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Abstract: This paper describes an obstacle avoidance system for low-cost Unmanned Aerial Vehicles
(UAVs) using vision as the principal source of information through the monocular onboard camera.
For detecting obstacles, the proposed system compares the image obtained in real time from the UAV
with a database of obstacles that must be avoided. In our proposal, we include the feature point
detector Speeded Up Robust Features (SURF) for fast obstacle detection and a control law to avoid
them. Furthermore, our research includes a path recovery algorithm. Our method is attractive for
compact MAVs in which other sensors will not be implemented. The system was tested in real time on
a Micro Aerial Vehicle (MAV), to detect and avoid obstacles in an unknown controlled environment;
we compared our approach with related works.
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1. Introduction

Unmanned Aerial Vehicles (UAVs) are applied in several applications, like surveillance, mapping,
journalism, transport, rescue, military applications and environments where a human cannot access,
such as radioactive areas, toxic environments and handling of dangerous objects [1].

Kendoul [2] classified UAVs into five categories according to the size and payload: Category I:
full-scale; the main features are the robustness of the physical structure and the payload that they can
carry; Category II: medium-scale; they have a payload higher than 10 kg and a total weight over 30 kg;
Category III: small-scale; these UAVs have a payload from 2 to 10 kg, with a total weight less than
30 kg; Category IV: mini; they have a payload of 2 kg, are electrically operated, low cost, have easy
maintenance and safe operation; and Category V: Micro Air Vehicles (MAVs) have a payload lower
than 100 grams and are used in navigation and detection.

Most of the commercial UAVs depend on the skill of the pilot and the robustness of the
communication system. One of the problems in the teleoperation of UAVs is the loss of pilot visibility
and/or the signal of the Global Positioning System (GPS); the autonomous system is an alternative for
solving this issue.

The autonomous systems include motion planning, path tracking, obstacle avoidance,
target detection and other areas [3]. These systems require sensing, state estimation, perception
and knowledge of the situation. The perception is used to detect and avoid obstacles in real
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time, recognize and tracking objects and environmental mapping. There are several proposals for
perception, based on vision or Laser Imaging Detection And Ranging (LiDAR) [2], but these sensors
are highly expensive.

We use the Bebop drone, which is a low-cost, compact MAV. Our proposal works with a perception
method based on feature points for obstacle detection and a proportional control to avoid them,
using a monocular camera without depending on other sensors.

This paper is organized as follows: Section 2 shows a description of the related works.
The proposed obstacle detection approach is explained in Section 3. Section 4 is focused on the
modeling, controller design and the algorithm for avoiding obstacles during the fly. Experiments and
results are presented in Section 5. Finally, Section 6 is destined for the conclusions and future works.

2. Related Work

Research groups on robotics have proposed different techniques for obstacle avoidance, based
on sensors like LiDAR [4–6] and RGB-D [7,8], which show robustness to identifying obstacles; but
implementing these devices in a compact MAV is difficult, expensive, and also, these consume
additional electrical power. When we work with UAVs and want to implement other device onboard,
we need to consider the payload that they can carry, limiting the use of any UAV. Vision systems are
an alternative, because they use only the integrated camera in the aerial vehicle.

In the literature, there are several vision systems based on optical flow, like [9], where the authors
propose a system for controlling ultra-light airplanes using a 1D camera and translatory optic flow that
avoids obstacles and keeps distance from the ground and ceiling. Other approach are autonomous
collision avoidance systems for navigation within houses or indoor environments using optical flow,
micro-sensors and neural networks [10,11]. In [12], there is a simulation of a navigation system with
optical flow for rotary-wing UAVs to avoid lateral and frontal collisions in a 3D urban environment.
The probability distributions are a robust method for computing the structure from motion (SfM) and
do not require a precise calculation of optical flow at each feature point [13].

