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Abstract: With the number and variety of commercial drones and UAVs (Unmanned Aerial
Vehicles) set to escalate, there will be high future demands on popular regions of airspace and
communication bandwidths. This raises safety concerns and hence heightens the need for a
generic quantitative understanding of the real-time dynamics of multi-drone populations. Here,
we explain how a simple system design built around system-level competition, as opposed to
cooperation, can be used to control and ultimately reduce the fluctuations that ordinarily arise in
such congestion situations, while simultaneously keeping the on-board processing requirements
minimal. These benefits naturally arise from the collective competition to choose the less crowded
option, using only previous outcomes and built-in algorithms. We provide explicit closed-form
formulae that are applicable to any number of airborne drones N, and which show that the necessary
on-board processing increases slower than N as N increases. This design therefore offers operational
advantages over traditional cooperative schemes that require drone-to-drone communications that
scale like N2, and also over optimization and control schemes that do not easily scale up to general
N. In addition to populations of drones, the same mathematical analysis can be used to describe
more complex individual drones that feature N adaptive sensor/actuator units.
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1. Introduction

Like many other cyber-physical systems, the development of drones—which we take here for
convenience as also including UAV (Unmanned Aerial Vehicle) systems—is growing at a remarkable
rate [1–7] in terms of on-board sensing, computing, communication, hovering and locomotion
capabilities. There is also increasing diversity in their design, particularly among smaller autonomous
drones which can hover and maneuver freely and are sweeping the commercial market [7]. Indeed,
hobby drones that are ready-to-fly off-the-shelf are now in the hands of people of all ages and
backgrounds, including children. A casual look at a well-known online shopping site shows that
over the past few years there has been a near ten-fold increase in the range of designs and companies
building them. Civilian drones now vastly outnumber military drones, and there is an upward trend
with the Federal Aviation Administration (FAA) estimating that consumer sales could grow from
1.9 million in 2016 to as many as 4.3 million by 2020 [7].

This rapidly expanding market among the general population and companies (e.g., Amazon)
for such small but agile autonomous devices, will likely drive a rapid increase in the heterogeneity
of drones that are airborne at any moment, as well as their number. Just as happens with regular
road traffic, they will likely often be trying to access the same part of airspace, or send messages
using the same bandwidth range, meaning that they can produce congestion and potential traffic
pile-ups as in regular road traffic but with the added risk that they then may fall out of the sky
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and/or fly into buildings or other human obstacles. Hence, there is an urgent need to understand the
tendency of an airborne population of autonomous drones to produce congestion. Since congestion
means crowding, this, in turn, means there is a scientific need to understand the dynamics of real-time
crowding behavior in a population of heterogeneous, adaptive drones, and how this might affect
public safety [2,7].

The question that we attempt to address here, albeit in a simple way, is: Is there a set of
minimal yet generic design features that can be employed across a heterogeneous population of
drones, such that those that happen to be airborne at any one time access a popular region of airspace,
or popular communications bandwidth, without generating large fluctuations due to crowding and
hence lessen the chances for accidents? One way to approach this issue might be through regulation.
However, just as with everyday car traffic, regulation alone does not prevent accidents [7]. Another
approach is to install additional software that pins down more precisely exact flight paths. However,
given the rapidly changing environment seen by a flying drone in terms of obstacles and other
drones, this would require a significant increase in on-board processing, together with additional
power use, hence adding to the drone’s weight and reducing the total time that it can remain
airborne. The use of a virtual tether has also been considered, but this could be challenged as
favoring certain businesses of neighborhoods while punishing others. Various crash-avoidance
technologies comprising low-powered anti-collisions systems with sensors and machine-learning
algorithms, are also possible, but smaller drones would suffer from the same issue of increasing
the need for sophisticated on-board computing while draining the power more quickly and adding
to the weight [2,7]. Indeed, as emphasized in Reference [2], ‘Flight is energetically expensive,
particularly when the size of the device is reduced’. Even the proposal to micromanage every
trajectory of every drone in real-time, and send out system alerts, is unrealistic given the wide
variety of adaptive behaviors that may characterize a heterogeneous drone population—just like
everyday traffic on the street cannot be micromanaged. A solution for a small number of drones
if one has complete control of the environment, is to calculate numerically some optimal solution
based on the details of the machines themselves and the environment, and then implement this
or embed it in each component’s software and firmware design. However, in the real world, this
would need to be done in real-time and would involve accounting for possible other drones in the
vicinity. In addition, many commercial drones may have proprietary information in their design
and data storage, thereby making conventional optimization and control approaches impractical
and unscalable to large numbers of drones N. Added to this, there is always the unknown natural
factor of gusts of wind, etc., which add additional variability to the environment, in particular for
smaller drones.

