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Abstract: Multiplication by a constant is a common operation for many signal, image, and
video processing applications that are implemented in field-programmable gate arrays (FPGAs).
Constant-coefficient multipliers (KCMs) are often implemented in the logic fabric using lookup tables
(LUTs), reserving embedded hard multipliers for general-purpose multiplication. This paper describes
a two-operand addition circuit from previous work and shows how it can be used to generate and
add pre-computed partial products to implement KCMs. A novel method for pre-computing partial
products for KCMs with a negative constant is also presented. These KCMs are then extended to
have two to eight coefficients that may be selected by a control signal at runtime to implement
time-multiplexed multiple-constant multiplication. Synthesis results show that proposed pipelined
KCMs use 27.4% fewer LUTs on average and have a median LUT-delay product that is 12% lower than
comparable LogiCORE IP KCMs. Proposed pipelined KCMs with two to eight selectable coefficients
use 46% to 70% fewer LUTs than the best LogiCORE IP based alternative and most are faster than using
a LogiCORE IP multiplier with a coefficient lookup function. They also outperform the state-of-the-art
in the literature, using 22% to 57% fewer slices than the smallest pipelined adder graph (PAG) fusion
designs and operate 7% to 30% faster than the fastest PAG fusion designs for the same operand size and
number of selectable coefficients. For KCMs and KCMs with selectable coefficients of a given operand
size, the placement and routing of LUTs remains the same for all positive and negative constant values,
which is advantageous for runtime partial reconfiguration.

Keywords: field-programmable gate array (FPGA); LUT-based multipliers; constant-coefficient multipliers;
multiple-constant multipliers; parallel multipliers; array multipliers; runtime partial reconfiguration

1. Introduction

Field-programmable gate arrays (FPGAs) are often used for computationally intensive
applications such as digital-signal processing (DSP), video and image processing, and artificial
neural network (ANN) based applications such as machine learning and artificial intelligence.
For these applications and others, multiplication is the dominant operation in terms of required
resources, delay and power consumption. In many cases, one of the operands is a constant and
the multiplier is called a constant-coefficient multiplier (KCM). Most contemporary FPGAs have
embedded hard multipliers distributed throughout the fabric due to the importance of multiplication.
Even so, soft KCMs based on lookup tables (LUTs) in the configurable logic fabric are often used for
high-performance designs for several reasons:

• Embedded multiplier operands are fixed in size and type, such as 25× 18 two’s complement,
while LUT-based KCM operands can be any size or type;

• The number and location of embedded multipliers are fixed, while LUT-based KCMs can be placed
anywhere and the number is limited only by the size of the reconfigurable fabric;
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• Embedded multipliers cannot be modified, while LUT-based KCMs can use techniques such as
merged arithmetic [1] and approximate arithmetic [2] to optimize the overall system.

One approach to designing a KCM is to build lookup tables of pre-computed partial products,
indexed by one or more bits of the variable operand, and sum them to produce the product.
Chapman’s KCM algorithm uses LUT-based lookup tables to generate radix-16 partial products,
specifically targeting Xilinx FPGAs with 4-input LUTs [3,4]. Wirthlin generalizes this approach and
presents a method to merge the lookup with addition logic that is also specific to Xilinx FPGAs with
4-input LUTs [5]. Hormigo et al. extend Wirthlin’s work to include runtime self-reconfiguration [6].
These approaches target FPGA implementations.

Another approach to designing a KCM is to sum shifted copies of the variable operand that
correspond to non-zero digits of the constant. Canonical signed digit (CSD) recoding gives a structure
that requires at most m/2 and on average m/3 add/subtract operations, where m is the number of
bits in the constant [7]. Sub-expressions can be shared to further reduce the number of add/subtract
operations [8,9]. Turner and Woods present a technique to design reduced coefficient multipliers
(RCMs) that operate on a limited set of coefficients [10], exploiting the observation that LUTs used
to implement add/subtract operations have unused inputs. This is also known as time-multiplexed
multiple-constant multiplication, where a variable input is multiplied by one of several constants
selected by a control input to produce a single output. Tummeltshammer et al. present an algorithm for
time-multiplexed multiple-constant multiplication, which is useful for finite-impulse response (FIR)
filters and other sum-of-product computations, which fuse directed acyclic graph (DAG) solutions
for multiplication by each constant into a time-multiplexed DAG [11]. Their work is optimized for
application-specific integrated circuit (ASIC) implementations. Kumm et al. present a heuristic they
call reduced pipelined adder graph (RPAG) that includes provisions for pipelining, which is especially
important for FPGA implementations [12]. Möller et al. extend the RPAG heuristic by applying the
fusion concept of Tummeltshammer et al. which they call pipelined adder graph (PAG) fusion [13].
PAG fusion is a heuristic that specifically targets FPGAs and is able to search for opportunities to
use three-input (ternary) adders, which are available on recent Xilinx and Altera FPGAs and use
roughly the same resources as two-input adders. The work of Möller et al. also incorporates low-level
optimizations using primitives for Xilinx FPGAs that use fewer resources than allowing the tools to
interpret hardware description language (HDL) models that do not specify primitives.

This paper describes an approach that uses a novel two-operand addition circuit [14–16] that
combines generation of a pre-computed partial product with addition of another value, similar to
Wirthlin’s work but optimized for Xilinx FPGAs with 6-input LUTs. A novel approach is used for the
case where the constant is negative. A design variation for KCMs with two, four or eight selectable
coefficients is also presented. The discussion and results focus on the Xilinx 7 Series FPGAs, but the
technique is applicable to the Spartan-6, Virtex-5, Virtex-6, UltraScale and newer Xilinx FPGAs that
use 6-input LUTs.

The paper is organized as follows. Section 2 discusses relevant FPGA architecture and the
two-operand adder used to make the proposed KCMs. Section 3 describes the proposed LUT-based
constant-coefficient multipliers. Section 4 extends proposed designs to handle two, four or eight
selectable coefficients. Synthesis results are discussed in Section 5 and conclusions are given in
Section 6.

2. Background

This section describes details of the Xilinx logic fabric and the proposed two-operand adder.

2.1. FPGA Logic Fabric

The main logic resource for implementing combinational and sequential circuits in a Xilinx
FPGA is the configurable logic block (CLB). Each CLB has two slices. Figure 1 is a partial diagram of
a 7 Series FPGA slice. Each slice has four 6-input lookup tables (LUT6s) designated A, B, C, and D.
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Each LUT6 is composed of two 5-input lookup tables (LUT5s) and a 2-to-1 multiplexer. The two
LUT5s are 32× 1 memories that share five inputs designated I5:I1. The memory values are designated
M[63:32] in one LUT5 and M[31:0] in the other LUT5. The output of the M[31:0] LUT5 is designated O5.
The sixth input, I6, is input to a multiplexer that selects one of the LUT5 outputs. The selected output
is designated O6. The LUT6 is normally configured as either two LUT5s with five shared inputs and
two outputs by connecting I6 to logic ‘1’, or as one LUT6 with six inputs and one output by connecting
the sixth input to I6 [17,18].

Figure 1. Partial diagram of a Xilinx 7 Series configurable logic block (CLB) slice.

A multiplexer (MUXCY) and an XOR gate (XORCY) are associated with each LUT6. Inputs to the
MUXCY associated with the A LUT6 are a select signal, propi, a first data input, geni, and a second
data input, ci. The output of the MUXCY, ci+1, is connected to the MUXCY associated with the B LUT6.
These connections continue through the C and D LUT6s to form a fast carry chain within the slice.
The ci+4 output of the slice, COUT, can be connected to the ci input of the next slice, CIN, to form
longer carry chains. The prop signal is driven by the O6 output of the corresponding LUT6. The gen
signal is selected by a configuration multiplexer and is either the O5 output of the corresponding LUT6
or the bypass input, which is designated AX, BX, CX, or DX.

Two flip-flops are associated with each LUT6. One flip-flop can be used to register O5 or the
bypass input. The other flip-flop can be used to register O5, O6, the bypass input, the MUXCY output,
or the XORCY output.

2.2. Proposed Two-Operand Adder

Suppose X and Y are to be added using the Xilinx fast carry logic. For the ith column of the adder,
xi and yi are the bits of X and Y, respectively, ci is the carry-in bit, ci+1 is the carry-out bit and si is
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the sum bit. The propi signal must be set to xi ⊕ y1 and the geni signal can be set to either xi or yi to
add xi and yi [14,16]. If xi and yi together are a function of five or fewer inputs, then the LUT6 can be
configured as two LUT5s, generating either xi or yi at O5 and routing it to geni, and generating xi ⊕ yi
at O6 to drive propi. If xi and yi together are a function of six inputs, then the LUT6 can be configured
to generate xi ⊕ yi at O6 to drive propi and xi or yi can be applied to the bypass input and configured
to drive the geni input. A disadvantage to this configuration is that the bypass flip-flop cannot be used.

Normally, a LUT6 can be used to either generate a function of six inputs at O6 or to generate two
functions of five inputs at O5 and O6 [17,18]. However, in some cases, one function of six variables
can be output at O6 and a separate function of five shared variables can be output at O5. Suppose
xi is a function of one variable connected to I6 and yi is a function of five variables connected to I5:I1.
The function yi is stored in M[31:0], so yi is output at O5. If xi is ‘0’, yi is also output at O6. If xi is ‘1’,
the function stored in M[63:32] is output at O6. If yi is stored in M[63:32] then xi ⊕ yi is generated at O6
and yi is generated at O5. This can be used to add xi and yi without using the bypass input when xi is
a function of one variable and yi is a function of up to five variables. Figure 2 shows the connections
for this configuration. This frees the bypass input to be connected to the bypass flip-flop to implement
additional registers. Input I6 has the shortest delay path and I1 has the longest [17], so this method
also allows faster inputs to be used. The carry into the proposed adder, c0, can be used to implement
subtraction or to add an extra bit to the least significant column.

Figure 2. Proposed two-operand adder, computes SUM = X + Y.