The fundamental limitation of optical flow is when flying directly toward an obstacle, because
this method is based on the flying of insects, and in the case of honeybees, they never fly in a straight
line toward a target, but rather make a slight zigzag pattern. This makes it difficult to use this method
for frontal obstacle avoidance [10,14].

Stereo vision [15,16] is a robust approach for obstacle detection, but is limited by the baseline,
because when it narrows, this gives rise to noisy estimates. Furthermore, two cameras limit the use of
any compact MAVs. Bills [17] and Çelik [18] work with perspective references to estimate the desired
orientation for flying the UAV, but the vehicle can only fly in structured environments. De Croon [19]
uses an appearance variation cue that works with the visual appearance of an image to estimate
obstacle proximity, but depends on optical flow for achieving a higher performance.

Other techniques of vision are present in [20], which shows an image-based reactive motion
planner to avoid a fast approaching obstacle, and the Dubins curve-based geometry method to
developed a global path planner for a fixed-wing UAV. In [21], the authors use omnidirectional
cameras that do not require the estimation of range between the two platforms to resolve the collision,
but they use two vehicles to obtain the view-angle.

Furthermore, the literature presents works about path planning-based UAV obstacle avoidance,
like [22], where the research shows a path planning algorithm based on 3D Dubins curves to avoid
static and moving obstacles, also using the variation of the Rapidly-exploring Random Tree (RRT)-like
planner. Pettersson [23] proposes an operational UAV platform to supply a 3D model of a region
containing buildings and road structures and generate collision-free paths autonomously and in [24]
combines D* Lite and Probabilistic Roadmaps for path planning and uses stereo vision for detecting
obstacles and dynamic path updating.

In spite of the use of Scale-Invariant Feature Transform (SIFT) to recognize collisions by analyzing
the change in scale and location between two images [25], it is not recommended due to the low speed.
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In our proposal, we use Speeded-Up Robust Features (SURF) to detect obstacles. There are several
applications of SURF, like face detection [26], target tracking [27,28], simple visual navigation [29]
and some works with UAVs. One of these is [30], which uses a simple bang-bang control. Our work
proposes a real-time obstacle detection algorithm based on feature points and an offline modeling of
the MAV for designing a controller for fixed and mobile obstacle avoidance in an unknown controlled
environment.

3. Obstacle Detection

In this section, we use two images; one is located in a database that contains obstacles like traffic
signs, trees and a pre-designed obstacle. We use different images to demonstrate that the algorithm
can detect any obstacle while it is in the database. The other image is captured with the onboard
camera. In order to find correspondence between these images, feature point detection, description
and matching are used. Additionally, we calculate the obstacle area and mass center to be used as
a target in the controller.

3.1. Feature Point

For feature point detection, there are several works in the literature [31–33], but widely-used
algorithms are: Oriented Fast and Rotated Brief (ORB) [34], which is a fast binary descriptor that
is rotation invariant and resistant to noise; Fast Retina Keypoint (FREAK) [35] is a method where
the keypoint descriptor is inspired by the human retina; Binary Robust Invariant Scalable Keypoints
(BRISK) [36] that uses a scale-space FAST-based detector with the assembly of a bit-string descriptor;
Scale-Invariant Feature Transform [37], which obtains image features that are invariant to scaling,
translation, rotation and partially invariant to illumination changes and affine or 3D projection; and
Speeded Up Robust Feature (SURF) [38], which uses integral images to computed and compare interest
points much more quickly.

In this paper, we use SURF; according to [39], the computational cost is lower without reducing
robustness. The feature point can be defined by three steps: detection, description and matching.

3.1.1. Feature Point Detection

The SURF algorithm for interest point detection uses a basic Hessian matrix approximation.
This lends itself to the use of integral images, which reduce the computational time [38].