We propose here a different approach that is built around collective competition and
only requires feedback of global information about overall system behavior, as opposed to the
requirements for real-time cooperation between individual drones. Specifically, it eliminates the
need for costly drone-to-drone communications, which, for a population of N drones, would require
keeping open approximately N(N − 1)/2 ∼ N2 possible communication links. It also requires
minimal on-board computational capabilities within each drone. Indeed, we show that the required
memory storage grows sub-linearly with the number of drones N, as opposed to possibly growing as
∼N2 for schemes involving drone-to-drone communication. We stress that our scheme will tend to
reduce collisions by diluting pockets of crowding in the N drone population, but does not eliminate
them—however, simple proximity sensors can then be added to each drone to detect and hence avoid
others that are within a certain radius, without the need to know their identity or specific missions.
For concreteness, we will describe our approach in terms of a population of N heterogeneous,
autonomous drones as in Scenario 1 (Figure 1). Using analysis inspired by the physics of many-body
systems [8–10], we provide closed-form formulae for the optimal range of on-board computational
capabilities as a function of the number of drones N that are airborne in a given region of airspace.
Our results are obtained for a system in which the capabilities of each drone (which are measured
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by s and m) are independent of the number of drones N. This is in stark contrast to schemes
which depend on two-way interactions between drones for coordination, and hence whose required
on-board resources will need to scale up as ∼ N2. In addition to populations of drones, the same
competition-based design and mathematical results that we provide can be applied to the case of
a single complex drone shown schematically in Scenario 2 (Figure 1), i.e., it can be used to reduce
crowding in terms of battery use by the population of on-board sensor/actuators in a single drone,
and also reduce message congestion within the drone’s central processor.

Scenario 2: 
Single complex 

drone/UAV 
comprising population of  

N heterogeneous,  
autonomous 

sensor/actuator agents 
Each agent has its own 

adaptive capability:  
s algorithms (strategies) 

  m memory size 
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takes action +1 or -1 
at each timestep 

Scenario 1: 
Swarm of N heterogeneous,  
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Figure 1. Schematic of the two scenarios to which our mathematical analysis and results can be
applied. Scenario 1 is a population of N airborne drones, each of which has minimal on-board
capability that includes s algorithms (i.e., strategies) for deciding the drone’s next action based on the
previous global system outcomes, and a memory of size m comprising the previous m global outcomes
that the drone receives at each timestep. Scenario 2 is a single, complex drone with N sensor/actuator
agents, each of which has its own set of s algorithms, and a memory of size m.

Though Scenario 2 is not realistic given current technology, it instead is aimed at exploring a
futuristic possibility inspired by living systems. Specifically, it is known [11] that Drosophila larvae
show remarkable abilities in terms of being able to regulate and balance the tasks for movement,
momentary stationarity and turning, without the potentially costly overhead of a large, centralized
control. In particular, large turns are achieved by the collective output of individual segments of the
larva’s body which are effectively like the individual agents in Scenario 2. Each acts as a sensor
and actuator, and is semi-autonomous as in Scenario 2. More generally, we note that the idea
that advances in system design can usefully learn from Nature’s own evolutionary solutions, has
attracted significant attention in recent years and looks set to make an impact on future generation
designs—see, for example, References [12,13]. Our intention in this paper is to look toward a future
set of design ideas which could act as guiding principles as systems become more complex and hence
centralized control and management becomes impractical for certain real-world situations where
security is a prime concern. It is not our intention to provide a detailed review of the state of the art of
current UAS (Unmanned Aircraft Systems) traffic management, either in terms of current technology
(e.g., ADS-B which stands for Automatic Dependent Surveillance-Broadcast) or current regulations.
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The current ADS-B technology, which is reviewed in Reference [14], is a surveillance technology in
which a drone establishes its position by means of satellite navigation and then regularly broadcasts it,
meaning that it can then be tracked by a centralized controller. Scenario 1 imagines a future situation
in which the density for satisfying ADS-B, and any future variations, has been saturated to the extent
that centralized control becomes impractical or unsafe—or, equally, where the threat of intentional
system attacks is so significant that a centralized controller is deemed too vulnerable as a design
option. Whatever the specific numbers for which these settings might arise, there will be a feasible
future scenario in which decentralized control becomes favorable in terms of security.

