
Article

GPGPU Accelerated Deep Object Classification on a
Heterogeneous Mobile Platform

Syed Tahir Hussain Rizvi 1,∗, Gianpiero Cabodi 1, Denis Patti 1,∗ and Gianluca Francini 2

1 Dipartimento di Automatica e Informatica (DAUIN), Politecnico di Torino, Turin 10129, Italy;
gianpiero.cabodi@polito.it

2 Joint Open Lab, Telecom Italia Mobile (TIM), Turin 10129, Italy; gianluca.francini@telecomitalia.it
* Correspondence: syed.rizvi@polito.it (S.T.H.R.); denis.patti@polito.it (D.P.);

Tel.: +39-011-0907048 (S.T.H.R. & D.P.)

Academic Editor: Mostafa Bassiouni
Received: 5 September 2016; Accepted: 5 December 2016; Published: 9 December 2016

Abstract: Deep convolutional neural networks achieve state-of-the-art performance in image
classification. The computational and memory requirements of such networks are however huge,
and that is an issue on embedded devices due to their constraints. Most of this complexity
derives from the convolutional layers and in particular from the matrix multiplications they
entail. This paper proposes a complete approach to image classification providing common layers
used in neural networks. Namely, the proposed approach relies on a heterogeneous CPU-GPU
scheme for performing convolutions in the transform domain. The Compute Unified Device
Architecture(CUDA)-based implementation of the proposed approach is evaluated over three
different image classification networks on a Tegra K1 CPU-GPU mobile processor. Experiments
show that the presented heterogeneous scheme boasts a 50× speedup over the CPU-only reference
and outperforms a GPU-based reference by 2×, while slashing the power consumption by nearly 30%.

Keywords: machine vision; image analysis; image processing; concurrent computing; neural networks;
mobile computing; multicore processing; convolution; ubiquitous computing

1. Introduction

Deep convolutional networks have recently shown top performance in important machine
learning tasks, such as image classification [1,2]. Image classification via deep neural networks involves
two stages: an offline learning stage (training) followed by proper image classification afterwards
(testing). During the learning stage, a network is trained over a set of labeled input images where
the network parameters (weights and biases) are iteratively adjusted to predict the output values
corresponding to the input labels. Once the network training is complete, the learned set of parameters
can be used for the classification of new sample images.

Training and testing a neural network is largely a parallel problem, so heterogeneous GPU-CPU
architectures are commonly employed to speedup such processes. CPUs are well-suited for sequential
tasks due to higher operational frequencies, whereas GPUs can execute concurrent tasks efficiently
thanks to their Single Instruction Multiple Threads (SIMT) architecture. By proper scheduling of the
computing resources of heterogeneous CPU-GPU architectures, the training and testing time of neural
networks can be largely reduced [3–7].

Among the downsides of deep neural networks, one of the downsides is their computational
complexity, which is an issue especially with embedded devices. The complexity of a deep neural
network for image classification stems largely from the convolutional layers. Convolutional layers
serve the key purpose of extracting features robust to changes in the image scale and illumination.

Electronics 2016, 5, 88; doi:10.3390/electronics5040088 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
http://www.mdpi.com/journal/electronics


Electronics 2016, 5, 88 2 of 17

The core operation in a convolutional layer is multiplying a matrix representing an image block with
another matrix representing a feature. A typical deep network includes several convolutional layers,
so their impact on the overall network complexity is extensive. Training has the largest computational
and memory complexity; however, it can be performed offline on dedicated server infrastructures.
Conversely, depending on the application constraints, the actual image classification may have to
be performed online on the same embedded device used to acquire the image (e.g., on a smart
phone) [8–10]. Recent embedded devices boast heterogeneous CPU-GPU architectures and are suited
for challenging applications, such as robotics, control and image processing [3,4,11,12]. Nevertheless,
the amount of computational resources available on a mobile device is much lower compared to what
is available in a desktop environment. Therefore, efficient computing architectures for deploying
neural networks on heterogeneous embedded devices are highly sought.

In this work, a comprehensive approach for image classification with deep convolutional neural
networks on embedded devices is presented.The presented approach features the most common layers
required to perform image classification, such as convolutions, max-pooling, batch-normalization and
activation functions. Parallel computing capabilities of mobile GPUs are exploited to speedup the most
computationally-intensive operations carried out within each layer. Most notably, a highly-performing
yet power-efficient scheme for performing convolutions in the transform domain is proposed.
The proposed convolutional scheme leverages heterogeneous CPU-GPU mobile architectures to
maximize the computational throughput while accounting for memory bandwidth constraints. This
work is implemented in the CUDA language, which bridges the gap between mobile and desktop
environments. The proposed approach is evaluated by implementing three well-known convolutional
network architectures for image classification, namely AlexNet, OverFeat and ResNet-34, on a Nvidia
Shield K1 tablet [13,14]. The experiments demonstrate that the proposed heterogeneous CPU-GPU
convolutional scheme outperforms a CPU-only reference by a factor of 50×. Most notably, the proposed
heterogeneous convolutional scheme improves by up to a factor of two over the GPU-only scheme,
reducing the device overall power consumption up to 30%.

The paper is organized as follows: Section 2 reviews the related work in the field of image
classification via deep neural networks and its GPU-based implementation on mobile phones.
The methodology of the proposed system is presented in Section 3. Section 4 discusses the architecture
of deep classifiers and the entailed layers. Test models and different parameters related to the
embodiment of deep neural networks are discussed in Section 5. Section 6 presents the results and
discusses the performance of the proposed approach in a wider context. Finally, Section 7 concludes
the work and proposes the future research directions.

2. Background and Related Works

This section provides first the relevant background on deep convolutional neural networks and
their application to the problem of image classification. Next, the relevant literature concerning deep
neural networks on mobile devices motivating the present research is discussed.