Integral images allow for fast computation of box-type convolution filters. The entry of an image
IΣ(p) located in (x, y)T represents the sum of all pixels in the input image I within a rectangular region
formed between p and origin coordinates:

IΣ(p) =
i≤x

∑
i=0

j≤y

∑
j=0

I(x, y) (1)

The feature point can be estimated based on the integral images. For p = (x,y), the matrix is
defined as:

H(p, σ) =

[
Lxx(p, σ) Lxy(p, σ)

Lxy(p, σ) Lyy(p, σ)

]
(2)

where σ is the scale and Lxx(p, σ) is the convolution of the Gaussian second order derivative δ2

δx2 g(σ).
Gaussians are optimal for scale-space analysis, but these need to be discretized and cropped.
Furthermore, no new structures can appear when going to lower resolutions. For this, SURF presents
another alternative that pushes the approximation with box filters, because the method works with
integral images, and the second order Gaussian derivatives can be evaluated very quickly, independent
of size. The approximations for Gaussian second order derivatives that represent the lowest scale are
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the 9× 9 box filters with σ = 1.2, and three approximations are obtained: Dxx, Dxy, Dyy; the Hessian
determinant is calculated with the equation:

Det(Haprox) = DxxDyy − (0.9Dxy)
2 (3)

The scale-space function uses an image pyramid smoothing with a Gaussian filter for finding
edges and blobs on different scales and a sub-sample to obtain the next higher level of the pyramid.
Due to SURF using box filters and integral images, it does not apply iteratively the same filter to
the output of each layer and can apply the filters of any size at exactly the same speed directly in
the original image. Hence, scale-space is analyzed by up-scaling the filter size instead of iteratively
reducing the image size.

The feature point location is estimated by a combination of the Hessian matrix and scale-space
function. If the values obtained from the determinant of the Hessian matrix are below, the threshold is
lower. If the threshold value is higher, the number of detecting points is lower. Candidate points are
selected, and each pixel is compared with its 26 neighbors in two dimensions. A pixel is maximum
when it is greater than the neighbor pixels. Finally, the pixel that corresponds to the feature point is
located in scale-space. These points are presented in Figure 1.

(a) (b) (c) (d)

Figure 1. Feature point detection. (a) Pre-designed obstacle, on the database; (b) Pre-designed obstacle,
captured by the Unmanned Aerial Vehicle (MAV); (c) Obstacle present in the environment, on the
database; (d) Obstacle present in the environment, captured by the MAV.

3.1.2. Feature Point Description

The SURF descriptor determines the distribution of the pixel intensity within a neighbor region
for each detected feature point.

This method uses a Haar wavelet to decrease the computational time and increase the robustness.
The Haar wavelets are block-based methods to calculate directional derivatives of the image
intensity, i.e., they determine the gradient in x and y [40].

For extracting, the descriptor needs to identify the orientation with different conditions, obtaining
rotation invariance. The next step is to create a square region centered in the feature point and to split
this up into four equal sub-regions. Haar wavelets are obtained for two-dimensional space (x and y)
and smoothed by a Gaussian filter. Each sub-region has a vector v = (Σdx, Σdy, Σ|dx|, Σ|dy|), where dx

and dy are the Haar wavelet response in the x and y directions. Figure 2 shows the sub-regions used to
estimate SURF descriptor vectors.
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(a) (b) (c) (d)

Figure 2. Feature point description. (a) Pre-designed obstacle, on the database; (b) Pre-designed
obstacle, captured by the MAV; (c) Obstacle present in the environment, on the database; (d) Obstacle
present in the environment, captured by the MAV.

3.1.3. Feature Point Matching

The first challenge for the avoidance system is to detect the obstacle. For this reason, it is necessary
to find the correspondence between the image from the database and the image captured by the
onboard camera from the MAV. This matching process is based on the vectorial distance between
descriptors of each feature point in both images.

The sign of the Laplacian is used for fast feature point indexing it because distinguishes a bright
region on a dark background. We only compare the feature points with the same type of contrast,
achieving a lower computational cost without reducing the descriptor performance. Additionally, we
use Random Sample Consensus (RANSAC) [41,42] to discard the set of the pairs of points out of the
model, as shown in Figure 3.