We also wish to stress that large swarms of very simplified drones are currently considered
desirable for certain future operations such as infrastructure testing in scenarios where robustness
against the loss of a number of drones is a primary requirement, and where each drone has minimal
on-board processing requirements (see Reference [15]). Our Scenarios address precisely this setting.
We therefore continue this paper with a forward-looking discussion of future generation scenarios in
which decentralization is the preferred choice.

2. Model Motivation and Setup

Our approach is inspired by, and draws together in a unified way, machinery from the field of
complex systems and many-body statistical physics [8–10]; recent works on a market-based approach
to the distribution problem [16]; and works on scaling laws for such systems [17]. We refer to
References [8,9] for more detail, as well as Reference [10] for a more general formulation in the
language of many-body physics. We start by recognizing the fact that despite their diversity in design
details, size and weight, all drones tend to comprise some level of computing capability such as a
single-board computer; sensors which give information about internal and external state of the craft;
actuators which link through to engines or motors and propellers; some software which manages the
system in real time and responds quickly to the changes observed in the sensor data; and of course
a power supply, which is typically a lithium-polymer battery for small drones [2]. The key features
of a drone that we incorporate explicitly into our modeling here are: the ability for data storage; the
ability to sense information from the outside; the ability to take an action, for example to turn left
or right in an attempt to access the less congested of two options, or to decide to transmit or not
transmit through a potentially congested bandwidth; and the ability to adapt their decision making
over time by having several algorithms stored whose relative ranking in terms of past performance
is known (i.e., the drone processor knows at each timestep which is the better of the two operating
algorithms (strategies)).

The specific scenario that we imagine in this paper, though generalizable, is that of competition
among the N drones in Scenario 1 (Figure 1) for the less crowded of two options. This could be
spatial, i.e., as in regular road traffic, with the more crowded of two otherwise identical roads being
the worse choice. Since all N cars (drones) are making this binary choice at the same time, and
the winning choice will depend on the aggregate of these N actions after the fact, there will be
no way for any individual car (drone) to work out this correct option deductively without having
to contact each other car (drone) in turn and then trust that each has reported reliably what they
will do. Instead, each drone has s algorithms and at any given timestep will use the one which
happens to be the better of the two in terms of past performance, in order to decide its next action.
Alternatively, the same two-option scenario arises in the decision of whether or not to make a
communications transmission at a particular instant in time or not, with the consequence that if it
does transmit and the channel is overcrowded, then the energy spent transmitting will be wasted.
Hence, the action to transmit would have been the wrong one. Indeed, it is known that a growing
challenge for designers and engineers in the area of communication and control of drones is the
narrow transmission bandwidth available since it is finite and constantly shrinking [18,19]: the fast
advancement of wireless technological tools demands open networks to operate properly and hence
contributes to the bandwidth shrinking process. Any purely cooperative approach is heavy on
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resource consumption since a system of N units has N(N − 1)/2 interaction pairs that each need
to be made available to create a consensus. In addition and in contrast to the scheme presented here,
if one link is lost in such cooperative approaches, then the unity of the system may collapse and
unwanted outcomes generated. As mentioned above, many other two-option scenarios are possible
such as a choice between two patches over which to hover, with the less crowded choice being the
better since it will reduce the chance of random collisions. For the scenario of the individual drone
designed with a collection of semi-autonomous sensors and actuators as in Scenario 2 (Figure 1),
this two-option competition could be used to represent the decision to draw power or not, and hence
the systemic risk lies in potentially overloading the system and bringing the drone down from the
sky. Hence, these binary scenarios, while lacking in specific detail, capture a wide range of relevant
safety situations for drone and UAV systems. Indeed, any complex real-world situation will have
a tree of decisions that can each likely be broken down into a succession of such binary decisions,
hence the broader relevance of our discussion and mathematical analysis for general cyber-physical
systems (CPS).

All these limited resource scenarios have the common setup of having two options which are
a priori equally good, but for which the less crowded one is subsequently deemed as the winning
option. This enables the problem to be mapped onto the so-called minority game as studied in the
many-body physics of complex systems [8–10]. The minority game has also been considered in the
area of energy resource management [20] and wireless networks [21], though not with the same
analytic results and insight that we present here. Indeed, our analytic results provide closed-form
mathematical expressions which are valid for any N and for any such binary choice scenario involving
drone navigation or communications—or for an individual drone. Our results therefore provide
insight for both individual machines and swarms of such machines, and avoid demanding pair-wise
communication between the components pieces (Figure 1). By contrast, conventional distributed
approaches, including those of traditional game theory, become increasingly complex for such a
system as N becomes larger, since they depend on the number of possible links between agents
(i.e., N(N − 1)/2) and hence generally increase as some power of N or even exponentially.

