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Abstract: This work demonstrates a low-cost, miniature data repository proof-of-concept.
Such a system needs to be resilient to power and network failures, and expose adequate processing
power for persistent, long-term storage. Additional services are required for interoperable data
sharing and visualization. We designed and implemented a software tool called Airchive to run on
a Raspberry Pi, in order to assemble a data repository for archiving and openly sharing timeseries
data. Airchive employs a relational database for storing data and implements two standards for
sharing data (namely the Sensor Observation Service by the Open Geospatial Consortium and the
Protocol for Metadata Harvesting by the Open Archives Initiative). The system is demonstrated in
a realistic indoor air pollution data acquisition scenario in a four-month experiment evaluating its
autonomy and robustness under power and network disruptions. A stress test was also conducted to
evaluate its performance against concurrent client requests.

Keywords: Raspberry Pi; data repository; interoperability; data archive; data sharing; Sensor
Observation Service; Protocol for Metadata Harvesting; indoor air pollution; data acquisition;
persistent storage; low cost hardware; Internet of Things

1. Introduction

Raspberry Pi has emerged as a key component in research, education and amateur cyber-physical
systems. Raspberry Pi is a low-cost, mini-computer featuring processing, networking and video
decoding capabilities [1]. It has no permanent storage; the user may instead attach an SD card. It also
exposes General Purpose Input–Output pins (GPIO) to connect with low-level peripheral devices
through Hardware Attached on Top (HAT). Popular HATs include LEDs, motor controllers, sensors,
and GPS devices [2].

Raspberry Pi has been developed primarily with the intention to encourage computer education
in schools and the developing world, with the open philosophy in mind, as both the hardware
design and operating system are open-licensed. Raspberry Pi has been demonstrated in a variety
of applications beyond an educational context, including home-automation systems [3], fire alarm
systems [4], home-security [5,6], health supply chains monitoring [7], smart city applications [8–10]
and environmental monitoring systems [11]. Tanenbaum et al. [12] viewed Raspberry Pi and similar
technologies as enablers for democratizing technology and enabling creativity.

Despite the diversity of Raspberry Pi applications, little research has been done to investigate
Raspberry Pi as a performing data repository. The low acquisition cost, the open hardware and
software philosophy, and its capacity for interfacing with a variety of peripherals, renders Raspberry Pi
a very good candidate for boosting open data, crowd-sourcing and citizen science movements.
For instance, Raspberry Pi was employed to create a citizen observatory for water and flood
management [13]. Muller et al. [14] discuss its potential use for crowdsourcing applications in climate
and atmospheric sciences.
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In this work, we present a proof-of-concept that Raspberry Pi can be used as a miniature,
low-cost data repository that offers persistent data storage, and interoperable data sharing services
over the Internet. We demonstrate Airchive, a system that stores and serves timeseries data recorded by
a HAT equipped with air quality sensors, and investigate the system’s robustness against power and
network shortages. We also conducted a stress test in order to identify system limitations. The rest
of the paper is structured as follows: in Section 2, we study the feasibility of the approach, by
reviewing related work. Section 3 presents the overall system architecture, along with user types,
system requirements, and key functionality. Section 4 presents the software platform developed and
hardware utilized. Section 5 details our experiments with the system and presents the lessons learned,
documenting difficulties and incidents arisen during the experiment period. Finally, Section 6 provides
a discussion and lays the groundwork for future work. Section 7 provides a conclusion of the research.

2. Related Work

In principle, a data repository needs to offer persistent data storage, along with added-value
services, as those for data processing, dissemination and visualization. Such services are similar
to those offered by a Wireless Sensor Network (WSN) [15], an area where Raspberry Pi has been
thoroughly investigated as a gateway node (or base station). A gateway node is the intermediate
among sensor nodes and external networks. Its functionalities are regarded with (a) coordination
(e.g., configuration of sensor nodes); (b) data storage; (c) data processing and (d) data dissemination to
external clients [16]. Most prominent advances in the usage of Raspberry Pi in WSNs have been done
in the domains of (a), (c), and advanced data visualization.