2.1. Background on the Convolutional Neural Network for Image Classification

Convolutional neural networks are becoming an all-encompassing package for a number of
computer vision and machine learning tasks. Image classification is an important computer vision
task that has numerous practical applications. Over the last few years, image classification has been
revolutionized by the advent of deep learning-based architectures. Deep classifiers have shattered
existing performance records in several image classification contests, enabling a large leap over
previous so-called shallow classifiers. A typical deep network for image classification tasks is mainly
composed of two stages. The first stage accounts for the extraction of features, also called kernels
or filters, that are robust to changes in illumination, size and translations from the input image. A
detailed description of such a feature extraction stage is provided in Section 4. Next, one or more
fully-connected layers in the second and final stage performs the feature classification on a highly



Electronics 2016, 5, 88 3 of 17

dimensional space, providing the final output. Recent results show that the depth of a neural network
(number of stacked layers) plays an important role in achieving better classification accuracy [1,13,15].
Deep convolutional networks have showed recognition accuracy comparable to humans in many
visual analysis tasks [14,16,17]. Larger datasets and deeper models lead to better accuracy, but also
increase the training and classification time [2,13,15]. Heterogeneous systems play a pivotal role in
the field of visual analysis where the computational capabilities of CPUs and GPUs can be utilized
altogether to maximize the performance of deep classifiers in terms of training and classification time.
In the following section, the available frameworks for implementing image classification via deep
neural architectures are discussed.

2.2. Deep Classifiers on Heterogeneous Mobile Architectures

A number of frameworks for implementing deep neural networks are currently available.
Such frameworks leverage the parallel computational capabilities of modern GPUs, allowing to
practically train and deploy deep neural networks in a reasonable time. However, most of these
frameworks are tailored to desktop and server platforms; therefore, they do not take into account the
unique peculiarities of mobile devices. Mobile devices’ peculiarities include, among others, reduced
memory and limited energy stored in the battery: operations are optimized just for execution speed,
without considering the need to extend battery life. In the following, major frameworks that are
currently available for implementing deep neural networks are discussed. The shortcomings of these
are discussed when it comes to mobile applications, and the need for efficient schemes designed ad
hoc for mobile platforms is highlighted and motivated.

Torch is an open source scientific computing framework that comes with machine learning
libraries. Using these open source libraries, deep convolutional networks can be created and trained
easily in the Torch environment on a desktop computer. Torch relies on CUDA for efficient operations
on NVIDIA GPUs. CUDA also enables clustering of GPUs to accelerate the process of training a
network. Torch relies however on a number of third-party libraries for performing ancillary operations
on the CPU. However, porting such libraries to mobile CPUs is not always possible because of
architecture differences and the memory footprint thereof. In addition, GPU clustering is not applicable
to mobile platforms as mobile platforms typically include just one GPU. Finally, there exist a Torch
library for mobile terminals; however, this library is not mature in terms of dependencies.

DeepSense [18] is a deep neural network framework designed specifically for mobile devices.
However, such a framework relies on OpenCL, which is less efficient in terms of performance and
much slower than the same CUDA-based built-in functions that require much optimization [19].
Note that OpenCL supports a wide range of embedded devices. However, OpenCL is not directly
supported on Android starting from Version 4.3 onwards. OpenCL on Android requires in fact an
intermediate library to access the GPU hardware. Such a library not only adds to the deep neural
network footprint, but also incurs in additional computational overhead. Therefore, it is currently
not feasible to implement the deep classifiers on recent mobile devices using standalone OpenCL.
Furthermore, the deep learning community is widely using CUDA libraries.

A unified framework to accelerate and compress the convolutional neural network is presented
in [20]. In order to speed-up the process, deep classifiers are quantized, yielding to sparser parameter
sets. However, the paper also shows that the parameter quantization and compression jeopardize
the precision of the results [21–24]. Because this work only considers narrow neural networks with
a maximum of 16 convolutional layers and no experiment is performed on deeper networks such
as ResNet-34, it is not clear how the loss of precision is going to propagate through the many layers
of a deeper network. In addition, computations are carried out on a single CPU core, without GPU
acceleration. Therefore, this approach misses the benefits of GPU-accelerated neural networks as
a whole, despite the reportedly high performance due to parameter quantization.



Electronics 2016, 5, 88 4 of 17

A mobile-GPU accelerated deep neural network flow is presented in [25]. Different techniques to
optimize the various components of a typical neural network flow on mobile devices are discussed.
However, the preliminary information that is presented is not sufficient to reproduce the results.

Concluding, the presented work differs from and improves upon the above-mentioned references
addressing most of the above-listed issues. First of all, the proposed scheme has the benefits of jointly
exploiting the computational capabilities of both the CPU and GPU, enabling true heterogeneous
computations. Moreover, this approach has the merit of supporting nearly all layer types of neural
networks found in a modern image classification networks and is suitable for deploying very complex
topologies. In addition, the accuracy of the presented approach is similar to the existing desktop and
server platforms, whereas it does not require an intermediate framework for actual image classification.
The proposed scheme can be easily integrated into an android application and provides compatibility
for models trained with other desktop/server frameworks.

3. Methodology

Figure 1 illustrates the proposed flow to realize a deep convolutional classifier on a mobile device.
First of all, state-of-the-art neural classifiers are trained in the Torch framework. A powerful GPU
server is used to train the required neural architectures. A few preprocessing techniques are also used
before training the classifiers. Neural networks need a fixed size input, while training data may be
collected from various sources and can be of different sizes/dimensions. Therefore, it is necessary
to crop or scale the images of different sizes and dimensions to fit the defined architecture. There
are several approaches to perform the cropping and scaling. Data normalization is also an important
preprocessing step and useful when the inputs are generally on a widely-spaced scale. It is performed
here by removing the mean value of each feature and then dividing the non-constant features by
their standard deviation. Since the classifiers require being trained on a vast amount of training
data, data augmentation is used to improve the classification accuracy. Flipping, random cropping,
reflection, color jittering and other different data augmenting techniques are commonly combined to
augment the dataset, improving performance and accelerating training. Finally, the trained neural
network can be deployed in the field for the actual classification.

