1−h2) x > (h1 + h2)

, (7)

ΨB(x) =


c1 A1eα1x x < 0
c2 A2eik2x(x−h1) − d2B2e−ik2x(x−h1) 0 < x < h1

c3 A3eik3x(x−h1−h2) − d3B3e−ik3x(x−h1−h2) h1 < x < (h1 + h2)

c4 A4e−α4(x−h1−h2) x > (h1 + h2)

. (8)

Here, we have ki = |E− Vi|/h̄vF, si = sgn(E− Vi)(i = 1, 2, 3, 4), ky = k2 sin θ, k2x =
√

k2
2 − k2

y,

k3x =
√

k2
3 − k2

y, α1 = α4 =
√

k2
y − k2

1. And c1 = −is1(α1 − ky)/k1, c2 = −is2(ik2x − ky)/k2,
c3 = −is3(ik3x − ky)/k3, c4 = is4(α4 + ky)/k4, d2 = −is2(ik2x + ky)/k2, d3 = −is3(ik3x + ky)/k3.

Based on the transfer matrix method, we have:(
1
c4

)
A4 =

(
ΨA(h1 + h2)

ΨB(h1 + h2)

)
= M3M2

(
ΨA(0)
ΨB(0)

)
= M3M2

(
1
c1

)
A1, (9)

where M2(3) =



cos
(

k2x(3x)h1(2) − θ2(3)

)
cos θ2(3)

s2(3)

i sin
(

k2x(3x)h1(2)

)
cos θ2(3)

s2(3)

i sin
(

k2x(3x)h1(2)

)
cos θ2(3)

cos
(

k2x(3x)h1(2) + θ2(3)

)
cos θ2(3)


, and sin θ2(3) = ky/k2(3).
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By multiplying Equation (9) with matrix (−c4, 1), we obtain

(
−c4 1

)
M3M2

(
1
c1

)
= 0. (10)

From Equation (10), we obtain the dispersion equation for the guided modes in a double-well
potential, which is

tan(k2xh1) =
(k2xh1) tan(k3xh2) f2− s1s3 tan(k3xh2) f3 + (k2xh1)(k3xh1) f1

s1s2 f4− (k3xh2) f2− tan(k3xh2) f1 f2 + s2s3(k2h1)(k3h1) tan(k3xh2) f1
= F(k2xh1), (11)

and f1 =
√
(k2h1)2− (k2xh1)2− (k1h1)2, f2 = (k2h1)

2− (k2xh1)
2, f3 = (k1h1)(k2xh1)(k3h1),

f4 = (k1h1)(k2h1)(k3xh1), and k3xh2 =
√
(k3h1)2− (k2h1)2 + (k2xh1)2h2/h1. The dispersion equation

for the guided modes obtained with the transfer matrix method is more convenient than the usual
method that solving the Dirac equations from the continuity of wave function at the interfaces of
quantum wells. The dispersion equation (Equation (11)) obtained for the double-well asymmetric
potential can be recovered to that of the symmetric quantum well-based graphene waveguide by
setting V3 = V4 = V1 and h2 = 0 nm. Thus, we have

tan(k2xh1) =
s1
√
(k2h1)2− (k2xh1)2− (k1h1)2(k2xh1)

s2(k1h1)(k2h1)− s1 ((k2h1)2− (k2xh1)2)
= F(k2xh1), (12)

which is the dispersion equation for a symmetric quantum well, as reported in Ref. [8]. Equation (12)
can also be directly obtained by using the transfer matrix method:(

ΨA(h1)

ΨB(h1)

)
= M2

(
ΨA(0)
ΨB(0)

)
. (13)

3. Characteristics of the Guided Modes in a Double-Well Potential

For the guided mode in the region 0 < x < h1, the electron waves are evanescent in the other

three regions, namely k2
y > k2

3, where k3x =
√

k2
3− k2

y is an imaginary number, and k2x, α1 = α4 are real.
Thus, we have the following conditions:k2x <

√
k2

2− k2
1

k2x <
√

k2
2− k2

3

, (14)

which is used to determine the range of k2x.
There are three energy ranges for a guided mode in this region: (i) E < V3; (ii) V3 < E < V1; and

(iii) E > V1, as shown Figure 2 (marked with oblique lines). To show the values of k2xh1, Equation (11)
(LHS: tan(k2xh1) and RHS: F(k2xh1)) are plotted in Figure 3 as a function of k2xh1 for three energy levels:
E = 56, 94 and 110 meV. The intersections of tan(k2xh1) and F(k2xh1) give the specific values for the
guided modes.