Raspberry Pi has been used as a coordinator in a ZigBee mesh network interfacing with the
World Wide Web. In [17], a Raspberry Pi performs as a gateway node and processes observations
derived from the sensor nodes, stores them on a local database and provides visualization services to
external users.

Data processing on the Raspberry Pi to offline calibrate sensor readings and provide data
visualization is presented in [18]. Specifically, a Round Robin Database [19] was used for fast storage
of sensor data with a constant disk footprint. This was done by keeping only the recent measurements
in high resolution and statistical summaries for older recordings.

Advanced data visualization and image capturing is demonstrated in a volcanic monitoring
system based on a Raspberry Pi [20]. The Raspberry Pi creates and communicates graphs through
commercial messenger applications—for example Whatsapp—while data are transferred daily to
an external system for archival.

From the works above, it becomes clear that a Raspberry Pi may serve as a node that offers data
storage, processing and visualization services, while still remaining a coordinating device interfacing
sensors with the Internet. In most cases, data are forwarded to a remote, resourceful node in order to
be archived in the long term. In this work, we aim to demonstrate that a Raspberry Pi can become
an active archiver of its own sensor recordings, and investigate whether it is powerful enough to
provide data storage and dissemination services on site.

3. The Airchive System

3.1. Objectives

Airchive [21] is a software product intended for being deployed on a Raspberry Pi to turn it
into a self-contained data repository. Airchive provides data capture and dissemination services for
timeseries measurements. There are two objectives in developing this system.

The first is to investigate long-term storage potential on a Raspberry Pi. The challenge here
is inherited by the Raspberry Pi hardware limitations. Airchive provides with a persistent storage
mechanism that is able to safe-keep its data in a trustworthy manner. We experimented this feature
further, considering storage on both SD cards and USB disks attached with the Raspberry Pi.
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The second is to demonstrate Raspberry Pi capacity to interoperate at the machine level
through standard protocols for data sharing. Airchive adopts two mainstream standards to exhibit
interoperability at the machine level. The first is the Sensor Observation Service (SOS), the Open
Geospatial Consortium (OGC) standard tailored for sharing sensor observations [22]. SOS defines
a Web service interface which allows querying observations and metadata of heterogeneous sensor
systems. The second is the Protocol for Metadata Harvesting (OAI/PMH), an Open Archives Initiative
low-barrier mechanism for repository interoperability [23]. OAI/PMH is a generic protocol for sharing
metadata among archives and has been widely adopted by digital libraries. Both SOS and OAI/PMH
offer services that are invoked over the HTTP protocol.

3.2. Requirements

Airchive operates as a self-contained, autonomous repository for timeseries data archival and
dissemination. It is a technical system that involves both software and hardware components,
and needs to comply with certain non-functional requirements. From a software perspective,
Airchive needs to be built with open-source tools and frameworks and be extensible, in order to
respect the philosophy of the Raspberry Pi movement and maximize the potential for future uptake.
Hardware support Airchive should be low-cost and resilient to power and network shortages. This will
allow its use in remote locations, or in the developing world. The overall Airchive system should
require low-technical skills to install, operate and maintain.

We identified three use cases for the Airchive system.

(a) Web users access the system through the Internet via a public webpage. They explore current
or historical Airchive data, and they are interested in graphical representations of the content.
Typically, a Web user is able to query for the data stored in Airchive, and the system will
respond with a graph of the data requested. They may also download data in common formats,
such as JSON (JavaScript Object Notation), CSV (Comma-separated values), GeoJSON [24] and
GeoRSS [25].

(b) Software agents interact with Airchive for retrieving data or harvesting metadata. They may use
different protocols and vocabularies to submit their requests. One may follow the SOS protocol for
retrieving raw timeseries data, while another could use the OAI/PMH to get meta-information of
the digital resources stored. Software agents interact with the system with RESTful Web services
(Representational state transfer services) [26] over the HTTP protocol.