(a) (b)

Figure 3. Feature point matching. (a) Pre-designed obstacle; (b) obstacle present in the environment.

3.2. Obstacle Area and Mass Center

Previous works [43–46] have made experimental tests with handheld devices and onboard
cameras, and the results showed undesired movements and parasitic vibrations that are significant on
the plane perpendicular to the roll axis. The distortion can be modeled by a projective transformation;
in our case, we use the affine model, which is a particular case of this [47]. The affine transformation is
widely used for motion compensation in MAVs. This transformation is mathematically expressed as:
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xt

yt

1

 = R×

xt−1

yt−1

1

+ T (4)

R =

[
r00 r01

r10 r11

]
, T =

[
t00

t10

]
(5)

xt

yt

1

 =

r00 r01 n00

r10 r11 n10

1 1 1

×
xt−1

yt−1

1

 (6)

where R is the rotation matrix for roll (Figure 4), T is the translation in x and y, xt−1 and yt−1 are
the coordinates of each pixel on the last image and xt and yt are the coordinates of each pixel on the
current image.

Figure 4. Pose of the MAV.

We generate a bounding box for each obstacle defined by a, b, c and d, as shown in Figure 5.

Figure 5. Corners of the rectangle.

These points are warped on the image captured with the onboard camera, and we use the affine
transformation to compensate this warping:

It = H× It−1 (7)
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where It represents the current image function, It−1 is the last image function and H is the affine
transformation matrix. Finally, we calculate the area defined by the compensated vertex a to d. Due to
the rectangle being a regular figure, we estimate the mass center Mc by the average value of the x and
y coordinates of each vertex, as shown in Figure 6.

(a) (b)

Figure 6. Area and mass center of obstacle. (a) Pre-designed obstacle; (b) obstacle present in the environment.

4. Obstacle Avoidance

The obstacle avoidance process of our proposal is separated into three parts:

• System identification,
• Controller design,
• Obstacle avoidance algorithm.

4.1. System Identification

The platform used in the experimentation is the Bebop Drone 1, a low-cost MAV built by the
company Parrot. This vehicle was selected for several reasons: low cost, energy conservation, stable
flying and vehicle size. The Bebop Drone can be controlled by smartphones or tablets with the
operation systems iOS or Android. Furthermore, Parrot has opened the SDK (Software Develop Kit)
for operating systems like Linux and Windows, so it can be controlled with a laptop/desktop computer.
The control system of the Bebop Drone manipulates four different control actions: pitch, roll, yaw
and altitude. Inertial Measurement Unit (IMU) and control action data were collected from the Bebop
Drone for model identification. In our model, we use control actions as input (Figure 7a) and velocities
as outputs (Figure 7b). We proposed two motions in the planes x and y for the avoidance system; in
the x-axis, the motion is uniform, i.e., the linear speed x is constant. The motion in the y-axis depends
on the obstacle location, so the control law will be applied to this axis.

Based on the low-level control system of Bebop, the motion in the y-axis can be controlled by
the roll [48,49]. It is necessary to estimate the mathematical model that relates roll control with the
linear speed in the y-axis; the transfer function of the mathematical model is shown in Equation (8).
This model is simulated and presented in Figure 8 in order to observe the step response. It is important
to mention that the system is stable and has a slow setting time.

G(s) =
K

Ts + 1
(8)
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(a)

(b)

Figure 7. System behavior for different input values. (a) Speed-input; (b) speed-output in the x-axis,
y-axis and z-axis.
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Figure 8. Step response system. In blue, the system behavior during 100 s.

4.2. Controller Design

One consideration of the controller is that after detecting the obstacle, the vehicle should recover
the path. Additionally, we must define if the obstacle is on the flight trajectory, the position error and
the target area-based distance between the obstacle and the MAV. As shown on Figure 9.

Figure 9. Control action with an obstacle inside of the path. The system can avoid the obstacle with
a displacement on the y-axis.