The main method used in this paper is the basic minority game simulation whose code is
available freely online from a number of different sources: see, for example, the NetLogo version
of the code which is explained in detail in Reference [22]. This version is preferable since it is
platform independent and requires no particular knowledge of programming in order to run it. A
full description of the minority game model is given in References [8–10], where the derivations are
given in more detail. Together, these provide sufficient details to fully replicate our results.

3. Collective Coordination through Competition

Figure 2 summarizes the dynamics of the population of N heterogeneous, autonomous drones
(i.e., agents) that we consider. The key features of our setup are that each drone has some memory of
the past (m) system outcomes (i.e., history) and also has a modest number (s) of on-board algorithms
(i.e., strategies) among which it can choose its highest performing one at any given timestep, when
deciding what action to take. The reason why the 22m

possible combinations of action outputs
(i.e., strategies) listed in Figure 2 corresponds to a complete set, i.e., full strategy space, is worth
stressing. Irrespective of its nature, any algorithm that the drone could conceivably have, will
necessarily be deterministic. Hence when fed with any of the 2m possible inputs corresponding to
the global outcomes over the prior m timesteps (00, 01, etc.. for m = 2), it must either produce as
its output the action −1 or the action +1. Thus, for every possible algorithm, the output for each of
the 2m possible inputs is either −1 or +1. Each of these permutations of −1 and +1 (i.e., each row of
the table in Figure 2) can be regarded equivalently as a strategy. There are 22m

possible permutations
of −1 and +1 for a given m, i.e., there are 22m

possible strategies. This means that the full strategy
space contains precisely 22m

distinct strategies. Strategies are assigned randomly among the different
drones at the outset of the simulation. Due to the random strategy assignment from this strategy
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space at the start of the simulation, the subset of s strategies held by each drone is generally not the
same for different drones. This mimics the fact that the drones are heterogeneous in their design,
being made by a different company and/or for a different purpose.

m =	2

set	of	possible	
operating	algorithms	

(i.e.	strategies)	

each	
has	s aggregate	outcome	0	or	1

reward	operating	algorithms
that	took	correct	action

N heterogeneous
autonomous	

adaptive	objects
each	agent	

takes	action	+1	or	-1
at	each	timestep

total	number
of	-1	and	+1	
actions	

gives	aggregate	
outcome	0	or	1	
at	system	level

Figure 2. Schematic representation of the N-drone system design. At timestep t, each agent (e.g., each
drone in Scenario 1) takes action −1 (e.g., go to airspace region 0) or action +1 (e.g., go to airspace
region 1) based on the output of its best on-board operating algorithm (i.e., strategy), and knowledge
of the previous m global outcomes. A total of n−1[t] agents choose −1, and n+1[t] choose +1.
The global (i.e., aggregate) outcome is then the region of airspace with the minority of drones, either
0 or 1. This global outcome is then fed back to each drone which rewards (or penalizes) each of its s
on-board algorithms by one point if it had correctly (or incorrectly) predicted the winning action.

There is no central controller, other than the equivalent of a central scoreboard which collects
the aggregate actions and updates the string of m most recent global outcomes with the winning
(i.e., minority) choice, i.e., 0 or 1. These m most recent outcomes are then fed back to each drone
which stores them in its memory (or, equivalently, it updates its memory with the most recent
outcome) along with the relative success of its s on-board algorithms in predicting the correct action
since the beginning of the simulation. At each timestep, every strategy is rewarded or penalized
according to its ability to predict the winning group (i.e., less crowded option). Drones adapt
their decision-making process by selecting the strategy that happens to rank the highest based on
prior outcomes. All units receive the same feedback but since they hold different strategy sets,
the highest scored strategy can differ from one drone to another. No communication is necessary
among them (i.e., no cooperation) to execute the next decision. The agents themselves (i.e., each
drone) are adaptive in that they can switch between the strategies that they possess, according to past
performance of these strategies. In future settings, if one wished to model a drone that could adapt
by real-time rewriting parts of its operating algorithms and hence strategies, it would be possible to
incorporate this in the model by having the agent sporadically pick up new strategies from the pool
when the ones that the drone has are not performing well.