Once the training is completed, the trained parameters of neural models are ready to be
imported for the classification purposes. In this work, the CUDA computing framework is used
for the realization of identical neural architectures on an embedded device to exploit the already
trained network. Required layers (convolution, pooling, batch normalization) and activation functions
(tangent hyperbolic unit, rectifier linear unit and thresholding unit) are implemented and accelerated
using GPGPU. Convolution is the core building block of the Convolutional Neural Network (CNN).
Two versions of convolution are implemented to support the different trained models of Torch. Format
conversion of imported parameters according to the used convolution method is also an important step
to match the results with the desktop-based trained model. After replicating the required architectures
using CUDA and importing the trained parameters, accelerated neural classifiers are executed on the
mobile device as a part of the Android application. Implementation of just the classification phase
of the convolutional neural network lowered the barrier of implementing the deep classifier on the
heterogeneous mobile platform.

As shown in Figure 1, the integrated camera of the mobile phone is used to capture the image for
the real-time classification by the trained network. Therefore, there is no need for an additional camera
module as required by a single-board computer or desktop workstation. This captured image is then
passed through the same pre-processing steps (cropping/scaling and normalization) as performed at
the time of training. Because the trained network is for a specific input dimension and the captured
image can be of different aspect ratios depending on the used mobile phone, so it is necessary to
perform the scaling or cropping of the image to fit the input dimension. Similarly, normalization of
the input image is also essential to minimize the bias for one feature over another and to restrict the
range of input/output values. After these two preprocessing steps, the captured image is fed to the



Electronics 2016, 5, 88 5 of 17

CUDA-based replicated neural model to perform the task of classification using imported trained
parameters. The final classification result is displayed using the display screen of the mobile phone.

(1)
Dataset

(2)
Cropping/

Scaling

(3)
Normalization

(4)
Data

Augmentation

(5)
Training of

Network

(6)
Trained
Model

(7.1)
Classification

(7.2)
Trained

Parameters
to MAT file

(8)
Format Conversion of Imported Parameters

(9)
Input from

Camera

(10)
Cropping/

Scaling

(11)
Normalization

(12)
CUDA-based

Replicated
Network

(12.1) CPU (12.2) GPU

(13)
Output on
the Mobile

Screen

Preprocessing in Torch (Desktop)

Training phase in Torch (Desktop)

Classification (Mobile)

Figure 1. Block diagram of the mobile platform-based deep classifier.

4. Architecture of Deep Convolutional Networks

This section details the architecture of deep convolutional neural networks and the entailed layers.

4.1. Convolutional Layer

Convolutional layers serve the purpose of extracting robust features from the input
images, and recent deep classifiers include many convolutional layers [13,15]. Convolution is
a computationally-intensive task that can be accelerated using the concurrent processors [26].
Mathematically, it can be expressed as the sum of the products of mask/filter coefficients with the input
function/image. The convolution operation can be extended to two or three dimensions according to
the required solution.

There are different approaches to perform the convolution operation. In this paper, the
multi-channel convolution operation is performed using two approaches for the adaptation of the
Torch-based trained network on the mobile platform.

The first one is the traditional approach called full convolution. In this approach, the sum of
the products of filters and the image is computed. Both input and output images (feature maps) are
multi-channeled. If the input image has C channels, the required output map has D channels, the size



Electronics 2016, 5, 88 6 of 17

of the trained filter bank is X×Y and the size of the input image is I × J, then the output of a single
multi-channel fully-convolution layer can be represented by the following formula:

Output_mapi,j,d =
C

∑
c=1

X

∑
i1=1

Y

∑
j1=1

Input_mapc,i+i1,j+j1Filtersd,c,i1,j1 (1)

Figure 2 also illustrates the computations performed by the fully-convolution layer. Pixels of
input maps, filters and output maps are represented by their indexes in Figure 2. Index value (1, 3, 2)
of the input map represents the pixel present on the first row and third column of the second channel.
The output image also uses the same representation where pixels are arranged as (row, column, output
maps); while the values of filter banks have four values of indexes where (1, 2, 3, 2) represents (row,
column, input maps, output maps (filter bank number)). In this particular example, input image has
three channels and is of a size of 3× 3. There are two filter banks having three channels (for each
channel of the input map) of a size of 2× 2. The resultant output map would have two channels
because of two banks of the filter, while the size of the output feature map is dependent on the size of
a single filter, the number of padding bits in the input image and the striding window. The GPU can
show its potential where the values of the data can be processed independently. In this case, filters
have to run in a sliding manner on every map of the input image, and this can be a slow process [27].

Figure 2. Three-dimensional convolution layer.

The second approach is the Matrix Multiplication-based Convolution (ConvMM). Using this
approach, the input image and filters can be arranged in the transform domain to compute convolution
just by multiplying these transformed data [28,29]. Figure 3 shows the matrix-based version of the
convolutional layer where the input maps and filters are rewritten as the input and filter matrices. The
pixels and indexes of Figure 2 are translated and shown in Figure 3 to explain the arrangement of
multi-channeled input, filter and output maps in two-dimensional matrix form. By multiplying these
two matrices, the resultant matrix is computed having the required output feature maps that can be
separated to achieve the output equivalent of the traditional convolutional layer.

There are also other algorithms for computing the convolution, like Winograd or the lookup
table-based approach, which can be used to accelerate the state-of-the-art deep classifiers having small
filter and batch sizes [21,30].



Electronics 2016, 5, 88 7 of 17

Figure 3. Convolution matrix multiplication.

4.2. Pooling Layers

In classical convolutional networks, the output or activations of the convolutional layer are passed
to the pooling layer. The purpose of this layer is to achieve the spatial invariance by aggregating the
information within a small local region. It basically reduces the size of feature maps. Two conventional
options to perform the pooling are max and average. These pooling layers do not require any trainable
parameter. There are also other pooling strategies that can be combined with some regularization
techniques to improve the training of deep classifiers [27].