4.2.1. Position Error

The visual field of the drone depends on the resolution of the camera. For the bebop drone,
we capture 640 × 480 pixels for each image, where the obstacles are defined by the mass center as
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Mc(y, z) in the visual field image (Figure 10). The position error e(t) is the difference between the
obstacle mass center and the center C(y, z) of the image (visual field).

Figure 10. Obstacle mass center Mc within visual field MAV camera. Mc indicates the obstacle position.

e(t) = C(y, z)−Mc(y, z) (9)

The position error is the mathematical expression of the distance between the MAV and the
obstacles. If e(t) < 0, the obstacle is located on the right side of the drone; otherwise, the obstacle is on
the left side. The maximum and minimum values of the error are −320 and 320 for the y-axis.

4.2.2. Obstacle Area

The obtained area is proportional to the distance between the onboard camera and the obstacle.
In Figure 11, the relation between the image plane and the obstacle length is graphically explained:

L1

IP1
=

Lp1

IPp1
,

L2

IP2
=

Lp2

IPp2
(10)

where L1 and L2 are the obstacle lengths, Lp1 and Lp2 are the obstacle lengths in pixels, IP1 and IP2

are the image plane lengths and the image plane lengths in pixels are represented by IPp1 and IPp2.
IPp1 = IPp2, because they do not depend on the position of the image plane:

Lp1

Lp2
=

L1 × Ip2

L2 × Ip1
, L1 = L2 (11)

Lp1

Lp2
=

Ip2

Ip1
(12)

If Lp2 > Lp1, the image plane Ip2 increases; otherwise, Ip2 decreases; this represents varying of the
obstacle dimensions from different perspectives. Furthermore, the image plane has a relation to the
distance between the MAV and obstacle, as shown:

Ip1

Ip2
=

d1

d2
(13)

If an obstacle is out of the visual field, it is not detected because it is far from the UAV and does
not interfere with the flight path.
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Figure 11. Relation between the area and distance.

4.2.3. Proportional Controller

The objective of most control systems is reducing to zero the error between the output and set
point. However, for the avoidance system (Figure 12), the controller increases the difference between
the obstacle’s mass center and the visual field center. If the position error is low, i.e., the obstacle is
close to the path center, the control system must send a higher speed signal to the motor controllers in
order to keep distance with respect to obstacles. On the other hand, when the position error is higher,
the obstacle is far from the path center, reducing the collision probability. The control law depends
on the location of the obstacle; it is positive when the error is e(t) < 0 and negative when e(t) > 0
(Figure 13). This means that the controller output u(t) is inversely proportional to the error e(t).

Figure 12. Control system in closed-loop. Set point (SP), Error (E), Manipulated variable (MV),
Controlled variable (CV), Process variable (PV).
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(a)

(b)

Figure 13. Avoidance path for different obstacles position. (a) Obstacle on left side far from the path
center; (b) obstacle on right side near from the path center.

We are using a proportional controller, which automatically compensates the environmental
disturbance and provides a smooth, continuous and linear control function, as mentioned by Hughes
in [50]. Our experimental results show that our approach has a higher performance than the bang-bang
controller. We obtained a control law with a proportional gain Kp and a bias P, defined as:

u(t) = Kp× e(t) + P (14)

4.2.4. Translation Compensation

In addition to avoidance, the MAV needs to return to the path; in our proposal, we compensate
the deviation of the MAV when avoiding the obstacle (Figure 14). To do this, we use the average speed
r(t) of the control signal u(t) (Equation (15)).

ur(t) =
(

∑n
i=1 u(i)

n

)
× (−1) (15)

Furthermore, for that, the MAV gets to the goal and returns on the path; we used a target tracking.
When the MAV detects the image that indicates the end of flight, at first, it does the tracking with
a control law and then lands. The target tracking works with the position error e(t) and a proportional
controller. However, without a position estimation method, the vehicle could be susceptible to position
drift caused by external disturbances or slight variations in orientation. The position estimation is
proposed for future works; for the moment, we perform the experiments in a controller environment
with minimal external disturbances.