While this setup is clearly a significant oversimplification, it does contain the basic principles and
competition that a realistic system would have, without getting lost in the detail of individual designs
and implementations. The combination of the heterogeneity in operating algorithms combined with
feedback of the same global information, leads the N drones to unwittingly divide themselves into
two groups at each timestep without any external controller deciding the split. Moreover, the precise
split in terms of numbers and membership changes over time, since each drone continually adapts
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by choosing to use the best of its s operating algorithms in taking its next action. The smaller group is
considered to be the winner since it is less crowded and will therefore likely have less accidents due
to collisions.

We now proceed to calculate the fluctuations in this system, and, in particular, their dependence
on the three variables N, m and s, i.e., the number of drones N, the size of the on-board memory m
and the number of operating algorithms s per drone. A convenient system output quantity whose
fluctuations we will calculate is the ’excess demand’ given by:

D[t] = n+1[t]− n−1[t] . (1)

In an ideal world, n+1[t] ≈ n−1[t] for all time t meaning that the occupation of 0 and 1 would
always be essentially equal. For example, for a number of drones N = 101, the occupancies would
be 50 and 51 always no matter whether 0 or 1 was the minority choice, and hence D[t] = ±1 always.
If instead the N drones each flipped a coin to decide their action, then D[t] is the same as a coin-toss
for N coins. We are interested here in the standard deviation of D[t] since this gives a measure of the
fluctuations in the system, and hence the size of typical fluctuations in the system—and ultimately
the risk in the system. For a full derivation of the closed-form mathematical expressions associated
with Figures 3 and 4, we refer to References [8–10]. Here, we content ourselves with a calculation of
the small m case with s = 2, but for any N, since this will enable us to identify the minimal value
of the drone memory m that is required in order for the system’s fluctuations to be smaller than the
coin-toss (i.e., random) value, hence demonstrating the emergence of collective coordination in the N
drone system as a result of global competition.

crowd - anticrowd
pairs execute
uncorrelated
random walks

sum of variances
= variance of sum

walk step-size

# of walks

typical	fluctuation	size

System	
fluctuations

Smaller than	
random

Value	for	
uncorrelated
actions

Figure 3. Schematic showing the order-of-magnitude variation in the scale of fluctuations in the
system of N drones, as a function of the size of the on-board drone memory m. The nonlinear
variation that emerges is due to the emergent crowding of drones into particular strategies and their
anti-correlated partners (i.e., crowd–anticrowd pairs). This coordination emerges despite the fact that
the system is competitive and there is no drone-to-drone communication channel. The fluctuations
above a certain on-board memory size (i.e., m > mcrit) lie below the random coin-toss value expected
for N uncorrelated drones. Such coordination could otherwise only be achieved through costly
drone-to-drone communication and cooperation, yet emerges here spontaneously for any number
of drones N.
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The key first step is to understand the correlations in the N drones’ actions, which, in turn,
depend on their respective strategies. Such correlated actions can arise spontaneously even though
this is a competitive system because subsets of drones may happen to use the same strategy at the
same time, giving rise to sudden crowding and hence congestion, and therefore large fluctuations
in D[t]. These correlations have their root in the details of the strategy space, shown in Figure 2 for
m = 2. There are subsets of strategies in this full strategy space such that any pair within this subset
has one of the following characteristics:

• anti-correlated, e.g., −1− 1− 1− 1 and +1 + 1 + 1 + 1, or −1− 1 + 1 + 1 and +1 + 1− 1− 1.
Any two drones using the (m = 2) strategies +1 + 1− 1− 1 and −1− 1 + 1 + 1, respectively,
would take the opposite action irrespective of the sequence of previous outcomes and hence
the history. Hence, one drone will always do the opposite of the other drone. This is the key
observation that leads to our crowd–anticrowd description and hence the mathematical results
presented in Figures 3–5. When one of these drones chooses +1 at a given timestep, the other
drone will choose −1. The net effect of this on the excess demand D[t] then cancels out at each
timestep, irrespective of the history, and so does not contribute to fluctuations in D[t].

• uncorrelated, e.g.,−1− 1− 1− 1 and−1− 1+ 1+ 1. Any two drones using the strategies−1−
1 + 1 + 1 and −1− 1− 1− 1, respectively, would take the opposite action for two of the four
histories, while they would take the same action for the remaining two histories. If the m = 2
histories occur equally often, the actions of the two drones will be uncorrelated on average.