For the E < V3 case, we have s1 = s3 = s4 = −1 and s2 = 1, which corresponds to the regime
of Klein tunneling. Here, we set E = 56 meV, and there is only one intersection (k2xh1 = 2.9257), as
shown in Figure 3a. The corresponding wave function distribution is plotted in Figure 4a. Similar
to the optical waveguide, the guided modes is defined by the number of the nodes of the spinor
wave function (ΨA,−iΨB)

T. The spinor components ΨA and −iΨB represent electron and hole states,
respectively. It is clearly seen from Figure 4a that there is no fundamental mode in this case since only
Klein tunneling occurs in the double-well potential. The probability current density of the guided mode
is plotted in Figure 4b, which can be calculated by the definition in the Dirac equation, Jy = vFΨ+σyΨ
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with σy =

(
0 −i
i 0

)
, Ψ =

(
ΨA(x)
ΨB(x)

)
eikyy. This finding indicates that the Dirac fermions can be

well-localized in the double-well potential.
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Figure 3. Graphical determination of k2xh1 for guided modes in (0, h1). The red and blue curves
correspond to tan(k2xh1) and F(k2xh1), respectively. The energy of incident electron is (a) E = 56 meV;
(b) E = 94 meV; and (c) E = 110 meV. The other parameters are the same as those in Figure 2.

For the V3 < E < V1 case, we have s1 = s4 = −1, s2 = s3 = 1. Both Klein tunneling and
classical motion are present in the double-well potential. Here, we choose E = 94 meV, and there
are four intersections, as shown in Figure 3b. The corresponding wave functions of the four guided
modes are presented in Figure 5: (a) k2xh1 = 2.8959; (b) k2xh1 = 5.7775; (c) k2xh1 = 8.6220; and
(d) k2xh1 = 11.3661. The figure shows different mode structures and characteristics between ΨA
and −iΨB. For ΨA, the double-well potential can support the fundamental mode, first-order mode,
second-order mode, and third-order mode. However, there is no fundamental mode in the waveguide
for −iΨB (see Figure 5a, a small peak appears in wave functions for −iΨB on the left interface of
the waveguide), and it only supports first-order mode, second-order mode, third-order mode, and
fourth-order mode. This finding suggests that the electrons and holes have different behaviors under
the same conditions, which is similar to the mixing case of classical motion and Klein tunneling that
appeared in an asymmetric quantum well graphene waveguide [9,10].
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Figure 4. (a) the wave function of guided modes as a function of distance corresponding to the
intersection (k2xh1 = 2.9257, θ = 69.8694o) in Figure 3a. The solid curve and the dashed lines
corresponds to ΨA and−iΨB, respectively. The vertical lines represent the boundaries of the waveguide;
and (b) the corresponding probability current density within the graphene waveguide for the guided
mode. The solid black lines represent boundaries of the waveguide.
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Figure 5. The wave function ΨA (solid) and −iΨB (dashed) of guided modes as a function of distance
corresponding to the intersections in Figure 3b: (a) k2xh1 = 2.8959, θ = 78.2908o; (b) k2xh1 = 5.7775,
θ = 66.1160o; (c) k2xh1 = 8.6220, θ = 52.8267o; and (d) k2xh1 = 11.3661, θ = 37.1996o.

For large electron energy E = 110 meV in the E > V1 case, we have s1 = s2 = s3 = s4 = 1.
The dependencies of tan(k2xh1) and F(k2xh1) on k2xh1 are shown in Figure 3c. In this case, it is clearly
seen from Figure 6 that the wave functions ΨA and −iΨB of guided modes for the five intersection
points: (a) k2xh1 = 2.9025; (b) k2xh1 = 5.7934; (c) k2xh1 = 8.6556; (d) k2xh1 = 11.4531; and (e)
k2xh1 = 14.0545 have very similar characteristics. The waveguide can support the fundamental mode,
first-order mode, second-order mode, third-order mode, and fourth-order mode for the electrons and
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the holes. It must be pointed out that the guided modes in region 2 have similar characteristics with
those in asymmetric quantum well graphene waveguide [9,10].
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Figure 6. The wave function ΨA (solid) and −iΨB (dashed) of guided modes as a function
of distance corresponding to the intersections in Figure 3c: (a) k2xh1 = 2.9025, θ = 79.9900o;
(b) k2xh1 = 5.7934, θ = 69.6994o; (c) k2xh1 = 8.6556, θ = 58.7782o; (d) k2xh1 = 11.4531, θ = 46.6948o;
and (e) k2xh1 = 14.0545, θ = 32.6828o.

For the guided modes in the region of 0 < x < h1 + h2, k2x =
√

k2
2 − k2

y, k3x =
√

k2
3 − k2

y and
α1 = α4 should be real. The transverse wavenumber k2x in region 2 must fulfills the following condition:√

k2
2 − k2

3 < k2x <
√

k2
2 − k2

1. (15)

For the incident electrons with low energy E = 56 meV, the double-well potential cannot support
a guided mode. Thus, only a dispersion equation at higher energy E = 94 meV and E = 110 meV
are plotted in Figure 7a,b, respectively. Each of them has three intersection points. For E = 94 meV
(from Figure 7a), the intersections are (a) k2xh1 = 13.4848; (b) k2xh1 = 14.0965; and (c) k2xh1 = 14.2552,
which are plotted in Figure 8. For E = 110 meV (from Figure 7b), we have (a) k2xh1 = 15.2567;
(b) k2xh1 = 16.0201; and (c) k2xh1 = 16.6082, which are plotted in Figure 9.