Figure 14. Path recovery of one obstacle.
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4.3. Obstacle Avoidance and Path Recovery Algorithm

Our proposal of obstacle avoidance is described in the Algorithm 1. Our algorithm starts when
the obstacle area is greater than the limit area; this means that the vehicle is closer to the obstacle
than the distance allowed. The limit area value is experimentally obtained defining the dimensions of
obstacles in pixels at a specific distance. The output u(t) of the control law moves the vehicle away
from the center of the obstacle avoiding it. If the error is greater than zero, the MAV moves to the left
side; otherwise, the vehicle moves to the right side.

Algorithm 2 shows the path recovery that uses the average speed ur(t) obtained from the control
signal u(t) to compensate the deviation of the MAV in the avoidance.

Algorithm 1 Obstacle avoidance algorithm.

1: if area > areaexp then
2: u(t) = kp× e(t) + P
3: if e(t) < 0 then
4: u(t) = u(t)× (−sign(e(t)))
5: end if
6: if e(t) > 0 then
7: u(t) = u(t)× (sign(e(t)))
8: end if
9: end if

10: if area ≥ 0 and area < areaexp then
11: u(t) = 0
12: end if
13: speedacc = speedacc + u(t)
14: n = n + 1

Parameters
area : obstacle area
areaexp : limit area
e(t) : position error, between the path center and mass center of obstacle
u(t) : speed that will be sent to MAV
speedacc : speed accumulated during the period of avoidance
n : numbers of speed data saved

Algorithm 2 Path recovery algorithm.

1: ur(t) = speedacc/n
2: u(t) = ur(t)× (−1)
3: time.sleep()
4: u(t) = kp× e(t) + P
5: if area > areaexp then
6: land()
7: end if

Parameters
ur(t) : average speed
time.sleep() : wait time
Land() : landing of the MAV

In Figure 15, we present our full obstacle avoidance algorithm.
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Figure 15. Flow chart. Our proposal for obstacle avoidance.

5. Experiments and Results

The Bebop Drone is connected by WiFi to a laptop with the following characteristics: processor
Intel Core i7-2670QM Quad-Core 2.2 GHz and 8.00 GB RAM running Linux. The laptop is destined to
processes the obstacle detection and avoidance algorithms. We have used the Katarina open-source
library developed by Dlouhý [51] for communication of the laptop with the MAV and obtain images in
real time from the monocular onboard camera of the MAV.

We performed an experimental comparison between our autonomous algorithm, the algorithm
proposed by [30] and the teleoperation of two persons with different experience levels, using the same
MAV. Additionally, we performed an experiment that compares our algorithm in different scenarios.

The metrics of evaluation are:

• Time: This shows the necessary time to complete the path.
• Maximum speed: This is an indicator proportional to the maximum distance to the rectilinear path.
• Minimum speed: This is an indicator proportional to the minimum distance to the rectilinear path.
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• Average speed: This is an indicator proportional to the average distance to the rectilinear path.
• Distance: This shows the traveled distance of the flight.
• Battery: This shows the ratio of the battery used on the flight.
• Successful flights: This shows the number of flights that completed the path without the MAV

touching or hitting the obstacles.
• Unsuccessful flights: This shows the number of flights that did not complete the path, due to the

MAV touching or hitting the obstacles.

The experiments were performed in different controlled scenarios as shown on the Figures 16–21:

• One fixed obstacle.

Figure 16. Distribution for one obstacle.

• Two fixed obstacles.

Figure 17. Distribution for two fixed obstacles.

• Three fixed obstacles.

Figure 18. Distribution for three fixed obstacles.

• One fixed obstacle and two mobile obstacles.

Figure 19. Distribution for one fixed obstacle and two mobile obstacles.

• One tree.
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Figure 20. Distribution for one tree-like obstacle.

• Two traffic signs.