3. Proposed Constant-Coefficient Multipliers

This section describes how the proposed constant-coefficient multipliers (KCMs) are implemented
and pipelined.

3.1. Radix-2 Multiplication by a Constant

Suppose A is an m-bit constant, B is an n-bit variable and P = A · B is to be computed.
If A and B are unsigned integers, then



Electronics 2017, 6, 101 5 of 29

A =
m−1

∑
i=0

ai · 2i, (1)

B =
n−1

∑
j=0

bj · 2j, (2)

and the product is

P =
m−1

∑
i=0

n−1

∑
j=0

aibj · 2i+j. (3)

If A is positive and B is signed, then

A =
m−1

∑
i=0

ai · 2i, (4)

B = −bn−1 · 2n−1 +
n−2

∑
j=0

bj · 2j, (5)

and the product can be computed using Baugh and Wooley’s approach [19] as

P =
m−1

∑
i=0

n−2

∑
j=0

aibj · 2i+j +
m−1

∑
i=0

aibn−1 · 2i+n−1

+ 2m+n−1 + 2n−1. (6)

Figure 3 shows a (6× 6)-bit KCM, where A is a positive constant and B is a two’s-complement
variable as described by Equation (6). The least-significant column has a weight of 20 to simplify
equations and column references, but the results in this work are applicable to fixed-point multipliers
by applying appropriate shifts and placement of the binary point.

211 210 29 28 27 26 25 24 23 22 21 20

A a5 a4 a3 a2 a1 a0
×B b5 b4 b3 b2 b1 b0

1
a5b0 a4b0 a3b0 a2b0 a1b0 a0b0

a5b1 a4b1 a3b1 a2b1 a1b1 a0b1
a5b2 a4b2 a3b2 a2b2 a1b2 a0b2

a5b3 a4b3 a3b3 a2b3 a1b3 a0b3
a5b4 a4b4 a3b4 a2b4 a1b4 a0b4

1 a5b5 a4b5 a3b5 a2b5 a1b5 a0b5

p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

Figure 3. Proposed (m× n)-bit constant-coefficient multiplier (KCM), where m = n = 6, A is a positive
constant and B is a signed variable.

If A is negative, it could be coded in two’s complement form and Baugh and Wooley’s approach
could be used to develop an equation for the product. A would have m− 1 bits of useful precision
instead of m bits because the most-significant bit (MSB) would always be ‘1’. In the proposed designs,
the magnitude of A is used with an implicit negative sign bit and Equation (3) is used if B is unsigned or
Equation (6) is used if B is signed. The product is then negated by negating each row of partial products.
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Each bit, including implicit leading ‘0’s, is complemented and ‘1’ is added to the least-significant bit
(LSB) in each row. The constants are then pre-added to simplify the matrix. If A is negative and B is
unsigned, then

P =
m−1

∑
i=0

n−1

∑
j=0

aibj · 2i+j + 2m + 2n − 1. (7)

The product is m + n + 1 bits to accommodate the sign bit. The product is always negative so the
MSB is always ‘1’ and does not require any logic. If A is negative and B is signed, then

P =
m−1

∑
i=0

n−2

∑
j=0

aibj · 2i+j +
m−1

∑
i=0

aibn−1 · 2i+n−1

+ 2m+n−1 + 2m + 2n−1 − 1. (8)

The product is m + n bits assuming |A| ≤ 2m − 1. If |A| = 2m, a hard-wired shift and negation of
the product would be used instead of a KCM.

Figure 4 shows a (6× 6)-bit KCM, where A is the magnitude of a negative constant and B is
a two’s-complement variable as described by Equation (8).

211 210 29 28 27 26 25 24 23 22 21 20

|A| a5 a4 a3 a2 a1 a0
×B b5 b4 b3 b2 b1 b0

1 a5b0 a4b0 a3b0 a2b0 a1b0 a0b0
a5b1 a4b1 a3b1 a2b1 a1b1 a0b1 1

a5b2 a4b2 a3b2 a2b2 a1b2 a0b2 1
a5b3 a4b3 a3b3 a2b3 a1b3 a0b3 1

a5b4 a4b4 a3b4 a2b4 a1b4 a0b4 1
1 a5b5 a4b5 a3b5 a2b5 a1b5 a0b5 1

p11 p10 p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

Figure 4. Proposed (m× n)-bit KCM, where m = n = 6, A is a negative constant and B is a signed
variable. This method allows a KCM with a negative constant to be implemented using the same
resources as a KCM with a positive constant at the same precision.

3.2. Design of Proposed Constant-Coefficient Multiplier

Figure 5 shows a dot diagram of a proposed (12× 12)-bit KCM, where A is a negative constant
and B is a two’s complement variable. Each dot is a partial-product bit that corresponds to a bit in
Equation (8). Each row j of partial-product bits is a function of only one variable bit, bj. The rows of
partial-product bits are divided into groups, each of which are summed to produce a partial product,
Pρ. Each partial product Pρ is the sum of jρ rows of partial-product bits.
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Figure 5. Proposed (m× n)-bit KCM, where m = n = 12, A is a negative constant and B is a signed
variable. When A is positive, the pre-computed values are different but the grouping of partial products
and required resources are the same.

In the example of Figure 5, the first five rows of partial-product bits are grouped and their sum is
P0. P0 is a function of the constant A, the constant 212 + 25 − 20 and a 5-bit sub-vector of the variable
B, B[4:0]. The 25 possible values of P0 are pre-computed and generated using LUT6s. Each LUT6
generates two bits of P0, p0,i+1 and p0,i. The next five rows of partial-product bits are grouped and their
sum is P1, which is a function of A, 210 − 25 and B[9:5]. The 25 possible values of P1 are pre-computed
and generated by a proposed two-operand adder, which adds the generated value to P0 and produces
an accumulated sum, X1. The final two rows of partial-product bits are grouped and their sum is
P2, which is a function of A, 223 + 210 and B[11:10]. The 22 possible values of P2 are pre-computed,
generated by another proposed two-operand adder, and added to X1 to produce an accumulated sum
X2. The five least-significant bits of the final product, P[4:0], are the five LSBs of P0. The next five LSBs
of the product, P[9:5], are the five LSBs of the accumulated sum X1. The remaining bits of the product,
P[23:10], are the accumulated sum, X2.

In a proposed (m× n)-bit KCM, all of the partial-product bits are grouped into d(n− 1)/5e partial
products. Each partial product, Pρ, is the sum of jρ rows of partial-product bits. When n− 1 is an exact
multiple of five, such as when n = 16, P0 is the sum of six rows and each of the other partial products
are the sum of five rows. When n− 1 is not an exact multiple of five, each partial product is the sum of
five rows except possibly the last, which is the sum of the remaining rows.

P0 is the sum of the first j0 rows of partial-product bits and is generated using LUT6s. When P0 is
the sum of six rows, each bit p0,i is a function of six variables, B[5:0], so each LUT6 generates one
output bit. When P0 is the sum of five rows, each pair of bits p0,i+1 and p0,i are functions of the same
five variables, B[4:0], so each LUT6 generates two output bits. P0 is m + j0 bits long, so m + j0 LUT6s
are required if j0 = 6 and d(m + j0)/2e LUT6s are required if j0 ≤ 5.

The remaining partial products, Pρ where ρ ≥ 1, are each generated using a proposed two-operand
adder. The proposed two-operand adder generates a function of up to five variables, so it is most
efficient when Pρ is the sum of five rows of partial-product bits. Pρ is m + jρ bits long, so m + jρ LUT6s
are required for each two-operand adder.

Constant ‘1’s can be grouped with any partial product and are simply included in each
pre-computed value. In practice, groups are selected so that constant ‘1’s do not increase the length of
the partial product.
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When n− 1 is an exact multiple of five, each partial product requires m + jρ LUT6s. There are

d(n− 1)/5e partial products, and ∑
d(n−1)/5e−1
ρ=0 jρ = n, so the maximum number of required LUT6s is

#LUT6s ≤ m
(⌈

(n− 1)/5
⌉)

+ n. (9)

When n− 1 is not an exact multiple of five, there are d(m + j0)/2e LUT6s instead of m + j0 LUT6s
in the first row, so the maximum number of required LUT6s is

#LUT6s ≤ m
(⌈

(n− 1)/5
⌉)

+ n−
⌊
(m + 5)/2

⌋
. (10)

Some LUTs may be optimized away during synthesis, so these equations give the maximum
number of required LUT6s.

3.3. Array Structure and Pipelining

Figure 6 shows the structure of the proposed (12× 12)-bit KCM from the example of Figure 5.
The top row of LUT6s generates the first five rows of partial-product bits and outputs the sum, P0.
The second row of LUT6s implements a proposed two-operand adder that generates the sum of
the next five rows of partial-product bits, P1, and adds it to P0 to produce an accumulated sum, X1.
The third row of LUT6s implements another two-operand adder that generates the sum of the last
two rows of partial-product bits, P2, and adds it to X1 to produce an accumulated sum, X2. The KCM
output, P, is composed of the five LSBs of P0, the five LSBs of X1 and X2.

Figure 6. Structure of proposed (m× n)-bit KCM, where m = n = 12, A is a negative constant and B is a signed
variable. The structure is easy to place in the logic fabric and facilitates short routing connections.