From the figure, we see that the electrons and holes have similar mode structure and motion
characteristics. For the E = 94 meV case, the double-well potential is able to support a higher order
mode, such as the sixth-order mode (Figure 8b,c). This is known as mode double-degeneracy, which
is similar to the oscillating guided modes in a symmetric five-layer left-handed waveguide [46].
For E = 110 meV, we have fifth-order mode, sixth-order mode, and seventh-order mode, as shown in
Figure 9. For completeness, the probability current density of some specific guided modes is plotted in
Figure 10, which shows good confinement.
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Figure 7. Graphical determination of k2xh1 for guided modes in (0, h1 + h2). The red and blue curves
correspond to tan(k2xh1) and F(k2xh1), respectively. The energy of incident electron is (a) E = 94 meV
and (b) E = 110 meV. The other parameters are the same as those in Figure 2.
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Figure 8. The wave function ΨA (solid) and −iΨB (dashed) of guided modes as a function of distance
corresponding to the intersections in Figure 7a: (a) k2xh1 = 13.4848, θ = 19.0890o; (b) k2xh1 = 14.0965,
θ = 8.9296o; and (c) k2xh1 = 14.2552, θ = 4.5134o.
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Figure 9. The wave function ΨA (solid) and −iΨB (dashed) of guided modes as a function of distance
corresponding to the intersections in Figure 7b: (a) k2xh1 = 15.2675, θ = 23.8914o; (b) k2xh1 = 16.0201,
θ = 16.3885o; and (c) k2xh1 = 16.6082, θ = 5.9544o.

Figure 10. Probability current density within the graphene waveguide for the guided modes:
(a) E = 94 meV, k2xh1 = 5.7775; (b) E = 94 meV, k2xh1 = 14.0965; (c) E = 110 meV, k2xh1 = 5.7934;
and (d) E = 110 meV, k2xh1 = 16.0201.
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In general, for the electrons in this graphene waveguide with E = 94 meV, the double-well
potential supports the fundamental mode, first-order mode, second-order mode, third-order mode,
fifth-order mode and sixth-order mode for ΨA, while it supports the first-order mode, second-order
mode, third-order mode, fourth-order mode, fifth-order mode and sixth-order mode for −iΨB.
The fourth-order mode is absent for ΨA, while the fundamental mode is absent for −iΨB. Mode
double-degeneracy appears for the sixth-order mode for both ΨA and −iΨB. The order of the guided
modes is dependent on the incident energy and incidence angle for a given quantum well electron
waveguide. The reason for the absence of some guided modes is that the incident energy is not
sufficiently large with respect to the critical angle for the certain guided mode [8]. The absence of
guided modes is similar to the situations in negative-refractive-index waveguides [46,47]. For the
E = 110 meV case, the guided modes for ΨA and −iΨB have similar mode structure. The waveguide
can support the fundamental mode, first-order mode, second-order mode, and up to the seventh-order
mode for the electrons and the holes. There is no mode absent in this condition.

For many applications, it is desired to have mode tuning either by potential, the incident energy,
or the well width. In Figure 11, the solutions to the guided modes at different values of well width
h2 = 0, 40, 100, 160 nm are presented. For the guided modes in 0 < x < h1, the results (see Figure 11a)
show that changing h2 has no effect on the number of guided modes. However, for the guided modes
in 0 < x < h1 + h2, we have more guide modes at higher h2, as shown in Figure 11b. For example,
at h2 = 160 nm, we have three guided modes in the region 0 < x < h1 + h2, which is higher than two
modes for h2 = 100 nm, and only one mode for h2 = 40 nm. Obviously, there are no intersections for
guided modes in the region 0 < x < h1 + h2 with h2 = 0 nm. In comparison with the quantum well
graphene waveguide, the double-well graphene waveguide can support some higher order guided
modes in a wider range.
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Figure 11. Graphical determination of tan(k2xh1) and F(k2xh1) for guided modes in (a) (0, h1) and
(b) (0, h1 + h2) with different values of h2. Here, the incident energy of electrons is fixed at E = 94 meV.
The other parameters are the same as those in Figure 2.
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4. Conclusions

We have determined the guided modes in a double-well asymmetry potential with a transfer
matrix method over a wide range of parameters. Two types of guide modes were found in the proposed
structures, one of which was similar to the characteristics with those in the graphene waveguide
with asymmetric quantum well structure. It was found that the proposed graphene based electron
waveguides can support some higher order nodes (up to the 7th order). Mode double-degeneracy
appeared under some conditions. For some given incident energy of electrons, some modes are
absent. Furthermore, the tuning of the number of guided modes by the well width was also studied.
These novel properties of the guided modes in the double-well potential may provide potential
applications for various graphene-based electronic devices. Electron waveguides are examples of
various graphene-based electronic devices; however, the transfer matrix method may not be suitable
for simulating other graphene-based electronic devices, such as graphene-based field effect transistors.
Hence, we will seek other methods to solve the Dirac equation in graphene in order to simulate
graphene-based electronic devices in our future research work.
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