4.3. Batch Normalization

Batch normalization is also a significant part of deep classifiers, which yields substantial
acceleration in the training. It preserves the representation ability of deep classifiers and ends the need
for any further regularization [31]. The batch normalization function can be implemented using the
following formula:

BN(x) =
x−mean√

Var
∗ gamma + beta (2)

The value of mean and variance can be calculated over the training data; while gamma and beta
are the scaling and shifting parameters to be used by the normalized output.

4.4. Activation Functions (ReLu, Tanh and Threshold)

There are also some important activation functions, like the tangent hyperbolic unit (tanh),
Rectifier Linear unit (ReLu) and the thresholding unit, which are essential components to construct the
architecture of trained classifiers. The purpose of these functions in neural architectures is to improve
the training and eliminate the problems like the vanishing gradient [32].

5. Proposed Approach for Mobile Platforms

This section describes the proposed approach to the embodiment of a deep convolutional neural
network for image classification on mobile devices.

5.1. GPU Accelerated Fully-Convolutional Layer

The traditional fully-convolutional layer is implemented using the CUDA language. This layer
is accelerated using the concurrent three-dimensional grid of threads and blocks of the GPGPU.
The complete workload is offloaded into the GPU for the acceleration of the convolution operation.
One of the important tasks to realize the Torch-based replicated architecture is the formatting of the
captured/imported input image and trained parameters. This formatting is required to achieve
the same results in the CUDA computing environment as provided by the Torch model. The
multi-dimensional input image and trained parameters are arranged and accessed in row-major
order because the access of the contiguous array elements is faster. The padding function is also
implemented in CUDA using the parallel resources of the GPGPU to support the same options



Electronics 2016, 5, 88 8 of 17

provided by the fully-convolutional layer of Torch. The structure of the implemented convolutional
and pooling layers is different from the other layers because both of these layers are comprised of
two kernels: one kernel to perform the padding of input data and the second kernel to perform the
selected operation of convolution or pooling on this padded data. While the other layers, like the
rectifier linear unit and tangent hyperbolic layers, are computed using the single kernel where the
function of padding is not required. The flow of a padding-based convolutional and pooling layer is
illustrated in Figure 4.

INPUT
MAPS

Padding
Required

Perform
Padding

Conv.

Fully
Conv. Max Pool.

Perform
Fully Conv.

Using
GPU

Transform
the Input

and
Filters to
Matrices

Using
CPU

Perform
ConvMM

Using
GPU

Perform
Max

Pooling

Perform
Avg

Pooling

Output
Maps

YesNo

Yes No

YesNo YesNo

Figure 4. Flow of the convolutional and pooling layers. ConvMM, Convolution Matrix Multiplication.

5.2. CPU-GPU Accelerated Matrix Multiplications-Based Convolutional Layer

Matrix Multiplication-based Convolutional layer (ConvMM) is also implemented using the CUDA
computing language. This approach to compute convolution is accelerated using heterogeneous
resources of mobile device where the computational powers of both the CPU and GPU are exploited.
Convolution Matrix Multiplication (ConvMM) is computed by partitioning the suitable computations
between the CPU and GPGPU of the mobile device. The transformation of the image and filters into the
matrices, which is a sequential task, is performed using the powerful CPU, and matrix multiplication
of these transformed data is computed using GPU. This CPU-based transformation step cannot be
performed concurrently because values from multi-dimensional maps have to be placed in a certain
order so as to achieve the equivalent two-dimensional representation of data for multiplication that can
be much slower if performed by a GPU that is not suited for sequential operations. Furthermore, input
data are exchanged several times between the device (GPU) and host (CPU) memory to realize this



Electronics 2016, 5, 88 9 of 17

matrix multiplication-based convolution. Figure 5 visualizes the scheduling of computations between
the CPU and GPU for ConvMM and the full convolutional layer.

Start

Copying Input Data from CPU to GPU (Input Maps)

GPU Accelerated Padding of Input Map

Copying Padded Input Map from GPU to CPU

CPU-Based Transformation of Data into Matrices

Copying Transformed Input Maps and Filters to GPU

GPU Accelerated Matrix Multiplication (ConvMM)

Copying Final Results from GPU to CPU

End

(a) Flow of ConvMM

Start

Copying Input Data from CPU to GPU (Input Maps and Filters)

GPU Accelerated Padding of Input Map

GPU Accelerated Full Convolution

Copying Final Results from GPU to CPU

End

(b) Flow of full convolution

Figure 5. Flow of ConvMM and full convolution.

5.3. GPU Accelerated Pooling Layer

Both functions of the pooling layer (average and Max) are implemented to realize the architecture
of different classifiers on the mobile platform. The CUDA computing language is used to perform
these operations concurrently and to exploit the computational power of the GPGPU to outperform
the sequential versions of the same layer. The CUDA kernel for padding is also implemented using
parallel resources of the GPGPU to support the same options provided by the pooling layers in Torch.

5.4. Other GPU Accelerated Layers

All remaining functions (batch normalization, ReLu, tanh and threshold) are also executed using
the GPU’s three-dimensional grid of concurrent blocks of threads for accelerating their operations.
The batch normalization layer requires training of the mean, variance, gamma and beta parameters, as
well, which are imported from the Torch model of the deep classifier to normalize the image using the
CUDA-based accelerated function.