Based on this observation, we can now construct a reduced strategy space which provides a
minimal set that spans the full strategy space and yet is easier to deal with mathematically. The results
for the fluctuations in D[t] simulated numerically using this reduced strategy space and the full
strategy spaces are almost identical since the reduced strategy space respects the correlations in the
fuller structure. Consider the following two groups of strategies:

Um=2 ≡ {−1− 1− 1− 1, +1 + 1− 1− 1, +1− 1 + 1− 1, −1 + 1 + 1− 1} (2)

and
Um=2 ≡ {+1 + 1 + 1 + 1, −1− 1 + 1 + 1, −1 + 1− 1 + 1, +1− 1− 1 + 1}. (3)

Any two within Um=2 are uncorrelated, likewise any two within Um=2 are uncorrelated.
Moreover, each strategy in Um=2 has an anti-correlated strategy in Um=2: for example, −1− 1− 1− 1
is anti-correlated to +1+ 1+ 1+ 1, +1+ 1− 1− 1 is anti-correlated to−1− 1+ 1+ 1 etc. This subset
of strategies comprising Um=2 and Um=2 forms a reduced strategy space that has a smaller number of
strategies 2.2m = 2P ≡ 2m+1.

We stress that our approach does not use vehicle-to-vehicle communications but instead employs
simple vehicle-to-infrastructure interaction as in present designs. However, the amount of data
required is small compared to location and trajectories data of the many drones that might be present
within a swarm. Although global monitoring is still needed, it is only required in its simplest form,
i.e., a simple +1 or −1 from each vehicle. No knowledge of which drone is sending the information
is required, meaning that if this information were illegally intercepted, the information would not be
significantly beneficial to the eavesdropping entity. Thus, our approach could be implemented when
the number of UASs is large to the point of slowing down the data processing and bandwidth access
due to the large volume of transfer.
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1 
 

 
Figure 4. Our crowd–anticrowd theory vs. numerical simulation results as a function of on-board
memory size m, for a heterogeneous population of N = 101 drones (agents) with s = 2, 4 and 8
operating strategies per drone. Closed-form mathematical formulae are given for lower and upper
bounds of the standard deviation of the excess demand D[t]. The numerical values were obtained
from different simulation runs (triangles, crosses and circles). Information in this figure was adapted
from Reference [9].
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Figure 5. Curves show the dependence of the critical on-board memory size mcrit as a function of
the number of drones N in our scheme (Figure 2) for s = 2 operating algorithms per drone. In the
shaded regime, the system fluctuations given by σ (i.e., standard deviation of the excess demand D[t])
are smaller than the value expected for N uncorrelated drones. For the boundary, results for both the
lower-bound estimate (dashed line) and the upper-bound estimate (solid line) are shown. The red
diamonds are the average of the numerical values obtained from the simulation of σ, showing that
our closed-form formulae for the theoretical values are accurate.

4. Results

Figure 3 demonstrates schematically the variation that this crowding into strategies and their
anti-correlated partners will have on the fluctuations in the N-drone system. The correlations that
drive the N-drone dynamics effectively separate into crowd–anticrowd pairs containing a crowd of
drones using a particular strategy (e.g., +1 + 1 + 1 + 1 in Figure 2) and an anticrowd which uses
the anticorrelated strategy (−1 − 1 − 1 − 1 in Figure 2). The anticrowd will therefore always take
the opposite actions to the crowd, and so the net impact of a given crowd–anticrowd pair on the
dynamics is given by the difference between the crowd and anticrowd sizes. The crowd–anticrowd
pairs themselves are uncorrelated, hence their aggregate impact of all crowd–anticrowd pairs on the
fluctuations can be approximated by using the fact that the sum of the variances is given by the
variance of the sum. Assuming that each crowd–anticrowd pair executes a stochastic walk that
resembles a random walk, one can then obtain an expression for the overall N-drone fluctuations
(see later). Remarkably, above a certain critical value of m ≡ mcrit, the fluctuations are predicted to
be smaller than they would be if the drones behaved randomly with respect to each other. This is
because of the near cancellations when a given crowd and anticrowd have similar sizes, meaning
that the net variance of this crowd–anticrowd pair is far smaller than if its drones were uncorrelated.
We stress that this collective action is entirely involuntary among the population of drones—it arises
spontaneously and is hence an emergent phenomenon. This particular curve shape in Figure 3 is
confirmed by the numerical calculations in Figure 4. Even though the N drones are continually
competing for space, coordination can be seen to emerge for ’free’.