(c) The system owner has full access both locally and from the Internet via Secure Shell (SSH). Her
responsibilities are to administer the system by updating system software or restarting the device.

Interoperability is an essential requirement of such a system. Airchive offers query services
for software agents via SOS and OAI/PMH standards. SOS queries return responses in Extensible
Markup Language (XML) using OGC vocabularies (as Observation & Measurements (O&M) [27], or
Sensor Model Language (SensorML) [28]). OAI/PMH responses may be encoded in more than one
metadata profile, including Dublin Core, a generic purpose metadata schema for annotating digital
artifacts [29]. By incorporating a variety of service offerings, we demonstrate the capabilities of a
Raspberry Pi to operate with several clients, using different protocols and vocabularies, and support
for syntactic interoperability.

Software development is based on our previous work reported in [30]. We further improved
the software system to host generic timeseries data. The current version has been thoroughly tested
and is available as an open source software package [21]. In this version, all of the metadata that
are disseminated through OAI/PMH are calculated on-the-fly (instead of being stored permanently).
This is a design choice to demonstrate the powerful processing power of Raspberry Pi.

Airchive can operate autonomously and with minimal user interventions. In the experiments
discussed below, Airchive has been operating unattended for four months in order to evaluate
its capabilities for long-term operation, as reliability, self-recovery and resilience to power and
network failures.
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3.3. Abstract Architectural Design

Airchive software platform was designed for the Raspberry Pi to turn it into a self-contained station
for timeseries data archival and dissemination. It serves both real-time access and long-term storage
and retrieval of sensor data, while also offering services for metadata harvesting. Airchive follows
the Sensing as a Service paradigm [31] and is composed of five components that are implemented as
loosely-coupled services, rendering the software highly extensible. The abstract architectural design is
depicted in Figure 1.

Figure 1. Airchive abstract architecture. System services are shown as layered components on the left,
with relevant technologies. On the right, corresponding Raspberry Pi features are illustrated.

The data capture component (optional) comes first that actually collects sensed measurements
from one or more sensor devices connected to the Raspberry Pi. This component is custom to hardware
and/or sensors used. Our implementation interfaces with the sensors of the AirPi HAT. Nevertheless,
the general behavior remains the same: at certain time intervals, it acquires the results from the sensors.

A data validation component (optional) may sit between data capture and data storage
components. Its role is to apply quality assurance/quality control process and identify hardware or
sensor errors. Additionally, it could associate the measurement with a quality flag by applying rules
or more empirical procedures (i.e., statistical, data driven) [32–35]. Such a component is essential for
ensuring data reliability and user confidence.

The data storage component permanently stores sensor data in a relational database along with a
time stamp. In order to be database-independent, an Object Relational Mapping (ORM) framework was
utilized. The data storage component is also responsible for retrieving the data from permanent storage.

The data processing component is an intermediate layer between data storage and Web services.
It transforms arguments (submitted by users/harvesters with their queries) into appropriate database
queries, using the ORM framework. It also works in the other way around, as it formats database
outputs according to user requests, using different formats (i.e., XML, JSON, CSV) or dictionaries
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(i.e., O&M, SensorML, Dublin Core). Finally, it offers descriptive statistics calculations on-the-fly
(e.g., maximum, minimum, rolling mean, average and percentiles).

Last, but not least, the Web services components offer outlets for interaction with users and agents
over the Internet. There are four Web service components in the current system, but more could
be added in the future: Web users browse the repository and submit queries using a Graphical User
Interface (GUI). Software agents interact with the SOS server, the OAI/PMH endpoint, or the Airchive’s
own Application Programming Interface (API).

4. Implementation

4.1. Hardware

Airchive was deployed on a Raspberry Pi Model B. This model is equipped with a 700 MHz ARM
processor, weights 45 g and has 512 MB of RAM. It is connected to the Internet through an Ethernet
controller and features two USB ports. Instead of a hard disk, it uses an SD card. It is also equipped
with 26 GPIO pins (General Purpose Input–Output) for interfacing with various peripherals (HATs).
The chosen Operation System was Raspbian; a Linux based distribution for Raspberry Pi.