The proposed KCM can be pipelined by placing registers after each row of LUT6s. The first stage
registers m + j0 bits of the final product P and n − j0 bits of B, which requires m + n flip-flops.
Subsequent stages register m + jρ + 1 bits of Xρ, jρ additional bits of P and jρ fewer bits of B,
which requires m + n + 1 flip-flops. The last stage registers the output P, which requires m + n
flip-flops. There are d(n− 1)/5e stages, and each stage registers m + n + 1 bits except the first and last
stages, which register m + n bits each, so the maximum number of flip-flops required is

#FFs ≤
(⌈

(n− 1)/5
⌉)

(m + n + 1)− 2. (11)

Each LUT6 used in the KCM has two available flip-flops so there are more than enough flip-flops
available within the footprint of the multiplier to implement pipeline registers. The structure is very
regular and easy to place in the logic fabric so that routing paths are short and fast.
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3.4. Discussion

When n = 10, the first row of the KCM computes the sum of five partial products using LUT6s.
Each LUT6 computes two bits of the sum, except for one LUT6 that computes only one bit if m is even.
The second row of the KCM also computes the sum of five partial products and adds them to the sum
from the first row. This is very efficient because both rows are computing the maximum number of
partial-product bits per LUT6. When n is increased to n = 11, the second row still computes the sum
of five partial products, but the first row now computes the sum of six partial products, so each LUT6
only computes one bit of the sum. This causes a jump in the number of LUTs required to implement
the KCM. When n is increased to n = 12, the first row computes the sum of five partial products,
which reduces the number of LUT6s in that row compared to n = 11. The second row still computes
the sum of five partial products. However, a third row is now required, which causes another jump
in the number of LUTs required to implement the KCM. When n is increased to n = 13, the first
and second rows still compute the sum of five partial products each. The third row computes the
sum of three partial products, compared to two for n = 12, which only requires one additional LUT6
plus an additional LUT6 per bit that m increases, so the increase in the number of LUTs required to
implement the KCM is not as large as the increase from n = 10 to n = 11 or from n = 11 to n = 12.
The situation is similar when n is increased to n = 14 and again when n is increased to n = 15.
When n is increased to n = 16, the first row computes the sum of six partial products, which causes
a jump in the number of required LUTs as it does when n increases from n = 10 to n = 11. This cycle
repeats itself as n is increased. The significance of this is that for a given value of m, KCMs with
n ∈ {10, 15, 20, 25, . . .} are generally the most efficient in terms of required LUTs, while KCMs with
n ∈ {12, 17, 22, 27, . . .} are generally the least efficient.

The value of m does not affect the number of rows in the KCM, so there are no jumps in the
required number of LUTs as m is increased. If n− 1 is an exact multiple of five, there are (n− 1)/5
rows in the KCM and the first row requires one LUT6 per bit of the sum. As m is increased, each row of
the KCM requires one additional LUT6 per bit that m increases, so a total of ∆m((n− 1)/5) additional
LUT6s are required. If n− 1 is not an exact multiple of five, there are d(n− 1)/5e rows in the KCM
and the first row requires approximately one half of an LUT6 per bit of the sum. As m is increased,
the KCM requires approximately one half of an additional LUT6 for the first row and one additional
LUT6 for each of the other rows per bit that m increases, so a total of d(n − 1)/5e − 1

2 additional
LUT6s are required per bit that m increases. The significance of this is that, for a given value of n, the
increase in the number of LUTs required to implement the KCM as m increases is approximately linear,
and the value of m has a much lower impact than n on the efficiency of the implementation in terms of
required LUTs.

Figure 7 shows the number of LUT6s required for KCMs as m and n are varied, based on
Equations (9) and (10). These functions are discrete and the points are connected by lines for readability
only, not to imply continuity. The middle set of points is the case where m = n. The total number
of LUTs required for the KCM increases as m = n increases, with jumps from n = 10 to n = 11,
from n = 11 to n = 12, etc., due to n increasing as discussed earlier. The other sets of points are
cases where m ∈ {1.5n, 1.25n, 0.75n, 0.5n}. This results in m having a fractional value for many points,
which is not possible. However, those fractional values are used to compute the points because the
intent of the graph is to show how the number of LUTs scales with m, not to show an exact number
of LUTs. The graph shows that for a given value of n, the change in the number or LUTs required is
roughly proportianal to ∆m.
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Figure 7. Number of 6-input lookup tables (LUT6s) required for KCMs as m and n are varied. For
a given value of n, the change in the number or LUTs is roughly proportianal to ∆m.

Figure 8 shows the number of partial product bits that are computed and summed, m · n, per
LUT6 required for implementation as m and n are varied. This provides a measure of efficiency of
the implementation in terms of LUTs required. The middle set of points is the case where m = n.
The graph shows that KCMs with n ∈ {10, 15, 20, 25, . . .} generally have a local maximum value and
are the most efficient, while KCMs with n ∈ {12, 17, 22, 27, . . .} generally have a local minimum value
and are the least efficient. For a given value of n, efficiency increases somewhat as m increases and
decreases as m is decreased.

Figure 8. Number of partial product bits computed and summed per LUT6 as m and n are varied.
KCMs with n ∈ {10, 15, 20, 25, . . .} are generally the most efficient, KCMs with n ∈ {12, 17, 22, 27, . . .}
generally are the least efficient. For a given value of n, efficiency increases as m increases and decreases
as m decreases.

4. Proposed KCMs with Selectable Coefficients

Turner and Woods present a reduced-coefficient multiplier (RCM) that can operate on a limited set
of coefficients, selectable at run-time [10]. Their multipliers use canonical signed digit (CSD) recoding
and sub-expression elimination to reduce the number of add/subtract operations. This section
discusses how the proposed KCMs can be modified to incorporate the idea to operate on a set of two,
four or eight coefficients, selectable at run-time.

In the following sections, the selectable coefficients are designated A[k] and the resulting products
are designated P[k]. The coefficients for a KCM with selectable coefficients do not need to have the
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same sign. The variable is designated B[k] because it can be treated as signed for one coefficient and
unsigned for another. For example, a KCM with two selectable coefficients could treat A[0] as negative
and B[0] as unsigned, and treat A[1] as positive and B[1] as signed without any special considerations.

4.1. Proposed KCMs with Two Selectable Coefficients

A KCM with two selectable coefficients requires one input to select the coefficient. Partial products
for both coefficients are pre-computed and generated using LUT6s for each P[k]0, and generated using
proposed two-operand adders for the rest of the partial products, P[k]i.

One input to each LUT6 used to generate P[k]0 is needed to select the coefficient, so only five
inputs are left to select the pre-computed value of P[k]0 if each LUT6 generates one bit, p[k]0,i, and only
four inputs are left if each LUT6 generates two bits, p[k]0,i+1 and p[k]0,i. One of the yi inputs to each
LUT6 in each of the adders are needed to select the coefficient, so only four inputs are left to select the
pre-computed value of P[k]i. Therefore, all of the partial-product bits in a KCM with two selectable
coefficients are grouped into d(n− 1)/4e partial products.

When n− 1 is an exact multiple of four, each partial product requires m + j[k]ρ LUT6s. There are

d(n− 1)/4e partial products, and ∑
d(n−1)/4e−1
ρ=0 j[k]ρ = n, so the maximum number of required LUT6s is

#LUT6s ≤ m
(⌈

(n− 1)/4
⌉)

+ n. (12)

When n− 1 is not an exact multiple of four, there are d(m + j[k]0)/2e LUT6s instead of m + j[k]0
LUT6s in the first row, so the maximum number of required LUT6s is

#LUT6s ≤ m
(⌈

(n− 1)/4
⌉)

+ n−
⌊
(m + 4)/2

⌋
. (13)

Some LUTs may be optimized away during synthesis, so these equations give the maximum
number of required LUT6s.

Figure 9 shows a dot diagram of a proposed (12× 12)-bit KCM with two selectable coefficients,
where A[k] is a negative constant and B[k] is a two’s complement variable (cf. Figure 5). In this example,
no additional adders are needed and the unit has a very similar footprint to the single-coefficient KCM.
Other size operands usually require one or more additional adders.

Figure 9. Proposed (m × n)-bit KCM with two selectable coefficients, where m = n = 12, A[k] is
a negative constant and B[k] is a signed variable. This example does not require any additional
resources compared to a (12× 12)-bit KCM with a single coefficient.
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4.2. Proposed KCMs with Four Selectable Coefficients

A KCM with four selectable coefficients requires two inputs to select the coefficient.
Partial products for each coefficient are pre-computed and generated using LUT6s for each P[k]0 and
the proposed two-operand adders generate and add the rest of the partial products.

Two inputs to each LUT6 used to generate P[k]0 are needed to select the coefficient, so only four
inputs are left to select the pre-computed value of P[k]0 if each LUT6 generates one bit and only three
inputs are left if each LUT6 generates two bits. Two of the yi inputs to each LUT6 in each of the adders
are needed to select the coefficient, so only three inputs are left to select the pre-computed value of
P[k]i. Therefore, all of the partial-product bits in a KCM with four selectable coefficients are grouped
into d(n− 1)/3e partial products.

When n− 1 is an exact multiple of three, the maximum number of required LUT6s is

#LUT6s ≤ m
(⌈

(n− 1)/3
⌉)

+ n. (14)

When n− 1 is not an exact multiple of three, the maximum number of required LUT6s is

#LUT6s ≤ m
(⌈

(n− 1)/3
⌉)

+ n−
⌊
(m + 3)/2

⌋
. (15)

Figure 10 shows a dot diagram of a proposed (12× 12)-bit KCM with four selectable coefficients,
where A[k] is a negative constant and B[k] is a two’s complement variable (cf. Figure 5). In this example,
one additional adder is needed compared to the single-coefficient KCM.

Figure 10. Proposed (m× n)-bit KCM with four selectable coefficients, where m = n = 12, A[k] is
a negative constant and B[k] is a signed variable). This example requires approximately 33% more
LUTs and one extra stage if pipelined compared to a (12× 12)-bit KCM with a single coefficient.

4.3. Proposed KCMs with Eight Selectable Coefficients

A KCM with eight selectable coefficients requires three inputs to select the coefficient.
Partial products for each coefficient are pre-computed and generated using LUT6s for each P[k]0 and
the proposed two-operand adders generate and add the rest of the partial products.

Three inputs to each LUT6 used to generate P[k]0 are needed to select the coefficient, so only
three inputs are left to select the pre-computed value of P[k]0 if each LUT6 generates one bit and only
two inputs are left if each LUT6 generates two bits. Three of the yi inputs to each LUT6 in each of
the adders are needed to select the coefficient, so only two inputs are left to select the pre-computed
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value of P[k]i. Therefore, all of the partial-product bits in a KCM with eight selectable coefficients are
grouped into d(n− 1)/2e partial products.