We now calculate a closed-form expression for mcrit in the case of s = 2 operating algorithms
per drone, which is applicable to any number of drones, i.e., it is perfectly scalable to any N value
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and actually gets more accurate as N increases. As mentioned above, the way that we have grouped
together the correlations between drones means that we can use the known mathematical identity
that the variance of the sum will be equal to the sum of the variances in order to write the square of
the standard deviation (i.e., variance) of D[t] as:

σ2 =
P

∑
K=1

[
nK − nK

]2 , (4)

where nK is the crowd size (i.e., average number of drones) that uses the strategy ranked K in terms
of performance (i.e., points) while nK is the anticrowd size (i.e., average number of drones) that uses
the strategy ranked K = 2.2m + 1 − K (i.e., the anticorrelated strategy). Equation (4) for the total
system variance σ2 is simply the sum of the variances for each crowd–anticrowd pair. The detailed
explanation is as follows: irrespective of the history bit-string, the nK drones using strategy K are
doing the opposite of the nK drones using strategy K. This means that the effective group-size for

each crowd–anticrowd pair is ne f f
K = nK − nK . This in turn represents the net step-size d of the

crowd–anticrowd pair in a random-walk contribution to σ2. Therefore, the net contribution by this
crowd–anticrowd pair to σ2 is given by

[σ2]KK = 4pqd2 = 4.
1
2

.
1
2
[ne f f

K ]2 =
[
nK − nK

]2 , (5)

where p = q = 1/2 for a random walk. All the strong correlations have been removed and so the
separate crowd–anticrowd pairs execute random walks which are uncorrelated with respect to each
other. This means that the total σ2 is given by the sum of the crowd–anticrowd variances, as stated in
Equation (4). It is easy to show [8,9] for m = 2 and s = 2 that the number of agents playing the K’th
ranked (i.e., K’th highest-scoring) strategy is given approximately by:

nK = N.

([
1− (K− 1)

2P

]2

−
[

1− K
2P

]2
)

=
(2m+2 − 2K + 1)

22(m+1)
N, (6)

while for nK:

nK =
(2m+2 − 2K + 1)

22(m+1)
N =

(2K− 1)
22(m+1)

N, (7)

assuming that strategies are scattered uniformly across the drone population (i.e., the drone
population is indeed heterogeneous). Hence,

σ2 =
P

∑
K=1

[
(2m+2 − 2K + 1)

22(m+1)
N − (2K− 1)

22(m+1)
N
]2

(8)

=
N2

22(2m+1)

P

∑
K=1

[2m+1 − 2K + 1]2

=
N2

3.2m (1− 2−2(m+1)),

and so we obtain the expression for the upper-bound curve shown in Figure 4 for s = 2 at small m:

σupperbound =
N√

3.2m/2
(1− 2−2(m+1))

1
2 . (9)
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In the case that the disorder in the initial strategy assignments to drones is not uniform, it can be
shown [8,9] that the result differs simply by a factor of

√
2:

σlowerbound =
N√

3.2(m+1)/2
(1− 2−2(m+1))

1
2 . (10)

We have attached the subscripts ’upper bound’ and ’lower bound’ since they consider the impact
of two limits of the drone population’s heterogeneity on the fluctuations in D[t] and hence the value
of σ.

Figure 4 shows these closed-form results, and others from References [8,9], for σ which measures
the system fluctuations due to crowding and hence congestion, as a function of drone memory size
m. For each m, the spread in numerical values from individual simulation runs is also shown.
The analytic expressions indeed capture the essential physics (i.e., the strong correlations) driving
the fluctuations in the N-drone system.

We can now use these results to calculate the minimal value of m for s = 2 and any N,
above which these system fluctuations are smaller than those obtained in a system of N independent
drones, and hence the regime in which coordination emerges from the system despite the system
design being entirely competitive. Specifically, for N independent drones whose actions are
uncorrelated, we can calculate σ from the known variance of random walks, and it is given by

√
N.

This better-than-random coordinated regime for a collection of N drones that compete to be in a
minority space, and receive only global information about the past, is given by m > mcrit where
mcrit satisfies √

N√
3.2(mcrit+1)/2

(1− 2−2(mcrit+1))
1
2 = 1 . (11)

This uses the lower-bound estimate for σ. The upper-bound estimate of mcrit is obtained
from the corresponding expression with an extra factor of

√
2 as discussed above. These results

are summarized in Figure 5. The close agreement between the average of the numerical values
(red diamonds) and the curves obtained from our closed-form formulae, show that our theoretical
analysis is indeed accurate.