In order to generate data (i.e., actual observations) to be stored on the Airchive, we have chosen to
use AirPi, a Raspberry Pi sensory HAT. AirPi is an interface board that connects over GPIO pins and is
equipped with low cost air quality and weather sensors. It also follows the open hardware philosophy,
and can be further extended with other sensors, including a GPS module [36]. It costs roughly 90 USD
including the sensors shown in Table 1. AirPi includes a software module that is able to log sensed
data on the cloud.

Table 1. AirPi sensors with their respected observed properties.

Sensor Name Observed Property Type Interface

DHT22 Relative humidity, Temperature Digital SPI
BMP085 Atmospheric pressure, Temperature Digital SPI

MICS-2710 Nitrogen dioxide Analog I2C
MICS-5525 Carbon monoxide Analog I2C

The overall system hardware is comprised of a Raspberry Pi Model B equipped with the AirPi
HAT, an SD card and a USB memory drive, and it was connected to Internet with an ethernet cable,
shown in Figure 2.

Figure 2. Raspberry Pi Model B with AirPi attached on top.

4.2. Software Development

Airchive software has been developed in Python, and is available as open-source software on
github [21] under the GNU Affero General Public License Version 3 [37].
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The data capture component interfaces with the AirPi libraries [38] that transform electrical signals
into human-understandable values. Data storage employs SQlite [39], an open-source, lightweight
relational database for Python and SQLAlchemy library [40] for object-relational mapping. An outline
of the data validation component is provided, but not fully implemented, as it is out of the core scope.

The data processing component was developed in three modules. The Query module handles
client-requested queries and raises appropriate exceptions. Requests must include the sensor, the
property and the corresponding timeframe for which the observations will be retrieved. A typical
workflow is as depicted in Figure 3. The Filter module comprises of a set of statistical filters
implemented as Python classes using pandas library [41]. Filters may be instantiated and applied
on-the-fly on a query result. The Format module is responsible for serializing the query results.
Jinja2 template engine [42] was used and the formats implemented correspond to the Web services
offered. They include XML, GeoRSS, GeoJSON, JSON and CSV formats.

Figure 3. A typical data processing workflow.

The Web service components were developed using the Flask web framework [43], in order to
provide clients with static and dynamic content. Flask web framework deploys a web server which
responds to HTTP GET requests with formatted data. Data requests can be submitted through the
three API endpoints that we developed: the Airchive own API, SOS and OAI/PMH. A fourth outlet is
the Airchive GUI, which is meant for the Web users to render graphs upon request. It uses the Airchive
API for getting data, which are subsequently visualized on the client’s web browser using Javascript.
Graph rendering is facilitated by FLOT [44] and JQuery [45]. Visualizing data occurs on the client
browser, which also economizes resources of the Raspberry Pi.

Airchive software is generic in nature, in the sense that is does not require the data capture and
validation components, and one could deploy it only with historical data. The system is configured
via a file that aligns the timeseries with their semantics, including measured properties and units.
The configuration allows for alternative definitions of the same observed properties, which enables the
system to serve the same observations with a variety of vocabularies. Currently, we use the definitions
of the Semantic Web for Earth and Environmental Terminology (SWEET) [46].

5. Demonstration

5.1. Experimental Design

We deployed the Airchive system in a realistic scenario for indoor air quality monitoring.
Airchive software was installed on a Raspberry Pi equipped with AirPi HAT, and installed indoors,
connected to a power supply and the Internet via Ethernet port. We performed two experiments in
order to evaluate the system autonomy and robustness, and its performance under load pressure.
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5.2. Experiment 1: Autonomy and Robustness

In the first experiment, which lasted for more than 120 days, Airchive was exposed to irregular
power and network disruptions. We did not interfere in system restoration during the “down” incidents
and let the system self-recover.