Figure 21. Distribution for two traffic sign-like obstacles.

Figures 22–25 show the results of one flight in different scenarios; Tables 1–4 present the
average values of the experimental successfully flights; and Table 5 a summary of them. For the
last experimental test with one tree and two traffic signs, the results are shown in Figure 26; Table 6
presents the average values of successful flights; and Table 7 shows the number of flights that completed
the path. The normalized values were obtained from the official Android App of Parrot. The numbers
in bold on the tables mean the best result in the experiment.

Table 1. One fixed obstacle.

Control Maximum
Speed (m/s)

Minimum
Speed (m/s)

Average
Speed (m/s)

Distance
(m)

Time
(s)

Battery
(%)

Autonomous algorithm 0.865 0.116 0.256 4.957 18.869 5.389
Bang-Bang 0.918 0.108 0.290 5.262 18.207 5.422

Teleoperator with experience 2.625 0.108 1.073 8.716 9.817 5.750
Teleoperator without experience 2.313 0.141 0.809 9.490 11.997 6.692

(a) (b)

(c) (d)

Figure 22. Results of one fixed obstacle for four different controllers. (a) Autonomous control;
(b) bang-bang control (c) teleoperator with experience; (d) teleoperator without experience.
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Experimental results with the fixed obstacle showed that the autonomous system has a lower
ratio of battery usage and traveled distance, due to the system not having high variations of speed.
The teleoperators used the least time to complete the path, for the ease of avoiding one obstacle, but if
we compared with the bang-bang system, the time is similar.

Table 2. Two fixed obstacles.

Control Maximum
Speed (m/s)

Minimum
Speed (m/s)

Average
Speed (m/s)

Distance
(m)

Time
(s)

Battery
(%)

Autonomous algorithm 0.780 0.113 0.252 8.582 33.382 8.811
Bang-Bang 0.832 0.109 0.320 10.227 33.075 9.419

Teleoperator with experience 1.862 0.112 0.597 12.879 23.104 7.291
Teleoperator without experience 1.585 0.108 0.543 12.813 26.660 9.664

(a) (b)

(c) (d)

Figure 23. Results of two fixed obstacles for four different controllers. (a) Autonomous control;
(b) bang-bang control (c) teleoperator with experience; (d) teleoperator without experience

The results of two fixed obstacle showed that our algorithm has a lower traveled distance because
it can keep a stable speed better than the others. The time to complete the path and battery usage are
less for the teleoperator with experience. In this case, our algorithm has a similar time with respect to
completing the path with the bang-bang controller.

Table 3. Three fixed obstacles.

Control Maximum
Speed (m/s)

Minimum
Speed (m/s)

Average
Speed (m/s)

Distance
(m)

Time
(s)

Battery
(%)

Autonomous algorithm 0.940 0.104 0.253 11.914 46.143 11.536
Bang-Bang 0.952 0.108 0.276 13.120 46.633 15.357

Teleoperator with experience 2.646 0.104 0.626 21.056 48.418 6.321
Teleoperator without experience 2.791 0.106 0.987 32.123 48.887 7.361
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(a) (b)

(c) (d)

Figure 24. Results of three fixed obstacles. (a) Autonomous control; (b) bang-bang control
(c) teleoperator with experience; (d) teleoperator without experience

The high performance of our algorithm is evidenced on experimentation with three fixed obstacles
because unlike the human teleoperators, our autonomous system has no fatigue issues. The average
speed, traveled distance and the time to complete the path are lower than others. The battery usage is
less for the teleoperator with experience due to using more speed in several cases, but increases the
probability of collision.

Table 4. One fixed obstacle and two mobile obstacles.