When n− 1 is an exact multiple of two, the maximum number of required LUT6s is

#LUT6s ≤ m
(⌈

(n− 1)/2
⌉)

+ n. (16)

When n− 1 is not an exact multiple of two, the maximum number of required LUT6s is

#LUT6s ≤ m
(⌈

(n− 1)/2
⌉)

+ n−
⌊
(m + 2)/2

⌋
. (17)

Figure 11 shows a dot diagram of a proposed (12× 12)-bit KCM with eight selectable coefficients,
where A[k] is a negative constant and B[k] is a two’s complement variable (cf. Figure 5). In this example,
three additional adders are needed compared to the single-coefficient KCM.

Figure 11. Proposed (m× n)-bit KCM with eight selectable coefficients, where m = n = 12, A[k] is
a negative constant and B[k] is a signed variable). This example requires approximately 93% more
LUTs and three extra stages if pipelined compared to a (12× 12)-bit KCM with a single coefficient.

4.4. Discussion

Table 1 compares proposed KCMs that have a single coefficient to the proposed KCMs with
two, four and eight selectable coefficients. The number of partial products and the number of LUTs
used by each version are given, based on Equations (12) through (17). The percentage increase in
the number of LUTs for two, four and eight-coefficient versions versus single-coefficient versions is
also given. One or more of the LUTs used to generate the least-significant bits in the first row can
often be optimized away so the number of LUTs in an actual implementation may be a little lower.
For the operand sizes in the table, KCMs with two selectable coefficients use an average of 19% more
LUTs, KCMs with four selectable coefficients use an average of 55% more LUTs and KCMs with eight
selectable coefficients use an average of 117% more LUTs than single-coefficient KCMs. In designs
where a KCM with selectable coefficients can replace two or more single-coefficient KCMs, the increase
is more than offset by the reduced number of KCMs required.
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Table 1. Comparison of one, two, four and eight-coefficient (m× n)-bit constant-coefficient multipliers
(KCMs), where m = n. The increase in LUTs for multiple-coefficient KCMs is less than using separate
KCMs with a multiplexer or a general-purpose multiplier with multiplexed constants.

One Coefficient Two Coefficient Four Coefficient Eight Coefficient
n PPs LUTs PPs LUTs Increase PPs LUTs Increase PPs LUTs Increase

8 2 18 2 18 0% 3 27 50% 4 35 94%
10 2 23 3 33 43% 3 40 74% 5 54 135%
12 3 40 3 40 0% 4 53 33% 6 77 93%
14 3 47 4 61 30% 5 76 62% 7 104 121%
16 3 64 4 70 9% 5 96 50% 8 135 111%
18 4 79 5 97 23% 6 116 47% 9 170 115%
20 4 88 5 108 23% 7 149 69% 10 209 138%
22 5 119 6 141 18% 7 176 48% 11 252 112%
24 5 130 6 154 18% 8 203 56% 12 299 130%

Acronyms: partial products (PPs), lookup tables (LUTs).

KCMs with selectable coefficients usually have more partial products than single-coefficient KCMs.
This means more adder stages are required, which translates into additional delay in single-cycle units.
In pipelined versions, this results in longer latencies. However, cycle times are comparable because the
adders are the same width or a little shorter.

Figure 12 shows the number of LUT6s required for KCMs with one, two, four and eight selectable
coefficients. These functions are discrete and the points are connected by lines for readability only,
not to imply continuity. The lower set of points is for single-coefficient KCMs and is the same as the
middle set of points in Figure 7. As discussed in Section 3.4, there are jumps at every fifth value of n,
starting with n = 11, because the first row requires twice as many LUT6s every fifth value of n starting
at n = 11 and the number of rows increases every fifth value of n starting at n = 12. KCMs with
two selectable coefficients have jumps for the same reasons, except they occur every fourth value of
n, KCMs with four selectable coefficients have jumps every third value of n and KCMs with eight
selectable coefficients have jumps every second value of n.

Figure 12. LUT6s required for KCMs with one, two, four and eight coefficients, m = n.

Figure 13 shows the number of partial product bits that are computed and summed for a single
output per LUT6 for KCMs with one, two, four and eight selectable coefficients. The upper set of points
is for single-coefficient KCMs and is the same as the middle set of points in Figure 8. As discussed in
Section 3.4, there are local maximums every fifth value of n starting at n = 10 and local minimums
every fifth value of n starting at n = 12, indicating most efficient and least efficient units, respectively.
KCMs with two selectable coefficients have a similar cycle every fourth value of n. They can be
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implemented using the same number of LUTs as single-coefficient KCMs for n = 8 and n = 12 because
of the different period of each cycle. The cycle for KCMs with four selectable coefficients is every
third value of n and the cycle for KCMs with eight selectable coefficients is every second value of
n. KCMs with selectable coefficients are less efficient than single-coefficient KCMs by this measure
because they require more LUTs to produce a single product in a clock cycle. However, they are more
efficient in a design that performs time-multiplexed multiplication because additional single-coefficient
KCMs or a general-purpose multiplier would be required to provide the same functionality.

Figure 13. Number of partial product bits computed and summed per LUT6 for KCMs with one, two,
four and eight coefficients, m = n.

5. Results

The proposed KCMs are compared to Xilinx LogiCORE IP v12.0 (rev. 12) (Xilinx Inc., San Jose,
CA, USA) constant-coefficient multipliers [20] for (n× n)-bit units. Proposed KCMs with two, four
and eight selectable coefficients are compared to units composed of a LogiCORE IP general-purpose
multiplier and a lookup function to select the coefficient. Proposed KCMs with two and four selectable
coefficients are also compared to units composed of two or four LogiCORE IP KCMs and a multiplexer
to select the output. Results for 8, 10, 12, 14, 16, 20 and 24-bit operands are given for single-cycle and
pipelined units. KCMs are synthesized with a positive constant and again with a negative constant.
KCMs with selectable coefficients are synthesized with half of the constants being positive and the
other half negative.

Arbitrary values ±π/4, ±3π/4, ±5π/4 and ±7π/4 are used for constants. This paper presents
operands as integers, so π/4 is multiplied by 2n, 3π/4 and 5π/4 are multiplied by 2n−2, and 7π/4 is
multiplied by 2n−3. They are rounded to the nearest odd to ensure that the least-significant bit (LSB) is
‘1’ to avoid obvious optimizations. Table 2 gives the magnitudes of the constants used in synthesized
units. Examination of the bit patterns show that they are typical of many constants, with some runs of
‘1’s and ‘0’s and some isolated ‘1’s and ‘0’s.
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Table 2. Values of |A| used for synthesis, π/4 · 2n, 3π/4 · 2n−2, 5π/4 · 2n−2 and 7π/4 · 2n−3 rounded
to nearest odd.

Magnitude of A, π/4·2n Magnitude of A, 3π/4 · 2n−2

n Integer Binary Integer Binary

8 201 11001001 151 10010111
10 805 1100100101 603 1001011011
12 3,217 110010010001 2,413 100101101101
14 12,867 11001001000011 9,651 10010110110011
16 51,471 1100100100001111 38,603 1001011011001011
20 823,549 11001001000011111101 617,663 10010110110010111111
24 13,176,795 110010010000111111011011 9,882,595 100101101100101111100011

Magnitude of A, 5π/4 · 2n−2 Magnitude of A, 7π/4 · 2n−3

n Integer Binary Integer Binary

8 251 11111011 175 10101111
10 1,005 1111101101 703 1010111111
12 4,021 111110110101 2,815 101011111111
14 16,085 11111011010101 11,259 10101111111011
16 64,339 1111111101111011 45,037 1010111111101101
20 1,029,437 11111011010100111101 720,605 10101111111011011101
24 16,470,993 111110110101001111010001 11,529,695 101011111110110111011111

5.1. Methodology

Version 2016.3 of the Xilinx Vivado Design Suite (Vivado) was used. Designs were synthesized
with the strategy set to ‘Flow_PerfOptimized_high’ and implemented with the strategy set to
‘Performance_Retiming’. Designs were synthesized for the Xilinx Virtex-7 XC7VX330T-FFG1157
(-3 speed grade) device with a timing constraint of 1 ns on the inner clock. All results are post
place-and-route.

LogiCORE IP constant-coefficient multipliers and general-purpose multipliers were created
using the IP Catalog in Vivado. Structural models of the proposed multipliers were implemented in
Verilog-2001 (IEEE Standard 1364-2001, IEEE, Piscataway, NJ, USA). Pipelined versions were created for
LogiCORE IP multipliers using the optimal number of stages specified in the IP customization dialog.
Input and output (I/O) ports were double registered to reduce dependence on I/O placement [21].
A separate clock on the inner level was used to measure the delay through each multiplier.

5.2. SynthesisResults

Synthesis results for proposed KCMs are given Section 5.2.1. Synthesis results for proposed KCMs
with two, four and eight selectable coefficients are given in Sections 5.2.2–5.2.4, respectively.

5.2.1. Proposed Constant-Coefficient Multipliers

Synthesis results for single-cycle constant-coefficient multipliers are given in Tables 3 and 4.
The total number of LUTs used and the delay are given. The LUT-delay product (LDP), computed by
multiplying the number of LUTs by the delay, is also given. LDP is analogous to the area-delay product
of a very-large-scale integration (VLSI) design. The reciprocal of LDP gives a metric to compare
maximum throughput. The total number of LUTs, delay and LDP are normalized to LogiCORE
IP KCMs.

Table 3 gives results for single-cycle KCMs, where the constant A is positive and the variable
B is signed. For these units, proposed designs are 10% to 31% smaller than comparable LogiCORE IP
KCMs, except for 12-bit units which are 14% larger. This anomaly occurs because proposed KCMs are
less efficient for n = 12 as discussed in Section 3.4 and LogiCORE IP KCMs with positive coefficients
are more efficient for n = 12 as shown in Figure 15. Proposed designs have a 23% to 108% increase in
delay, so there is a trade-off of fewer LUTs for increased cycle time. Table 4 gives results for single-cycle
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KCMs where the constant A is negative and the variable B is signed. For these KCMs, LogiCORE IP
units increase in size while proposed units remain roughly the same. This reduces the relative size, so
proposed designs with a negative constant are 17% to 35% smaller than LogiCORE IP units. Normalized
delay is similar to proposed KCMs with a positive constant.