In this experiment, a moderate sampling frequency to data capture component was set, in order
to investigate the system’s long-term storage capabilities. A measurement was retrieved from each
sensor every 5 min. During this experiment, 183,850 measurements were gradually collected and
served. In Table 2, there is a summary of the 24 network outage events observed during this period.
Outage events were logged with UptimeRobot [47], a service that monitors web applications and
notifies interested parties when an application is not accessible via the Internet. UptimeRobot was
used only to log network failures, and did not interfere with our system.

Table 2. Statistics of the 24 the outage events, collected using UptimeRobot.com services.

Metric Duration

Total downtime 10 days
Median downtime 7 min
Average downtime 543.6 min
St. dev. downtime 2572.4 min

During the first experiment, different users were submitting data queries to the system,
in an ad-hoc manner, using the various interfaces: graph visualizations were requested by Web users,
raw observations by SOS clients and derived metadata by OAI/PMH harvesters. We did not observe
any malfunction for any of the client operations. Current and historical data were monitored, stored
and disseminated appropriately, while the automated recovery worked as expected. OAI featured
records were calculated on-the-fly, upon harvester requests in a timely fashion. We did not observe any
notable delays in the capacity of the system to serve its clients.

5.3. Experiment 2: Stress Testing

During the second experiment, we conducted a stress test, in order to provide more insights
regarding the system limitations. We investigated the number of concurrent user requests, after which
the Airchive system delayed to respond. The sampling frequency was increased to 5 s. The experiment
lasted for three days, and it collected and served more than 259,000 measurements. We utilized
Locust [48], an open source load testing tool written in Python. In Locust, a variable number of clients
are deployed to submit concurrent requests to a service. Each Locust client submits a new request only
when it receives a response to its previous request.

Locust takes as input the following parameters: (a) the number of concurrent clients; (b) the total
number of requests; and (c) a url pointing to the requested resource. We set up three tests. In all cases,
clients submitted a hundred requests altogether. The three tests involved the following requests over
the Internet, via HTTP GET.

In the first test, clients request only the Airchive frontpage, which is a static HTML document.
No transactions to the database were involved and the response size is constant (8740 bytes). Test 1
verifies that Airchive operates properly and examines if pressure on the Web services/dissemination
components has an impact on the data capture component.

In the second test, clients request a set of 20 observations using Airchive’s API, and the response is
formatted as a JSON document. This request requires an SQL query to be submitted to the database,
and the response size is 538 bytes. Test 2 corresponds to the use case of a Web user that asks for a graph,
as Airchive transmits the JSON document and the graph is rendered on the client-side.

In the third test, clients ask for the same set of observations as in Test 2, but this time over the
SOS protocol, which returns an XML document. This request requires exactly the same SQL query
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to be submitted to the database but needs additional formatting for rendering the result in XML.
The response size is 16,504 bytes. Test 3 corresponds to the use case of an SOS client asking data
from Airchive.

We simulated four scenarios, in each of which we deployed a different number of concurrent
clients. We tried one, five, 10 and 25 concurrent clients. This is a realistic assumption as the current
system is not intended for large-scale deployment. We repeated the process five times for each test
and scenario combination and reported two metrics in Table 3: (a) the average response time (ART) in
milliseconds; and (b) the number of requests served per second (RPS).

Table 3. Experimental results for the three tests and for different numbers of concurrent clients.
Average response time (ART) across a hundred requests for each document are reported in milliseconds.
System throughput is expressed in requests per second (RPS).

Concurrent Clients
Test 1: Static HTML Test 2: API/JSON Test 3: SOS/XML

ART (std) RPS (std) ART (std) RPS (std) ART (std) RPS (std)

1 66.4 (0.5) 16.2 (0.7) 1830 (27) 0.55 (0.01) 2171 (64) 0.46 (0.01)
5 344 (11) 15.4 (0.6) 9467 (178) 0.52 (0.01) 11,125 (90) 0.44 (0.00)
10 662 (7) 15.4 (0.3) 18,874 (397) 0.51 (0.01) 21,651 (281) 0.44 (0.01)
25 1576 (25) 16.6 (0.7) 45,607 (410) 0.49 (0.01) 49,427 (935) 0.45 (0.01)

Average response time (ART) is a proxy of the average delay to an external user request.
For example, a user would have to wait 49.5 s (on average) plus the response time of their submitted
request, under the scenario of the 25 concurrent clients for Test 3. As indicated by the results in
Table 3, average response time is linearly correlated with the product of (a) number of concurrent users;
and (b) average response time achieved when one client submits requests. We verify that requests per
second (RPS) depend on the type of the requested document, and is rather stable regardless of the
number of concurrent clients.