5. Conclusions

We have shown that a simple management system built around inter-drone competition, as
opposed to cooperation, can reduce the fluctuations that underlie crowding in systems of multiple
drones operating simultaneously in the same space, while also keeping the on-board processing
requirements minimal. We have provided closed-form formulae that describe the on-board
processing required to obtain this coordination regime as a function of the number of drones that
are airborne. In addition to populations of drones (Scenario 1 in Figure 1), the same results can
be applied directly to the problem of a single drone (Scenario 2 in Figure 1) in which each agent
is an on-board sensor/actuator that is competing with the others to draw power from the limited
central battery, or to provide a communication message in moments where there is no congestion.
As such, these measures can reduce the fluctuations in energy use in a single drone and congestion in
communication channels.

Moreover, these results are applicable for a system in which the resources and programs in each
drone (i.e., each agent) do not have to be adjusted to account for the total number of drones in the
population (i.e., s and m are independent of N). This is in stark contrast to schemes which depend
on two-way interactions with other members for coordination, and hence will scale up in required
resources by N2. Future work will consider particular sets of designs and operating characteristics
for real-world implementations.

We also note that it is of course very difficult to model accurately the flight of even a single
drone. There are complicated effects such as interactions with the fluid through which the drone is
passing, including wind gusts which themselves are hard to predict yet correlated in time in complex
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ways, as well as interactions between the blades and motors and general nonlinearities. However,
as with road traffic, one need not understand fully a single car in order to start modeling traffic
behavior as a collective property. Indeed, one could rightly argue that no amount of understanding
of the dynamics of an individual car will ever explain the occurrence of a particular traffic jam
due to congestion. In this sense, our modeling moves beyond focusing on specific details and
optimizations for particular drone designs, and instead aims to provide a more generic yet arguably
deeper understanding of the important collective properties of such systems.

We have not specifically calculated the probability of collision. This is because this probability
would depend on many different variables, most of which do not fit into the scope of our paper.
However, the key ingredient we have shown is that using our proposal will effectively reduce the
crowding of drones when compared to a random approach and the collision probability will definitely
increase with increased crowding. This crowding effect is quantified analytically and numerically by
the system’s fluctuation. We have shown explicitly that our approach yields system fluctuations that
are smaller than that for a random approach, and without implementing cooperative drone-to-drone
communication, which can be costly.

Other limitations of the scheme that we explore in this paper include the need for global
monitoring, which assumes the existence of a non-cooperative or cooperative central surveillance
system. It could also arise in practical, time-evolving scenarios that the success of previous strategies
could become small for future decisions. We also acknowledge that the proposed scheme is
a departure from the conventional scope of present and future traffic management concepts.
In particular, we believe that the most likely application of our control approach is probably in
swarming scenarios, more than in the UTM (Unmanned Aerial System Traffic Management) context.
Even in such a futuristic perspective, applicability of this proposed architecture to traffic management
scenarios requires further studies.

An immediate concern for our study is that it appears highly non-trivial to integrate it into
existing aviation practices. Currently proposed UTM frameworks are similar to ADS-B in their
design; however, this needn’t be the case if the present approach can be proven to be safe in practice.
There is a benefit to having a low bandwidth version of UTM for interaction between swarms. This is
analogous to manned military aircraft that fly in formation, where one pilot will communicate directly
to Air Traffic Control whilst all pilots will also directly communicate with one another as necessary
to maintain safety. We believe that our proposed approach serves this second function within drone
swarms, but it may be less likely that this will be via a dedicated system. If future drones will be
required to comply with UTM, our proposed approach will need to be designed to fit in with this,
rather than simply replace it. Fortunately, since UTM is still very much a work in progress, it is
legitimate to propose UTM as a communications infrastructure to support our approach.

Finally, we again stress that our approach aims for a transparent, generic and hence necessarily
oversimplified view of future drone system designs. However, by so doing, our analysis highlights
the highly non-trivial collective behavior that can emerge from the N-drone system, a behavior which
would otherwise be lost if all manufacturing details were included. Indeed, we do not know of
these results being reported before in the drone literature. We also stress that even when additional
details are added in, the principle and results that we present should still hold since the result
is robust and mathematically grounded. It is also scalable to any value of N, and so provides a
guiding principle irrespective of how many drones are being considered. As noted earlier, such large
swarms of very simplified drones are currently considered desirable for certain future operations
such as infrastructure testing in scenarios where robustness against the loss of a number of drones
is a primary requirement, and where each drone has minimal on-board processing requirements
(see Reference [15]). Our Scenarios address precisely this setting.
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