For most proposed single-cycle units, the normalized LDP is greater than 1.0. This suggests that
single-cycle LogiCORE IP units usually offer higher throughput in designs where the KCMs are on the
critical path and determine the clock period. However, when the KCMs are not on the critical path and
proposed designs meet timing requirements, proposed designs for most operand sizes will improve
the system by reducing the number of LUTs required.

Table 3. Synthesis results for single-cycle (m× n)-bit KCMs, where m = n, A = π/4 · 2n and B is
a signed variable. Proposed KCMs use 15% fewer LUTs on average compared to LogiCORE IP KCMs
at the expense of increased delay.

Type Total Delay Normalized
n LUTs (ns) LDP LUTs Delay LDP

8 19 0.972 18.5 1.000 1.000 1.000
10 26 1.083 28.2 1.000 1.000 1.000

LogiCORE IP 12 35 1.112 38.9 1.000 1.000 1.000
A = π/4 · 2n 14 61 1.786 108.9 1.000 1.000 1.000
B is signed 16 71 1.869 132.7 1.000 1.000 1.000

20 127 2.033 258.2 1.000 1.000 1.000
24 171 2.044 349.5 1.000 1.000 1.000

8 17 1.463 24.9 0.895 1.505 1.347
10 22 1.475 32.5 0.846 1.362 1.152

Proposed KCM 12 40 2.308 92.3 1.143 2.076 2.372
A = π/4 · 2n 14 47 2.454 115.3 0.770 1.374 1.059
B is signed 16 63 2.306 145.3 0.887 1.234 1.095

20 87 3.149 274.0 0.685 1.549 1.061
24 129 4.025 519.2 0.754 1.969 1.486

Acronyms: lookup tables (LUTs), LUT-delay product (LDP).

Table 4. Synthesis results for single-cycle (m× n)-bit KCMs, where m = n, A = −π/4 · 2n and B is
a signed variable. Proposed KCMs use 26% fewer LUTs on average compared to LogiCORE IP KCMs,
a significant improvement compared to KCMs with a positive constant.

Type Total Delay Normalized
n LUTs (ns) LDP LUTs Delay LDP

8 22 0.958 21.1 1.000 1.000 1.000
10 28 1.117 31.3 1.000 1.000 1.000

LogiCORE IP 12 47 1.115 52.4 1.000 1.000 1.000
A = −π/4 · 2n 14 71 1.821 129.3 1.000 1.000 1.000
B is signed 16 77 1.860 143.2 1.000 1.000 1.000

20 134 1.980 265.3 1.000 1.000 1.000
24 183 2.092 382.8 1.000 1.000 1.000

8 17 1.500 25.5 0.773 1.566 1.210
10 22 1.595 35.1 0.786 1.428 1.122

Proposed KCM 12 39 2.366 92.3 0.830 2.122 1.761
A = −π/4 · 2n 14 46 2.405 110.6 0.648 1.321 0.856
B is signed 16 60 2.272 136.3 0.779 1.222 0.952

20 87 3.190 277.5 0.649 1.611 1.046
24 129 3.969 512.0 0.705 1.897 1.337

Acronyms: lookup tables (LUTs), LUT-delay product (LDP).
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Synthesis results for pipelined constant-coefficient multipliers are given in Tables 5 and 6.
The number of pipeline stages are reported, as well as the total number of LUTs used, the delay
and the LUT-delay product. The number of pipeline stages determines the latency in clock cycles.
The reported delay is for one clock cycle. The total number of LUTs, delay and LDP are normalized to
LogiCORE IP units.

Table 5 gives results for pipelined KCMs, where the constant A is positive and the variable B is
signed. For these units, proposed designs are 15% to 36% smaller than comparable LogiCORE IP units,
except for 12-bit units which are 5% larger. Proposed designs have a 23% to 38% increase in delay so
there is still a trade-off of LUTs for cycle time. However, the extreme cases are significantly reduced
and normalized delay is fairly constant as operand size is scaled.

Table 6 gives results for pipelined KCMs, where the constant A is negative and the variable B
is signed. As with single-cycle KCMs, negative constant LogiCORE IP KCMs increase in size, while
proposed units remain roughly the same. This again reduces the relative size, so proposed designs with
a negative constant are 20% to 42% smaller than LogiCORE IP units. Even 12-bit units are 20% smaller.
Normalized delay is similar to proposed KCMs with a positive constant as it is with single-cycle KCMs.

The average normalized LDP for proposed pipelined KCMs is 1.025 for units with a positive
constant and 0.855 for units with a negative constant. The overall average LDP is 0.940 and the overall
median LDP is 0.881. This suggests that, for many operand sizes, proposed pipelined KCMs offer
higher throughput in designs where they are on the critical path and determine the clock period.
When they are not on the critical path and meet timing requirements, the throughput advantage of
proposed units increases because they use 27% fewer LUTs on average than comparable LogiCORE IP
units. Proposed KCMs have more pipeline stages than some LogiCORE IP KCMs, especially as n gets
larger, because the proposed method uses an array structure to add partial products while LogiCORE
IP units appear to use a tree structure. This may be a problem for systems where latency requirements
are difficult to meet. However, for systems that can tolerate the increased latency this is less of an issue.

Table 5. Synthesis results for pipelined (m× n)-bit KCMs, where m = n, A = π/4 · 2n and B is a signed
variable. Proposed KCMs use 22% fewer LUTs on average compared to LogiCORE IP KCMs and the
increase in delay is less significant than it is for single-cycle units.

Type Pipeline Total Delay Normalized
n Stages LUTs (ns) LDP LUTs Delay LDP

8 2 20 0.914 18.3 1.000 1.000 1.000
10 2 28 1.000 28.0 1.000 1.000 1.000

LogiCORE IP 12 2 37 1.066 39.4 1.000 1.000 1.000
A = π/4 · 2n 14 3 71 1.143 81.2 1.000 1.000 1.000
B is signed 16 3 84 1.186 99.6 1.000 1.000 1.000

20 3 135 1.270 171.5 1.000 1.000 1.000
24 3 184 1.334 245.5 1.000 1.000 1.000

8 2 17 1.122 19.1 0.850 1.228 1.043
10 2 22 1.284 28.2 0.786 1.284 1.009

Proposed KCM 12 3 39 1.478 57.6 1.054 1.386 1.461
A = π/4 · 2n 14 3 46 1.500 69.0 0.648 1.312 0.850
B is signed 16 3 63 1.538 96.9 0.750 1.297 0.973

20 4 87 1.628 141.6 0.644 1.282 0.826
24 5 138 1.802 248.7 0.750 1.351 1.013

Acronyms: lookup tables (LUTs), LUT-delay product (LDP).



Electronics 2017, 6, 101 19 of 29

Table 6. Synthesis results for pipelined (m × n)-bit KCMs, where m = n, A = −π/4 · 2n and B is
a signed variable. Proposed KCMs use 33% fewer LUTs and have a 14% lower LDP on average
compared to LogiCORE IP KCMs.

Type Pipeline Total Delay Normalized
n Stages LUTs (ns) LDP LUTs Delay LDP

8 2 24 0.962 23.1 1.000 1.000 1.000
10 2 34 0.963 32.7 1.000 1.000 1.000

LogiCORE IP 12 2 49 1.071 52.5 1.000 1.000 1.000
A = −π/4 · 2n 14 3 80 1.174 93.9 1.000 1.000 1.000
B is signed 16 3 90 1.188 106.9 1.000 1.000 1.000

20 3 146 1.279 186.7 1.000 1.000 1.000
24 3 198 1.360 269.3 1.000 1.000 1.000

8 2 17 1.184 20.1 0.708 1.231 0.872
10 2 22 1.227 27.0 0.647 1.274 0.824

Proposed KCM 12 3 39 1.450 56.6 0.796 1.354 1.078
A = −π/4 · 2n 14 3 46 1.480 68.1 0.575 1.261 0.725
B is signed 16 3 60 1.505 90.3 0.667 1.267 0.845

20 4 87 1.615 140.5 0.596 1.263 0.752
24 5 138 1.739 240.0 0.697 1.279 0.891

Acronyms: lookup tables (LUTs), LUT-delay product (LDP).

Figure 14 combines the graph of Figure 12 with actual values for LogiCORE IP KCMs obtained by
synthesis. The graph shows that, for many operand sizes, the proposed KCMs with two selectable
coefficients use fewer LUTs than LogiCORE IP KCMs that only handle a single-coefficient.

Figure 14. LUT6s required for KCMs, m = n. Values for proposed KCMs are computed maximums,
and values for LogiCORE are from synthesized results.

Figure 15 combines the graph of Figure 13 with actual values for LogiCORE IP KCMs obtained by
synthesis. The graph shows that proposed KCMs are more efficient in terms of required LUTs than
LogiCORE IP KCMs except for 12-bit units with a positive constant.
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Figure 15. Number of partial product bits computed and summed per LUT6 for KCMs. Values for
proposed KCMs are computed maximums, values for LogiCORE are from synthesized results.

5.2.2. Proposed KCMs with Two Selectable Coefficients

Synthesis results for single-cycle KCMs with two selectable coefficients are given in Table 7. Results
for units composed of a LogiCORE IP general-purpose multiplier and a lookup function to select the
coefficient are given. Results for units composed of two LogiCORE IP KCMs with a multiplexer to
select the output are also given. Results are normalized to LogiCORE IP KCM units because they use
27% fewer LUTs and are 2.08 times faster on average than LogiCORE IP multiplier units.

Table 7. Synthesis results for single-cycle (m× n)-bit KCMs with two selectable coefficients, where
m = n, A[k] = ±π/4 · 2n and both B[k] are signed variables. Proposed units use 62% fewer LUTs on
average compared to LogiCORE IP KCM-based units.