The introduced overhead to the system response times depends on the request and format type.
Requests involving dynamic content are roughly 30 times slower than requests of static content. In the
case of dynamic content requests, JSON-formatted responses are served 16% faster than the equivalent
in XML.

Interpreting the results, we derive the number of concurrent (human) Web users that the system
may serve. Assuming that a human user should not wait more than 6 s, we conclude that Airchive can
serve simultaneously up to two Web users of the SOS/XML Web service (Test 3), or three Web users of
the API/JSON Web service (Test 2). In the case of static content (Test 1), Airchive is able to serve up
to 82 clients simultaneously. The numbers above do not represent Airchive’s maximum capabilities,
rather its capacity for serving content to Web users.

In contrast, software agents interacting with such a system are usually not bound to any time
limitation. We conducted further experiments to determine the threshold after which the system
started failing to respond to requests. We increased the total number of requests to 500. We started
increasing the number of concurrent users by multiples of 5, until requests started to fail. Airchive can
serve simultaneously, without failure up to 254 (Test 1), 141 (Test 2) and 138 clients (Test 3). In excess of
the client numbers above, the system continued to respond with more than one failure. The results are
summarized in Table 4. These tests demonstrate Airchive’s capacity to work reliably with a significant
number of clients.

We underline that despite the heavy workload we introduced during the stress tests,
AirPi continued to operate normally. In all cases, we verified with the database content that observations
were recorded every 5 s without any loss in all the experiments above (i.e., the data dissemination does
not interfere with data capture).
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Table 4. Estimates on the number of clients that Airchive can serve simultaneously.

User Types Test 1: Static HTML Test 2: API/JSON Test 3: SOS/XML

Human Web users 82 3 2(response in less than 6 s)

Software agents 254 141 138(response guaranteed)

5.4. Incidents and Lessons Learned

During experiment 1, network failures occurred quite often. Those failures, impeded only Web
connectivity and apart from the web server, the rest of the Airchive components continued to operate
properly. We verified that no data loss occurred by cross-checking the time down intervals logged with
UptimeRobot with the actual observations stored in the database.

We observed that the system was able to handle power failures, and it self-restored without human
intervention. For all 24 outage events during experiment 1, Airchive recovered properly by making
the Web service available as soon as the Internet connection returned. In this respect, the system
demonstrated its persistence and credibility as a repository.

Calculating derived data (metadata) on-the-fly provided us with evidence regarding the system’s
extensibility and enhanced capabilities. Derived metadata, which were disseminated through
OAI/PMH, were calculated upon client request. We observed that data were transmitted as fast as if
they had been stored in the system. In addition, utilizing a Javascript framework for rendering graphs
upon user request added no extra performance overhead to the Raspberry Pi. We did extensively
evaluate these features with stress tests in experiment 2, and our experience was that the system
performed as expected.

During experiment setup, we stumbled upon a recurring security incident. Given that
Raspberry Pi was constantly connected to the Internet, it attracted malicious users after its first boot.
We experienced a brute force attack to the SSH protocol that was trying to get unauthorized access
to the device. We toughened up Airchive with a dedicated security software solution (fail2ban [49]),
which prevented any further security incidents of that kind.

Another lesson learned had to do with a potential issue that may arise when power and networks
fail at the same time. Raspberry Pi lacks a Real-Time built-in Clock (RTC), and it synchronizes its
system clock through the Internet. In the case that an Internet connection is not available upon system
boot, the Raspberry Pi system time is misconfigured. In the general use case of Airchive, this will
not be a problem, but, in our experiments, this will result in errors in the data capture component,
which will assign incorrect timestamps to data sensed from the HAT. This problem can be overcome so
that the data capture component retrospectively reviews these timestamps when the Internet becomes
available. An RTC HAT can be purchased and applied to Raspberry Pi. However, this option increases
the total cost.