5.5. Implemented Neural Network Architectures

For the evaluation of deep classifiers on a mobile platform and the performance comparison
of classifiers for both convolution approaches, three different architectures are implemented on the
mobile device using the CUDA computing platform: AlexNet for the CIFAR-10 (Canadian Institute
For Advanced Research 10) dataset; OverFeat and ResNet-34 for ImageNet [13,14]. These architectures



Electronics 2016, 5, 88 10 of 17

need the following number of layers and functions to be replicated on the mobile device to perform
the classification:

These models are comprised of multiple layers with different pooling types and activation
functions, as listed in Table 1. ResNet-34 has an additional layer of batch normalization in its
architecture. All of these required functions are implemented in the CUDA computing framework to
accelerate and replicate the trained network on the mobile device. Trained parameters are imported in
the internal memory of the mobile device to complete the task of classification. The size of trained
parameters is also an important factor to be considered for the successful implementation. These
trained parameters include the weight and biases for the convolutional layers or values of gamma,
beta, mean and variance for the batch normalization functions. The sizes of these parameters depend
on the size of the filters and the dimensions of the feature maps of each layer. The sizes of these trained
parameters of all three architectures are listed in Table 2.

Table 1. Deep models used for the implementation.

Model No. of Layers Required Functions

AlexNet 5 Conv. + tanh + Max Pool
OverFeat 8 Conv. + ReLu + Max Pool
ResNet-34 34 Conv. + Max Pool + Batch Normalization + ReLu + Avg.Pooling

Table 2. Size of the imported parameter.

Model Size of File

AlexNet 20.8 MB
OverFeat 609 MB
ResNet-34 69.9 MB

6. Experiments and Result

In this paper, the Kepler K1 GPGPU of Nvidia Shield Tablet is used for the implementation of
deep classifiers. The used target device has 192 cores and a quad-core CPU of 2.2 GHz. In this section,
the performance analysis is presented first, before moving to power efficiency considerations.

6.1. Performance Evaluation

First of all, the comparison of both convolutional layers is performed to analyze the performance
enhancement achieved by the matrix multiplication-based approach over the traditional one.
The Matrix Multiplication-based Convolution (ConvMM) approach is also implemented using pure
CPU- and pure GPU-based functions where both steps of transformation and multiplication are
performed using homogeneous CPU or GPU systems. The execution time of all versions of convolution
for varying the computational loads (image sizes) are listed in Table 3.

Figure 6 illustrates that for the smaller image sizes or lesser number of feature maps, traditional
convolution performs well. However, as the size of the image increases over VGA (640 × 480 × 3),
the convolution matrix multiplication approach outperforms the traditional convolution using
heterogeneous computational power. Therefore, it concludes that the ConvMM layer would always
outperform the fully-convolutional layer where the large dimension of the input image or a greater
number of output feature maps have to be computed. The performance of different versions of the
convolutional layer can be visualized in Figure 7. It verifies that the pure CPU- and GPU-based
homogeneous implementations show poor performance and cannot match the computational
capability of the heterogeneous approach for this type of algorithm. Heterogeneous ConvMM is
20× faster than the pure GPU-based ConvMM and 40× faster than the pure CPU-based sequential
version of ConvMM. Results validate that the computations cannot be totally offloaded to the GPU
for acceleration of the processes. Additionally, in some cases, significant gain in performance can be



Electronics 2016, 5, 88 11 of 17

achieved by distributing the sequential tasks to the CPU. In the ConvMM approach, the transformation
step is the sequential task that can be performed well using the high operational frequency of CPU
and cannot be parallelized using the GPU.

Table 3. Execution time of the convolution layers under various computational loads (ms) CIFAR:
Canadian Institute For Advanced Research database; ImageNet: ImageNet database; VGA: Video
Graphics Array; SVGA: Super Video Graphics Array; SXGA: Super eXtended Graphics Array; UXGA:
Ultra eXtended Graphics Array, best results are written in bold.

Required Output Maps = 16

Image Size Fully Convolution ConvMM ConvMM (Only CPU) ConvMM (Only GPU)

CIFAR (32 × 32 × 3) 2.31 4.20 37.21 10.9
ImageNet (224 × 224 × 3) 28.23 62.27 1570.98 1223.71

VGA (640 × 480 × 3) 170.94 327.53 10,055.24 5194.52
SVGA (800 × 600 × 3) 276.16 519.08 15,852.86 12,610.87

SXGA (1280 × 1024 × 3) 1960.57 1040.48 44,969.71 22,019.97
UXGA (1600 × 1200 × 3) 2404.2 1696.19 63,319.07 30,277.14

 0

 500

 1000

 1500

 2000

 2500

CIFAR IMAGE NET VGA SVGA SXGA UXGA

e
x
e

c
u

ti
o

n
 t

im
e

 [
m

s
]

image size

Fully Conv.
ConvMM(CPU+GPU)

Figure 6. Full convolution vs. ConvMM as a function of input image size.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

CIFAR IMAGE NET VGA SVGA SXGA

e
x
e

c
u

ti
o

n
 t

im
e

 [
m

s
]

image size

Fully Conv.
ConvMM(only GPU)
ConvMM(only CPU)

ConvMM(CPU+GPU)

Figure 7. Comparison of different approaches to convolution operations as a function of the input
image size.



Electronics 2016, 5, 88 12 of 17

It is well known that the data transfers between host and device are extremely expensive in terms
of time. The ConvMM layer exchanges data four-times between the CPU and GPU, i.e., twice as many
as the fully-convolutional layer as shown in Figure 5. Therefore, ConvMM and fully-convolutional
layers are profiled to analyze the overheads caused by such data exchanges. The profiling shows that
out of the four data transfers, the two former transfers are related to the transformed input image,
which is however small in size and thus brings a small overhead in time. Conversely, the two latter
transfers bring larger overhead because they also include the trained parameters. It is pointed out
that even the pure GPU-based fully-convolutional layer needs two data transfers that are equivalent
in overhead to the last two exchanges of ConvMM, as shown in Figure 5b, as they entail trained
parameters’ exchange.

Next, the experiment is performed by replacing the GPU-based padding and relative memory
transfers with a CPU-based padding that requires no additional memory transfers. Namely, in this
experiment, two initial memory transfers are avoided, shown at the top of Figure 5a, and the resulting
architecture is shown in Figure 8.