Type Total Delay Normalized
n LUTs (ns) LDP LUTs Delay LDP

8 67 2.861 191.7 1.136 2.199 2.497
LogiCORE IP 10 104 3.676 382.3 1.368 2.749 3.762
Lookup + Multiplier 12 151 3.935 594.2 1.438 2.752 3.957
A[0] = π/4 · 2n 14 205 4.088 838.0 1.289 1.829 2.358
A[1] = −π/4 · 2n 16 270 3.980 1074.6 1.508 1.446 2.181
B[k] is signed 20 420 5.013 2105.5 1.405 1.843 2.589

24 603 4.982 3004.1 1.508 1.727 2.603

8 59 1.301 76.8 1.000 1.000 1.000
LogiCORE IP 10 76 1.337 101.6 1.000 1.000 1.000
KCMs + MUX 12 105 1.430 150.2 1.000 1.000 1.000
A[0] = π/4 · 2n 14 159 2.235 355.4 1.000 1.000 1.000
A[1] = −π/4 · 2n 16 179 2.753 492.8 1.000 1.000 1.000
B[k] is signed 20 299 2.720 813.3 1.000 1.000 1.000

24 400 2.885 1154.0 1.000 1.000 1.000

8 18 1.468 26.4 0.305 1.128 0.344
Proposed KCM 10 33 2.211 73.0 0.434 1.654 0.718
A[0] = π/4 · 2n 12 40 2.305 92.2 0.381 1.612 0.614
A[1] = −π/4 · 2n 14 61 3.146 191.9 0.384 1.408 0.540
B[k] is signed 16 70 3.210 224.7 0.391 1.166 0.456

20 108 4.012 433.3 0.361 1.475 0.533
24 154 5.009 771.4 0.385 1.736 0.668

Acronyms: lookup tables (LUTs), LUT-delay product (LDP).

Proposed KCMs with two selectable coefficients use only 20% more LUTs on average than proposed
KCMs with a single coefficient, while units based on LogiCORE IP KCMs use more than twice as many
LUTs because they cannot be combined and require a multiplexer to select the product. Delay for
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proposed 8- and 12-bit units is about the same but increases for other sizes because an additional row
is required to compute the product. Delay for all LogiCORE IP KCM-based units increases due to
the multiplexer and because the variable operand must be routed to two KCMs, which doubles the
fanout. Proposed units use 57% to 70% fewer LUTs compared to LogiCORE IP KCM-based units at the
expense of a 13% to 74% increase in delay. The LDP for proposed units is 28% to 67% lower, indicating
that significantly higher throughput can be achieved compared to LogiCORE IP KCM-based units.
LogiCORE IP multiplier-based units are not competitive for two selectable coefficients.

Table 8 gives synthesis results for pipelined KCMs with two selectable coefficients. Proposed units
use the same number of LUTs as single-cycle versions, except for 20 and 24-bit units, which use some
additional LUTs as shift registers (SRLs) to replace flip-flops. This optimization can be avoided if
desired using the -shreg_min_size setting in synthesis options. Similar to single-cycle units, proposed
designs use 60% to 70% fewer LUTs than LogiCORE IP KCM-based units. However, proposed units
benefit relatively more from pipelining than LogiCORE IP and are only 3% to 37% slower, and the
relative delay tends to improve as n increases. Proposed units have 45% to 63% lower LDP, which is
consistently lower for all operand sizes. The LDP suggests that proposed units offer more than
double the throughput versus LogiCORE IP KCM-based units for most operand sizes. LogiCORE IP
multiplier-based units are still not competitive.

Table 8. Synthesis results for pipelined (m× n)-bit KCMs with two selectable coefficients, where m = n,
A[k] = ±π/4 · 2n and both B[k] are signed variables. Proposed units use 64% fewer LUTs and have
a 58% lower LDP on average compared to LogiCORE IP KCM-based units.

Type Pipeline Total Delay Normalized
n Stages LUTs (ns) LDP LUTs Delay LDP

8 4 67 1.510 101.2 1.117 1.593 1.779
LogiCORE IP 10 5 106 1.476 156.5 1.268 1.440 1.861
Lookup + Multiplier 12 5 153 1.604 245.4 1.385 1.489 2.091
A[0] = π/4 · 2n 14 5 207 1.590 329.1 1.152 1.355 1.576
A[1] = −π/4 · 2n 16 5 272 1.825 496.4 1.364 1.451 1.916
B[k] is signed 20 6 426 1.917 816.6 1.350 1.425 1.903

24 6 609 1.932 1176.6 1.436 1.442 2.052

8 3 60 0.948 56.9 1.000 1.000 1.000
LogiCORE IP 10 3 82 1.025 84.1 1.000 1.000 1.000
KCMs + MUX 12 3 109 1.077 117.4 1.000 1.000 1.000
A[0] = π/4 · 2n 14 4 178 1.173 208.8 1.000 1.000 1.000
A[1] = −π/4 · 2n 16 4 206 1.258 259.1 1.000 1.000 1.000
B[k] is signed 20 4 319 1.345 429.1 1.000 1.000 1.000

24 4 428 1.340 573.5 1.000 1.000 1.000

8 2 18 1.211 21.8 0.300 1.277 0.383
Proposed KCM 10 3 33 1.404 46.3 0.402 1.370 0.551
A[0] = π/4 · 2n 12 3 40 1.256 50.2 0.367 1.166 0.428
A[1] = −π/4 · 2n 14 4 61 1.429 87.2 0.343 1.218 0.417
B[k] is signed 16 4 70 1.407 98.5 0.340 1.118 0.380

20 5 116 1.379 160.0 0.364 1.025 0.373
24 6 170 1.451 246.7 0.397 1.083 0.430

Acronyms: lookup tables (LUTs), LUT-delay product (LDP).

5.2.3. Proposed KCMs with Four Selectable Coefficients

Table 9 gives synthesis results for single-cycle KCMs with four selectable coefficients. Proposed
KCMs with four selectable coefficients use 31% more LUTs on average than proposed KCMs with
two selectable coefficients. LogiCORE IP KCM-based units with four coefficients use 82% more
LUTs while LogiCORE IP multiplier-based units use only 1% more LUTs on average than their two
coefficient versions. Delay increases for proposed units and LogiCORE IP KCM-based units and
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remains about the same for LogiCORE IP multiplier-based units. Results are normalized to LogiCORE
IP multiplier-based units.

Proposed single-cycle units use 61% to 67% fewer LUTs than LogiCORE IP multiplier-based units
and 69% to 74% fewer LUTs than LogiCORE IP KCM-based units. Proposed units are faster than
some LogiCORE IP multiplier-based units and slower than some, but are slower than LogiCORE
IP KCM-based units for all sizes. Proposed units have a 58% to 81% lower LDP than LogiCORE IP
multiplier-based units and a 44% to 67% lower LDP than LogiCORE IP KCM-based units.

Table 10 gives synthesis results for pipelined KCMs with four selectable coefficients. Proposed
units benefit relatively more than LogiCORE IP KCM-based and multiplier-based units in regards
to delay. They are faster than most LogiCORE IP multiplier-based units and slower than LogiCORE
IP KCM-based units but more comparable than they were for single-cycle units. Proposed pipelined
units use 61% to 66% fewer LUTs than LogiCORE IP multiplier-based units and 72% to 76% fewer
LUTs than LogiCORE IP KCM-based units. They have a 63% to 72% lower LDP than LogiCORE IP
multiplier-based units and a 63% to 76% lower LDP than LogiCORE IP KCM-based units.

Table 9. Synthesis results for single-cycle (m× n)-bit KCMs with four selectable coefficients where
m = n, A[k] = ±π/4 · 2n or ±3π/4 · 2n−2 and all B[k] are signed variables. Proposed units use
64% fewer LUTs on average compared to LogiCORE IP multiplier-based units and 73% fewer LUTs on
average compared to LogiCORE IP KCM-based units.

Type Total Delay Normalized
n LUTs (ns) LDP LUTs Delay LDP

LogiCORE IP 8 67 2.903 194.5 1.000 1.000 1.000
Lookup + Multiplier 10 106 3.740 396.4 1.000 1.000 1.000
A[0] = π/4 · 2n 12 153 3.922 600.1 1.000 1.000 1.000
A[1] = −π/4 · 2n 14 207 3.811 788.9 1.000 1.000 1.000
A[2] = 3π/4 · 2n−2 16 272 4.068 1106.5 1.000 1.000 1.000
A[3] = −3π/4 · 2n−2 20 422 4.885 2061.5 1.000 1.000 1.000
B[k] is signed 24 605 5.128 3102.4 1.000 1.000 1.000

LogiCORE IP 8 97 1.500 145.5 1.448 0.517 0.748
KCMs + MUX 10 127 1.528 194.1 1.198 0.409 0.489
A[0] = π/4 · 2n 12 191 1.591 303.9 1.248 0.406 0.506
A[1] = −π/4 · 2n 14 291 2.633 766.2 1.406 0.691 0.971
A[2] = 3π/4 · 2n−2 16 331 3.102 1026.8 1.217 0.763 0.928
A[3] = −3π/4 · 2n−2 20 554 2.872 1591.1 1.313 0.588 0.772
B[k] is signed 24 774 3.019 2336.7 1.279 0.589 0.753

Proposed KCM 8 26 2.190 56.9 0.388 0.754 0.293
A[0] = π/4 · 2n 10 39 1.894 73.9 0.368 0.506 0.186
A[1] = −π/4 · 2n 12 52 3.178 165.3 0.340 0.810 0.275
A[2] = 3π/4 · 2n−2 14 75 3.855 289.1 0.362 1.012 0.367
A[3] = −3π/4 · 2n−2 16 95 3.604 342.4 0.349 0.886 0.309
B[k] is signed 20 148 5.464 808.7 0.351 1.119 0.392

24 202 6.453 1303.5 0.334 1.258 0.420
Acronyms: lookup tables (LUTs), LUT-delay product (LDP).
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Table 10. Synthesis results for pipelined (m × n)-bit KCMs with four selectable coefficients where
m = n, A[k] = ±π/4 · 2n or ±3π/4 · 2n−2 and all B[k] are signed variables. Proposed units use
63% fewer LUTs on average compared to LogiCORE IP multiplier-based units and 74% fewer LUTs on
average compared to LogiCORE IP KCM-based units.