Control Maximum
Speed (m/s)

Minimum
Speed (m/s)

Average
Speed (m/s)

Distance
(m)

Time
(s)

Battery
(%)

Autonomous algorithm 0.760 0.104 0.235 11.759 48.271 13.888
Bang-Bang 0.942 0.108 0.304 16.997 51.800 13.184

Teleoperator with experience 2.189 0.118 0.915 15.859 20.490 11.390
Teleoperator without experience 2.910 0.103 0.767 22.040 34.038 12.419

(a) (b)

(c) (d)

Figure 25. Results of a fixed and two mobiles obstacles. (a) Autonomous control; (b) bang-bang control
(c) teleoperator with experience; (d) teleoperator without experience.
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For one fixed and two mobiles obstacles, the challenge is greater because at any time, an obstacle
can be present in the environment and produce a collision. In this case, our algorithm presents a good
response, as shown in Table 4; the traveled distance and the average speed are lower than others.
The time to complete the path is lower for teleoperators, but in Table 5, we can see that they have
more unsuccessful flights than our proposal due to using higher speeds, increasing the probability
of collisions.

Table 5. Results of flights with different controls.

Control Total Number
of Flights

Successful
Flights

Unsuccessful
Flights

Successful Flights Ratio
(%)

Autonomous algorithm 20 16 4 80
Bang-Bang 20 12 8 60

Teleoperator with experience 20 13 7 65
Teleoperator without experience 20 11 9 55

Table 6. Tree and traffic sign obstacles.

Obstacle-Type Maximum
Speed (m/s)

Minimum
Speed (m/s)

Average
Speed (m/s)

Distance
(m)

Time
(s)

Battery
(%)

Pre-designed obstacle 0.865 0.116 0.256 4.957 18.869 5.389
Tree 0.303 0.028 0.124 3.025 24.121 3.432

Traffic signs 0.634 0.052 0.241 5.928 27.620 5.625

(a) (b)

Figure 26. Results of one tree and two traffic signs as obstacles. (a) One tree; (b) two traffic signs.

Table 7. Results of flights with tree and traffic sign obstacles.

Obstacle-Type Total Number
of Flights

Successful
Flights

Unsuccessful
Flights

Successful Flights Ratio
(%)

Pre-designed obstacle 10 8 2 80
Tree 10 4 6 40

Traffic signs 10 8 2 80

The results of the experiments performed to know how our autonomous system responds in
different scenarios are presented in Tables 6 and 7. They demonstrate that our proposal has a good
performance. When it works with traffic signs and a pre-designed obstacle, the number of successful
flights is high because the average values do not have a greater variety; and when the tree is an obstacle,
the results showed that our algorithm can avoid this, but the number of successful flights is low.
To improve this, we will address this problem in future works.

Based on the experimental results, our proposal has a better performance than the bang-bang
controller and the teleoperators because the traveled distance and the time are lower, and additionally,
the stable speed allows successful flights. In spite of the use of the battery and the average time
required to complete the path is lower for teleoperators, the number of unsuccessful flights’ ratio is
higher. When the number of obstacles is higher, the performance of human teleoperators decreases,
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as a consequence of fatigue; on the other hand, our proposal keeps this performance. Unlike the
bang-bang controller, our proposal includes a path recovery system in order to return to the original
trajectory. The importance of the path recovery system is evident when increasing the number of
obstacles; for example: for two or more obstacles, the bang-bang controller avoids the first obstacle
and loses the path for the next obstacles, ending in another location. Our approach finishes in the
correct goal.

Video results are provided in [52].

6. Conclusions and Future Works

In this paper, we experimentally tested the optimal and robust performance of our system,
including obstacle detection and avoidance.

Flexibility and energy efficiency are important features for autonomous navigation of UAVs.
In our approach, flexibility is given by the effectiveness responding to the unspecified number of
obstacles in unknown positions. SURF obtains matching between the image from the database and
captured frame without incrementing the computational cost.

Our proportional controller for obstacle avoidance between the start and goal point is optimal,
faster and has higher performance than a bang-bang controller, as well as human controllers with and
without experience.

For future works, we will improve the detection algorithm without the use of the database.
We will compare use natural key points and a real-time path planning algorithm [53,54].
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