Start

CPU-Based Padding of Input Maps

CPU-Based transformation of data into matrices

Copying transformed input maps & filters from CPU to GPU

GPU-Accelerated Matrix Multiplication

Copying Final Results GPU to CPU

End

Figure 8. Flow of CPU padded ConvMM.

Table 4 presents the results of this experiment. The sequential CPU-based padding function does
not accelerate the ConvMM layer despite two data transfers being avoided.



Electronics 2016, 5, 88 13 of 17

Table 4. Comparison of ConvMM execution time as a function of padding (ms), best results are written
in bold.

Required Output Maps = 16

Image Size Padding on CPU Padding on GPU

CIFAR (32 × 32 × 3) 3.22 4.20
ImageNet (224 × 224 × 3) 56.85 62.27

VGA (640 × 480× 3) 330.07 327.53
SVGA (800 × 600 × 3) 519.97 519.08

SXGA (1280 × 1024 × 3) 1148.94 1040.48
UXGA (1600 × 1200 × 3) 1657.79 1696.19

After this, the execution time taken by the rectifier linear layer is observed for the CPU-based
sequential version and the GPU-based concurrent version. The CPU version is computed using the
single thread of the processor of the mobile platform. Furthermore, the GPU-based layer is computed
using 2D and 3D grids, which is a constraint for the GPU implementation. All results are tabulated
in Table 5.

Table 5. Execution time of rectifier linear layers under various computational loads (ms), best results
are written in bold.

Image Size CPU GPU (2D Grid) GPU (3D Grid)

CIFAR (32 × 32 × 16) 5.75 1.30 1.47
ImageNet (224 × 224× 16) 39.73 13.18 13.02

VGA (640 × 480 × 16) 294.84 62.68 36.09
SVGA (800 × 600 × 16) 496.16 105.68 97.14

SXGA (1280 ×1024 × 16) 4059.09 360.62 313.85

As shown in Figure 9, the GPU implementation of the Rectifier Linear unit (ReLu) is 13×
faster than the CPU-based sequential version. Additionally, there is a very minor difference of the
performance enhancement in the case of 3D grid-based concurrent implementations over the 2D grid.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

CIFAR IMAGE NET VGA SVGA SXGA

e
x
e
c
u
ti
o
n
 t
im

e
 [
m

s
]

image size

GPU 3D Grid
GPU 2D Grid

Pure CPU

Figure 9. Rectifier linear unit performance on the mobile device as a function of the input image size.

Figure 10 shows the results for the max pooling layer. The GPU-based accelerated pooling layer is
4× faster than the sequential version implemented using the CPU of the mobile device.



Electronics 2016, 5, 88 14 of 17

 0

 200

 400

 600

 800

 1000

 1200

 1400

CIFAR IMAGE NET VGA SVGA SXGA

e
x
e
c
u
ti
o
n
 t
im

e
 [
m

s
]

image size

GPU
CPU

Figure 10. Max pooling operation performance on the mobile device as a function of the input
image size.

Finally, three deep architectures (AlexNet, OverFeat and ResNet-34) are implemented on the
mobile platform using the discussed layers, and their performances can be compared using Table 6.

Table 6. Classification time of deep models (ms), best results are written in bold.

Model N° of Layers CPU GPU (Convfull) GPU (ConvMM) Speed Up (ConvMM)

AlexNet 5 10,234.2 584.757 411.23 25×
OverFeat 8 418,048.12 12,582.54 8301.63 50×
ResNet-34 34 248,366.93 11,481.74 4938.01 50×

Results show that the heterogeneously-accelerated deep classifiers are tens of times faster than
the CPU-based sequential versions. Moreover, two of these classifiers (the ResNet-34 and OverFeat
models) are trained on ImageNet, where ResNet-34 is a deep 34-layer architecture, but has fewer
parameters than OverFeat and other available deep networks, and it has a higher accuracy rate than
the others due to its depth [13]. The heterogeneous ConvMM-based “ResNet-34” architecture is 50×
faster than its sequential version and 2× faster than the GPU-based fully-convolutional approach. Due
to fewer parameters, the deeper version of a residual network, like ResNet-50 and ResNet-101, can
also be implemented on the mobile platform with ease.

6.2. Power Consumption

Power consumption is a critical aspect of mobile applications, which must strike a balance between
performance and energy efficiency, so as to maximize battery life. The power consumption of the
mobile GPUs is typically high due to the many cores they encompass, while the power consumption
of mobile CPUs is usually lower due to the low core count and other optimizations. However, GPUs
can solve a parallel given task in less time than a sequential CPU, calling for a careful analysis of the
resulting energy consumption tradeoffs. The NVIDIA Shield Tablet includes a battery of the following
characteristics: 19.75 Wh and 5192 mAh; and Table 7 shows the actual measured energy consumption.



Electronics 2016, 5, 88 15 of 17

Table 7. Energy consumption of deep models (J), best results are written in bold.

Model CPU GPU (Convfull) GPU (ConvMM) Improvements (ConvMM)

AlexNet 16 0.430 0.461 34×
OverFeat 850.8 13.2 14.1 60×
ResNet-34 480 2.5 1.8 266×

Table 7 shows that the pure CPU-based implementations consume more energy than the
GPU-accelerated versions due to the longer execution times. Namely, the heterogeneous
ConvMM-based ResNet-34 classifier consumes 266× less battery energy than the sequential version
of the same model. This experiment shows that the ResNet-34 architecture is more power efficient
and has comparable performance as the OverFeat network over the same ImageNet dataset. Namely,
ResNet-34 is more power efficient than OverFeat for the reason that it has smaller filters (3 × 3 vs.
11 × 11, respectively), despite the higher layer count (34 vs. eight).