Type Pipeline Total Delay Normalized
n Stages LUTs (ns) LDP LUTs Delay LDP

LogiCORE IP 8 4 69 1.635 112.8 1.000 1.000 1.000
Lookup + Multiplier 10 5 108 1.466 158.3 1.000 1.000 1.000
A[0] = π/4 · 2n 12 5 155 1.671 259.0 1.000 1.000 1.000
A[1] = −π/4 · 2n 14 5 209 1.640 342.8 1.000 1.000 1.000
A[2] = 3π/4 · 2n−2 16 5 274 1.731 474.3 1.000 1.000 1.000
A[3] = −3π/4 · 2n−2 20 6 428 1.817 777.7 1.000 1.000 1.000
B[k] is signed 24 6 611 1.820 1112.0 1.000 1.000 1.000

LogiCORE IP 8 3 103 1.030 106.1 1.493 0.630 0.940
KCMs + MUX 10 3 145 1.066 154.6 1.343 0.727 0.976
A[0] = π/4 · 2n 12 3 200 1.137 227.4 1.290 0.680 0.878
A[1] = −π/4 · 2n 14 4 327 1.624 531.0 1.565 0.990 1.549
A[2] = 3π/4 · 2n−2 16 4 385 1.403 540.2 1.405 0.811 1.139
A[3] = −3π/4 · 2n−2 20 4 593 1.515 898.4 1.386 0.834 1.155
B[k] is signed 24 4 823 1.532 1260.8 1.347 0.842 1.134

Proposed KCM 8 3 26 1.365 35.5 0.377 0.835 0.315
A[0] = π/4 · 2n 10 3 39 1.482 57.8 0.361 1.011 0.365
A[1] = −π/4 · 2n 12 4 52 1.404 73.0 0.335 0.840 0.282
A[2] = 3π/4 · 2n−2 14 5 80 1.561 124.9 0.383 0.952 0.364
A[3] = −3π/4 · 2n−2 16 5 102 1.520 155.0 0.372 0.878 0.327
B[k] is signed 20 7 165 1.628 268.6 0.386 0.896 0.345

24 8 226 1.712 386.9 0.370 0.941 0.348
Acronyms: lookup tables (LUTs), LUT-delay product (LDP).

5.2.4. Proposed KCMs with Eight Selectable Coefficients

Table 11 gives synthesis results for single-cycle KCMs with eight selectable coefficients and
Table 12 gives synthesis results for pipelined KCMs with eight selectable coefficients. Results for
LogiCORE IP KCM-based units are not given because they would require eight KCMs and do not
scale well as the number of coefficients increase. LogiCORE IP multiplier-based units only require
a small amount of additional logic for the lookup function so they scale very well.

Proposed units use 51% to 52% fewer LUTs than LogiCORE IP for single-cycle units. They are
slower than LogiCORE IP for most units, and the relative delay generally increases as n increases.
The LDP for proposed single-cycle units is 13% to 53% lower than LogiCORE IP, with better results for
smaller operand sizes.

Proposed pipelined units use 46% to 52% fewer LUTs and are faster, having 10% to 16% lower
delay than LogiCORE IP. The LDP for proposed units is 51% to 59% lower than LogiCORE IP and
performance is consistently better for all operand sizes.
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Table 11. Synthesis results for single-cycle (m× n)-bit KCMs with eight selectable coefficients where
m = n, A[k] = ±π/4 · 2n,±3π/4 · 2n−2,±5π/4 · 2n−2 or±7π/4 · 2n−3 and all B[k] are signed variables.
Proposed units use 51% fewer LUTs on average compared to LogiCORE IP multiplier-based units.

Type Total Delay Normalized
n LUTs (ns) LDP LUTs Delay LDP

LogiCORE IP 8 73 2.830 206.6 1.000 1.000 1.000
Lookup + Multiplier 10 110 3.838 422.2 1.000 1.000 1.000
A[0], A[1] = ±π/4 · 2n 12 157 3.892 611.0 1.000 1.000 1.000
A[2], A[3] = ±3π/4 · 2n−2 14 212 3.892 825.1 1.000 1.000 1.000
A[4], A[5] = ±5π/4 · 2n−2 16 278 4.188 1164.3 1.000 1.000 1.000
A[6], A[7] = ±7π/4 · 2n−3 20 428 4.968 2126.3 1.000 1.000 1.000
B[k] is signed 24 611 5.113 3124.0 1.000 1.000 1.000

Proposed KCM 8 35 3.018 105.6 0.479 1.066 0.511
A[0], A[1] = ±π/4 · 2n 10 54 3.642 196.7 0.491 0.949 0.466
A[2], A[3] = ±3π/4 · 2n−2 12 77 4.428 341.0 0.490 1.138 0.558
A[4], A[5] = ±5π/4 · 2n−2 14 104 5.209 541.7 0.491 1.338 0.657
A[6], A[7] = ±7π/4 · 2n−3 16 135 6.014 811.9 0.486 1.436 0.697
B[k] is signed 20 209 7.749 1619.5 0.488 1.560 0.762

24 299 9.067 2711.0 0.489 1.773 0.868
Acronyms: lookup tables (LUTs), LUT-delay product (LDP).

Table 12. Synthesis results for pipelined (m× n)-bit KCMs with eight selectable coefficients where
m = n, A[k] = ±π/4 · 2n,±3π/4 · 2n−2,±5π/4 · 2n−2 or±7π/4 · 2n−3 and all B[k] are signed variables.
Proposed units use 47% fewer LUTs and have 15% less delay on average compared to LogiCORE IP
multiplier-based units.

Type Pipeline Total Delay Normalized
n Stages LUTs (ns) LDP LUTs Delay LDP

LogiCORE IP 8 4 73 1.626 118.7 1.000 1.000 1.000
Lookup + Multiplier 10 5 112 1.460 163.5 1.000 1.000 1.000
A[0], A[1] = ±π/4 · 2n 12 5 159 1.690 268.7 1.000 1.000 1.000
A[2], A[3] = ±3π/4 · 2n−2 14 5 214 1.648 352.7 1.000 1.000 1.000
A[4], A[5] = ±5π/4 · 2n−2 16 5 280 1.721 481.9 1.000 1.000 1.000
A[6], A[7] = ±7π/4 · 2n−3 20 6 434 1.894 822.0 1.000 1.000 1.000
B[k] is signed 24 6 617 1.988 1226.6 1.000 1.000 1.000

Proposed KCM 8 4 35 1.404 49.1 0.479 0.863 0.414
A[0], A[1] = ±π/4 · 2n 10 5 58 1.234 71.6 0.518 0.845 0.438
A[2], A[3] = ±3π/4 · 2n−2 12 6 85 1.433 121.8 0.535 0.848 0.453
A[4], A[5] = ±5π/4 · 2n−2 14 7 116 1.364 158.2 0.542 0.828 0.449
A[6], A[7] = ±7π/4 · 2n−3 16 8 151 1.549 233.9 0.539 0.900 0.485
B[k] is signed 20 10 233 1.583 368.8 0.537 0.836 0.449

24 12 331 1.669 552.4 0.536 0.840 0.450
Acronyms: lookup tables (LUTs), LUT-delay product (LDP).

5.3. Comparison to Möller Et Al.

Möller et al. [13] present synthesis results for (16× 16)-bit constant coefficient multipliers with
two to fourteen selectable coefficients. They compare units generated using their proposed PAG fusion
heuristic to units based on DAG fusion [11], using a Xilinx CoreGen multiplier with a distributed RAM
to store coefficients as a baseline for comparison. Results for pipelined PAG fusion with ternary adders
and PAG fusion with only two-operand adders are given. Results for single-cycle DAG fusion are
given, as well as pipelined DAG fusion with resigters after each adder, subtractor, adder/subtractor
and multiplexer, plus additional registers as needed for pipeline balancing. The Xilinx CoreGen
multiplier-based unit is pipelined to the same depth as pipelined PAG fusion units. The number of
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slices required for implementation are shown on one graph and the maximum clock frequency for
each method is shown on another graph in their paper. Numerical values are estimated from these
graphs and tabulated in Tables 13 and 14 for units with two to eight selectable coefficients.

Table 13. Slice utilization for directed acyclic graph (DAG) fusion [11,13], pipelined adder graph (PAG)
fusion [13] and proposed (16× 16)-bit KCMs with two to eight selectable coefficients. DAG fusion
and PAG fusion units are normalized to CoreGen as presented in Möller et al. [13], proposed units are
normalized to a LogiCORE IP multiplier-based unit.

Type Number of Selectable Coefficients
2 3 4 5 6 7 8

CoreGen, Slices 107 107 107 107 107 107 107
pipelined [13] Normalized 1.000 1.000 1.000 1.000 1.000 1.000 1.000

DAG Fusion, Slices 35 64 76 100 112 127 138
single-cycle [11,13] Normalized 0.327 0.598 0.710 0.935 1.047 1.187 1.290

DAG Fusion, Slices 67 93 105 131 146 163 175
pipelined [11,13] Normalized 0.626 0.869 0.981 1.224 1.364 1.523 1.636

PAG Fusion, Slices 63 82 96 113 122 140 157
pipelined [13] Normalized 0.589 0.766 0.897 1.056 1.140 1.308 1.467

PAG Fusion Ternary, Slices 43 58 71 84 100 120 130
pipelined [13] Normalized 0.402 0.542 0.664 0.785 0.935 1.121 1.215

LogiCORE IP, Slices 96 101 95
pipelined Normalized 1.000 1.000 1.000

Proposed, Slices 21 28 40
single-cycle Normalized 0.219 0.277 0.421

Proposed, Slices 30 32 49
pipelined Normalized 0.313 0.317 0.516

One slice contains four LUT6s and eight flip-flops (see Figure 1).