Last but not least, during the setup phase, we experimented with booting Raspbian and
running Airchive from the USB disk instead of the SD card. First of all, this is a task that requires
advanced technical skills and is still an experimental option not endorsed by the Raspberry Pi makers,
and performance is not guaranteed. USB disks provide a cheaper storage option but are prone to failure.
We experimented with this option for one month, during which the filesystem was corrupted twice,
requiring the operating system and Airchive to be re-installed. Observed data were not permanently
lost, but their retrieval required technical skills. In contrast, no such incidents occurred when the
system operated on an SD card for a much longer period.

6. Discussion

Data persistence is a prerequisite for a data repository. In most efforts made with a Raspberry Pi
and reported in the literature in the WSN context, data were periodically backed up in an external
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device and were not permanently stored on the embedded device. In the work presented here,
Airchive relied solely on Raspberry Pi for permanent data storage. Our four-month experiments
demonstrated that a Raspberry Pi equipped with an SD card can handle moderate and extensive
read/write cycles without any issue; the resilience of SD cards is constantly evolving [50].

The processing capabilities of Raspberry Pi have been investigated in the light of several
applications. In Airchive, we studied its capacity to calculate and disseminate added-value data
and indexes on-the-fly, i.e., upon user request. This way, less data are permanently stored and less
write cycles are performed, which puts less pressure on SD card life.

Self-restoration from failures is another attribute of WSNs [16], which is also applicable in our
work. Self-restoration contributes towards diminishing the technical skills that Airchive system owner
should possess. During the experiments, the system self-restored from all power and network shortages
that have been triggered, demonstrating that after its installation, the system can operate autonomously
and without assistance.

We also consider that the Airchive system presented here also indirectly contributes to the open data
movement, especially for the developing world. Besides the low acquisition cost and the low-technical
skills required for its deployment, the system by-design responds to the “weak enabling environment”
of the developing countries, i.e., intermittent, opportunistic Internet connection. In the frame of this
work, we did not demonstrate the system in such conditions. However, we demonstrated that is able
to attend to network and power failures.

Security and privacy are also two important attributes of a data repository system, and lay the
foundation for future work. The brute force attack incident that occurred during the experiments is
an illustration of the potential dangers. In addition, given that a data repository system may host
personal and/or confidential data, more research should be focused on addressing privacy issues. There
is a lack of any authentication mechanism, even in well-established, data dissemination protocols,
such as OGC/SOS and OAI/PMH. An authentication mechanism can ensure privacy, and such issues
should be addressed in the light of interoperable data dissemination on the application layer.

7. Conclusions

To summarize, we provided a proof-of-concept that current low-cost hardware is reliable
enough to boost the open data movement. We demonstrated that a Raspberry Pi accompanied with
an appropriate software can support persistent data storage, and provide added-value services on
site. We designed and implemented an open-source, highly-extensible data repository software,
called Airchive, to support data visualization, and interoperable data dissemination. We adopted
two well-established data dissemination protocols: OGC Sensor Observation Service and Open
Archive Initiative/Protocol Metadata Harvesting. Finally, we demonstrated its long-term data storage
capabilities and resilience under harsh conditions of power and/or network failures, which take
place irregularly. The load testing experiments provided us with insights about the Raspberry Pi
performance under simultaneous requests from concurrent external clients.

Supplementary Materials: Airchive software is available on github: https://www.github.com/ecologismico/
airchive. Airchive uptime statistics are available on Zenodo: http://doi.org/10.5281/zenodo.167318. Airchive stress
test results are available on Zenodo: http://doi.org/10.5281/zenodo.167319. The locust configuration used for
the Airchive stress test is available on Zenodo: http://doi.org/10.5281/zenodo.167326.
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