7. Conclusions and Future Work

This paper presents a novel approach to real-time image classification via deep convolutional
neural networks on heterogeneous mobile platforms. Experiments are performed by implementing
AlexNet, OverFeat and ResNet-34 deep network architectures with the proposed approach. Networks
are trained on desktop architectures, and then, the parameters are fed to a CUDA-based implementation
of the proposed approach on the mobile device without any precision loss. Results show that the
presented heterogeneous approach to deep image classification is up to 50× faster than a CPU-based
sequential versions for the same architectures on the same mobile device. Furthermore, results confirm
that the selection of an appropriate deep architecture for classification can significantly reduce
the power consumption of the mobile device for the same algorithmic efficiency. Concluding, the
presented heterogeneous CPU-GPU approach also enables up to 30% better power efficiency over
a GPU-only approach.

As a future direction, the presented approach will be extended in order to exploit the
most recent advances in neural networks and embedded architectures. In order to speed up
computationally-intensive convolutional tasks, techniques like Winograd’s minimal filtering technique
can be adopted to reduce the arithmetic complexity of the convolution operation over small tiles.
Winograd reduces the number of multiplications compared to traditional convolutions, and it is
computed by an element-wise multiplication instead of a matrix multiplication. Further, the proposed
scheme can also be optimized using the unified memory architecture of recent GPUs where extra
memory transfers can be avoided by defining a more memory-efficient scheme. By using this scheme,
the variable of the activation results and filters can be created in such a way that they are accessible
both by the CPU and GPU to optimize the memory storage and avoid extra transfers.

Acknowledgments: We would like to thank Attilio Fiandrotti and Skjalg Lepsoy for their helpful comments
and suggestions.

Author Contributions: Syed Tahir Hussain Rizvi and Denis Patti conducted the experiments and worked on
the draft of the paper. Gianpiero Cabodi and Gianluca Francini are the academic tutors. They coordinated,
supervised and approved the entire work.

Conflicts of Interest: The authors declare no conflict of interest.



Electronics 2016, 5, 88 16 of 17

Abbreviations

The following abbreviations are used in this manuscript:

GPU Graphics Processing Unit
GPGPU General Purpose Graphics Processing Unit
SIMD Single Instruction Multiple Data
SIMT Single Instruction Multiple Thread
CUDA Compute Unified Device Architecture
VGA Video Graphics Array
SVGA Super Video Graphics Array
SXGA Super eXtended Graphics Array
UXGA Ultra eXtended Graphics Array

References

1. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition.
CoRR, 2015. Available online: http://arxiv.org/abs/1409.1556 (accessed on 10 May 2016).

2. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks.
In Proceedings of The Twenty-sixth Annual Conference on Neural Information Processing Systems (NIPS),
Lake Tahoe, NV, USA 3–8 December 2012; pp. 1097–1105.

3. Asano, S.; Maruyama, T.; Yamaguchi, Y. Performance comparison of FPGA, GPU and CPU in image
processing. In Proceedings of the 2009 International Conference on Field Programmable Logic and
Applications, Prague, Czech, 31 August–2 September 2009; pp. 126–131.

4. Naik, V.H.; Kusur, C.S. Analysis of performance enhancement on graphic processor based heterogeneous
architecture: A CUDA and MATLAB experiment. In Proceedings of the 2015 National Conference on Parallel
Computing Technologies (PARCOMPTECH), Bangalore, India, 19–20 February 2015; pp. 1–5.

5. Vandal, N.A.; Savvides, M. CUDA accelerated illumination preprocessing on GPUs. In Proceedings of the
2011 17th International Conference on Digital Signal Processing (DSP), Corfu, Greek, 6–8 July 2011; pp. 1–6.

6. Raghav, S.; Ruggiero, M.; Marongiu, A.; Pinto, C.; Atienza, D.; Benini, L. GPU Acceleration for Simulating
Massively Parallel Many-Core Platforms. IEEE Trans. Parallel Distrib. Syst. 2015, 26, 1336–1349.

7. Baek, A.R.; Lee, K.; Choi, H. Speed-up image processing on mobile CPU and GPU. In Proceedings
of the 2015 Asia Pacific Conference onMultimedia and Broadcasting (APMediaCast), Kuta, Indonesia,
23–25 April 2015; pp. 1–3.

8. López, M.B.; Nykänen, H.; Hannuksela, J.; Silvén, O.; Vehviläinen, M. Accelerating image recognition on
mobile devices using GPGPU. Parallel Process. Imaging Appl. SPIE 2011, 7872, 78720R.

9. Huang, Y.; Wu, R.; Sun, Y.; Wang, W.; Ding, X. Vehicle Logo Recognition System Based on Convolutional
Neural Networks With a Pretraining Strategy. IEEE Trans. Intell. Transp. Syst. 2015, 16, 1951–1960.

10. Abdulnabi, A.H.; Wang, G.; Lu, J.; Jia, K. Multi-Task CNN Model for Attribute Prediction.
IEEE Trans. Multimed. 2015, 17, 1949–1959.

11. Rizvi, S.T.H.; Cabodi, G.; Patti, D.; Gulzar, M.M. Comparison of GPGPU based robotic manipulator with
other embedded controllers. In Proceedings of the 2016 International Conference on Development and
Application Systems (DAS), Suceava, Romania, 19–21 May 2016; pp. 10–15.

12. Satria, M.T. Real-time system-level implementation of a telepresence robot using an embedded GPU platform.
In Proceedings of the 2016 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden,
Germany, 14–18 March 2016; pp. 1445–1448.

13. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. CoRR. 2015.
Available online: http://arxiv.org/abs/1512.03385 (accessed on 21 July 2016).

14. Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; LeCun, Y. OverFeat: Integrated Recognition,
Localization and Detection using Convolutional Networks. Computer Science—Computer Vision and
Pattern Recognition. 2013. Available online: https://arxiv.org/abs/1312.6229 (accessed on 1 August 2016).

15. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.E.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going Deeper with Convolutions. CoRR. 2014. Available online: http://arxiv.org/abs/1409.4842
(accessed on 21 July 2016).