Table 14. Maximum operating frequency for DAG fusion [11,13], PAG fusion [13] and proposed
(16× 16)-bit KCMs with two to eight selectable coefficients. DAG fusion and PAG fusion units are
normalized to CoreGen as presented in Möller et al. [13], proposed units are normalized to a LogiCORE
IP multiplier-based unit.

Type Number of Selectable Coefficients
2 3 4 5 6 7 8

CoreGen, Freq (MHz) 443 443 443 443 443 443 443
pipelined [13] Normalized 1.000 1.000 1.000 1.000 1.000 1.000 1.000

DAG Fusion, Freq (MHz) 206 177 160 135 126 116 109
single-cycle [11,13] Normalized 0.465 0.399 0.362 0.304 0.284 0.261 0.247

DAG Fusion, Freq (MHz) 474 478 475 462 450 450 454
pipelined [11,13] Normalized 1.072 1.080 1.074 1.043 1.018 1.018 1.026

PAG Fusion, Freq (MHz) 442 417 437 451 460 453 460
pipelined [13] Normalized 0.998 0.942 0.987 1.019 1.038 1.024 1.040

PAG Fusion Ternary, Freq (MHz) 346 324 322 315 312 306 304
pipelined [13] Normalized 0.782 0.732 0.728 0.712 0.705 0.692 0.686

LogiCORE IP, Freq (MHz) 548 577 581
pipelined Normalized 1.000 1.000 1.000

Proposed, Freq (MHz) 312 277 166
single-cycle Normalized 0.569 0.480 0.280

Proposed, Freq (MHz) 711 658 646
pipelined Normalized 1.297 1.138 1.111
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Results presented by Möller et al. were obtained using Xilinx ISE v13.4, targeting a Virtex 6 FPGA
(xc6vlx75t-2ff484-2) [13]. Slices are used as the metric for resource usage, and a Xilinx CoreGen
based unit is used as a baseline for comparison. This paper presents results obtained using Xilinx
Vivado 2016.3, targeting a Virtex 7 FPGA and uses LUTs as the metric for resource usage. In order
to compare results, a Xilinx LogiCORE IP multiplier with a function to lookup coefficients is used in
this work as a baseline. The LogiCORE IP multiplier is pipelined to the optimal depth as given in
the IP customization dialog and a pipeline register is inserted between the coefficient lookup and the
multiplier. Results given by Möller et al. are normalized to their CoreGen based unit and results in this
work are normalized to the LogiCORE IP based units to account for differences in the synthesis tools,
target device and IP implementation. Tables 13 and 14 summarize these results.

Figures 16 and 17 compare results from Möller et al. to this work by plotting normalized values.
With the proposed approach, a KCM with three selectable coefficients would have the same structure
as the KCM with four selectable coefficients described in Section 4.2, except the table of precomputed
partial products would use zeros or don’t cares for the unused coefficient. This may allow some LUTs
in the first row to be optimized away, but the LUTs in the other rows would still be required so the
resources consumed by the unit would be identical or slightly less than a KCM with four selectable
coefficients. For this reason, proposed KCMs with three selectable coefficients are graphed using the
same values as KCMs with four selectable coefficients. Likewise, proposed KCMs with five, six or seven
selectable coefficients are graphed using the same values as KCMs with eight selectable coefficients.

Figure 16. Slice utilization for directed acyclic graph (DAG) fusion [11,13], pipelined adder graph (PAG)
fusion [13] and proposed (16× 16)-bit KCMs with two to eight selectable coefficients. One slice contains
four LUT6s and eight flip-flops (see Figure 1). DAG fusion and PAG fusion units are normalized
to CoreGen as presented in Möller et al. [13], proposed units are normalized to a LogiCORE IP
multiplier-based unit.

PAG fusion units with two-operand adders use fewer slices than CoreGen for two to four selectable
coefficients and PAG fusion units with ternary adders use fewer slices than CoreGen for two to six
selectable coefficients. All PAG fusion units use fewer slices than pipelined DAG fusion units. All PAG
fusion units with two-operand adders have a maximum frequency comparable to CoreGen units,
ranging from 6% slower to 4% faster. PAG fusion units with ternary adders are 22% to 31% slower than
CoreGen, mainly because ternary adders are slower than two-operand adders. However, for many
applications, they would not be on the critical path and would be better than CoreGen because they
use 6% to 60% fewer slices for units with two to six selectable coefficients.
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Figure 17. Maximum operating frequency for DAG fusion [11,13], PAG fusion [13] and proposed
(16× 16)-bit KCMs with two to eight selectable coefficients. DAG fusion and PAG fusion units are
normalized to CoreGen as presented in Möller et al. [13], proposed units are normalized to a LogiCORE
IP multiplier-based unit.

Proposed KCMs with selectable coefficients use significantly fewer slices than LogiCORE IP and
pipelined versions are faster than LogiCORE IP for units with two to eight selectable coefficients. PAG
fusion units outperform CoreGen units in most cases, so it is important to compare proposed units
to PAG fusion units. Table 15 compares required slices and Table 16 compares maximum operating
frequency for PAG fusion units, normalized to CoreGen, with proposed units, normalized to LogiCORE
IP. These values are then normalized to PAG fusion with two-operand adders and PAG fusion with
ternary adders. Comparing normalized values, proposed KCMs with selectable coefficients use 47% to
65% fewer slices than PAG fusion with two-operand adders and 22% to 57% fewer slices than PAG
fusion with ternary adders. Proposed KCMs with selectable coefficients can operate 7% to 30% faster
than PAG fusion with two-operand adders and 28% to 52% faster than PAG fusion with ternary adders.

Table 15. Comparison of normalized slice utilization for PAG fusion [13] and proposed (16× 16)-bit
KCMs with two to eight selectable coefficients. Proposed units use 57% fewer slices on average
compared to PAG fusion units with two-operand adders and 44% fewer slices on average compared to
PAG fusion units with ternary adders.

Type Number of Selectable Coefficients
2 3 4 5 6 7 8

(a) PAG Fusion, Normalized Slices 0.589 0.766 0.897 1.056 1.140 1.308 1.467
pipelined [13] Normalized to (a) 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Normalized to (b) 1.465 1.414 1.352 1.345 1.220 1.167 1.208

(b) PAG Fusion Ternary, Normalized Slices 0.402 0.542 0.664 0.785 0.935 1.121 1.215
pipelined [13] Normalized to (a) 0.683 0.707 0.740 0.743 0.820 0.857 0.828

Normalized to (b) 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Proposed, Normalized Slices 0.313 0.317 0.317 0.516 0.516 0.516 0.516
pipelined Normalized to (a) 0.531 0.413 0.353 0.488 0.452 0.394 0.352

Normalized to (b) 0.778 0.584 0.477 0.657 0.552 0.460 0.425
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Table 16. Comparison of normalized maximum operating frequency for PAG fusion [13] and proposed
(16× 16)-bit KCMs with two to eight selectable coefficients. Proposed units can operate 14% faster on
average compared to PAG fusion units with two-operand adders and 40% faster on average compared
to PAG fusion units with ternary adders.

Type Number of Selectable Coefficients
2 3 4 5 6 7 8

(a) PAG Fusion, Normalized Freq (MHz) 0.998 0.942 0.987 1.019 1.038 1.024 1.040
pipelined [13] Normalized to (a) 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Normalized to (b) 1.277 1.287 1.357 1.432 1.473 1.479 1.516

(b) PAG Fusion Ternary, Normalized Freq (MHz) 0.782 0.732 0.728 0.712 0.705 0.692 0.686
pipelined [13] Normalized to (a) 0.783 0.777 0.737 0.698 0.679 0.676 0.659

Normalized to (b) 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Proposed, Normalized Freq (MHz) 1.297 1.138 1.138 1.111 1.111 1.111 1.111
pipelined Normalized to (a) 1.299 1.209 1.154 1.090 1.070 1.085 1.068

Normalized to (b) 1.277 1.287 1.357 1.432 1.473 1.479 1.516

6. Conclusions

This paper presents constant-coefficient multipliers (KCMs) for Xilinx FPGAs with 6-input LUTs,
and extends them to have two to eight coefficients that may be selected by a control signal at runtime
to implement time-multiplexed multiple-constant multiplication. Synthesis results show that proposed
KCMs use 20% fewer LUTs for single-cycle designs and 27% fewer LUTs for pipelined designs on
average compared to LogiCORE IP KCMs at the expense of increased delay. Proposed KCMs with
two to four selectable coefficients use 63% fewer LUTs on average and proposed KCMs with eight
selectable coefficients use 49% fewer LUTs on average compared to the smallest LogiCORE IP based
alternative. Proposed KCMs with selectable coefficients also outperform state-of-the-art reconfigurable
multipliers that are based on shift-and add methods, using 22% to 57% fewer slices than the smallest
designs and operate 7% to 30% faster than the fastest designs. For a given operand size and number of
constants, proposed designs have the same placement and routing of LUTs, regardless of the sign or
magnitude of the constant. The only thing that changes is the content of the LUT RAMs, which makes
proposed KCMs an attractive candidate for runtime partial reconfiguration. LogiCORE IP KCMs are
larger for negative constants, and the size of KCMs based on shift and add methods vary with the
constant, making runtime partial reconfiguration more difficult.
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Abbreviations

The following abbreviations are used in this manuscript:

BRAM Block RAM (Random-Access Memory)
CLB Configurable Logic Block
CSD Canonical Signed Digit
DAG Directed Acyclic Graph
DSP Digital-Signal Processing
FPGA Field-Programmable Gate Array
KCM Constant-Coefficient Multiplier
LDP LUT-Delay Product
LSB Least-Significant Bit
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LUT Lookup Table
LUT5 5-Input Lookup Table
LUT6 6-Input Lookup Table
MSB Most-Significant Bit
PAG Pipelined Adder Graph
RCM Reduced Coefficient Multiplier
PAG Reduced Pipelined Adder Graph
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