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1312.6229
http://arxiv.org/abs/1409.4842


Electronics 2016, 5, 88 17 of 17

16. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on
ImageNet Classification. In Proceedings of the 2015 IEEE International Conference on Computer Vision
(ICCV), Santiago, Chile, 7–13 December 2015; pp. 1026–1034.

17. Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks. In Proceedings of the 13th
European Conference on Computer Vision—ECCV 2014, Zurich, Switzerland, 6–12 September 2014; Part I,
pp. 818–833.

18. Huynh, L.N.; Balan, R.K.; Lee, Y. DeepSense: A GPU-based Deep Convolutional Neural Network Framework
on Commodity Mobile Devices. In Proceedings of the 2016 Workshop on Wearable Systems and Applications,
Singapore, 30 June 2016; pp. 25–30.

19. Gu, J.; Liu, Y.; Gao, Y.; Zhu, M. OpenCL Caffe: Accelerating and Enabling a Cross Platform Machine
Learning Framework. In Proceedings of the 4th International Workshop on OpenCL, Vienna, Austria,
19–21 April 2016; pp. 8:1–8:5.

20. Wu, J.; Leng, C.; Wang, Y.; Hu, Q.; Cheng, J. Quantized Convolutional Neural Networks for Mobile Devices.
Computer Science—Computer Vision and Pattern Recognition. 2016. Available online: https://arxiv.org/
abs/1512.06473 (accessed on 3 October 2016).

21. Lavin, A. Fast Algorithms for Convolutional Neural Networks. CoRR. 2015. Available online: http://arxiv.
org/abs/1509.09308 (accessed on 5 May 2016).

22. Kim, Y.-D.; Park, E.; Yoo, S.; Choi, T.; Yang, L.; Shin, D. Compression of Deep Convolutional Neural Networks
for Fast and Low Power Mobile Applications. CoRR. 2015. Available online: http://arxiv.org/abs/1511.
06530 (accessed on 24 April 2016).

23. Liu, X.; Turakhia, Y. Pruning of Winograd and FFT Convolution Algorithm. Available online: http://cs231n.
stanford.edu/reports2016/117_Report.pdf (accessed on 17 May 2016).

24. Zheng, Z.; Li, Z. A Nagar and Kyungmo Park. In Proceedings of the 2015 IEEE International Conference on
Compact Deep Neural Networks for Device Based Image Classification, Multimedia & Expo Workshops
(ICMEW), Turin, Italy, 29 June–3 July 2015; pp. 1–6.

25. Tsung, P.K.; Tsai, S.F.; Pai, A.; Lai, S.J.; Lu, C. High performance deep neural network on low cost mobile
GPU. In Proceedings of the 2016 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas,
NV, USA, 7–11 January 2016; pp. 69–70.

26. Russo, L.M.; Pedrino, E.C.; Kato, E.; Roda, V.O. Image convolution processing: A GPU versus FPGA
comparison. In Proceedings of the 2012 VIII Southern Conference on Programmable Logic (SPL),
Bento Goncalves, Brazil, 20–23 March 2012; pp. 1–6.

27. Zeiler, M.D.; Fergus, R. Stochastic Pooling for Regularization of Deep Convolutional Neural Networks.
CoRR. 2013. Available online: http://arxiv.org/abs/1301.3557 (accessed on 20 July 2016).

28. Cong, J.; Xiao, B. Minimizing Computation in Convolutional Neural Networks. In Proceedings of the
24th International Conference onArtificial Neural Networks and Machine Learning—ICANN 2014, Hamburg,
Germany, 15–19 September 2014; pp. 281–290.

29. Chellapilla, K.; Puri, S.; Simard, P. High Performance Convolutional Neural Networks for Document
Processing. Guy Lorette. In Proceedings of the Tenth International Workshop on Frontiers in Handwriting
Recognition, La Baule, France, 23–26 October 2006.

30. Jiang, W.; Chen, Y.; Jin, H.; Luo, B.; Chi, Y. A Novel Fast Approach for Convolutional Networks with
Small Filters Based on GPU. In Proceedings of the 2015 IEEE 12th International Conferen on Embedded
Software and Systems (ICESS), 2015 IEEE 17th International Conference on High Performance Computing
and Communications (HPCC), 2015 IEEE 7th International Symposium on Cyberspace Safety and Security
(CSS), New York, NY, USA, 24–26 August 2015; pp. 278–283.

31. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift. CoRR. 2015. Available online: http://arxiv.org/abs/1502.03167 (accessed on 21 April 2016).

32. Hara, K.; Saito, D.; Shouno, H. Analysis of function of rectified linear unit used in deep learning.
In Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN), Killarney, Ireland,
12–17 July 2015; pp. 1–8.

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

https://arxiv.org/abs/1512.06473
https://arxiv.org/abs/1512.06473
http://arxiv.org/abs/1509.09308
http://arxiv.org/abs/1509.09308
http://arxiv.org/abs/1511.06530
http://arxiv.org/abs/1511.06530
http://cs231n.stanford.edu/reports2016/117_Report.pdf
http://cs231n.stanford.edu/reports2016/117_Report.pdf
http://arxiv.org/abs/1301.3557
http://arxiv.org/abs/1502.03167
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Background and Related Works
	Background on the Convolutional Neural Network for Image Classification
	Deep Classifiers on Heterogeneous Mobile Architectures

	Methodology
	Architecture of Deep Convolutional Networks
	Convolutional Layer
	Pooling Layers
	Batch Normalization
	Activation Functions (ReLu, Tanh and Threshold)

	Proposed Approach for Mobile Platforms
	GPU Accelerated Fully-Convolutional Layer
	CPU-GPU Accelerated Matrix Multiplications-Based Convolutional Layer
	GPU Accelerated Pooling Layer
	Other GPU Accelerated Layers
	Implemented Neural Network Architectures

	Experiments and Result
	Performance Evaluation
	Power Consumption

	Conclusions and Future Work

