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Abstract: This paper presents an X-band GaN HEMT power amplifier with a third harmonic-tuned
circuit for a higher power density per area and a higher power-added efficiency (PAE) using a
0.25 µm GaN HEMT process of WIN semiconductors, Inc. The optimum load impedances at
the fundamental and third harmonic frequencies are extracted from load-pull simulations at the
transistor’s extrinsic plane, including the drain-source capacitance and the series drain inductance.
The third harmonic-tuned circuit is effectively integrated with the output matching circuit at the
fundamental frequency, without complicating the whole output matching circuit. The input matching
circuit uses a lossy matching scheme, which allows a good return loss and a simple LC low-pass
circuit configuration. The fabricated power amplifier monolithic microwave integrated circuit (MMIC)
occupies an area of 13.26 mm2, and shows a linear gain of 20 dB or more, a saturated output power of
43.2~44.7 dBm, and a PAE of 35~37% at 8.5 to 10.5 GHz.
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1. Introduction

RF front-ends of X-band airborne phased array radars and satellite synthetic aperture radar
(SAR) systems are composed of transmit/receive (T/R) modules with various monolithic microwave
integrated circuit (MMIC) chips [1,2]. Since the array size in a radar is susceptive to the size or volume
of the T/R module, there have been efforts to reduce it, especially for airborne applications requiring
limited payloads [3]. Recently, thanks to GaN technology, which provides better power capabilities
than Si or GaAs technology, the size of the power amplifier MMIC has been dramatically reduced,
leading to a smaller-sized T/R module [4,5]. Regarding the cost, currently available commercial GaN
HEMT foundry processes are still expensive, compared with Si or GaAs processes, and circuit designers
are hence continuing to maximize the number of MMIC chips on a wafer through an area-efficient
circuit design for low production cost of the MMICs and T/R modules.

As another design issue, the power-added efficiency of a power amplifier is one of the most
challenging concerns. Generally, a power amplifier in a transmitter consumes the most power in
the RF front-end and suffers from a thermal dissipation problem affecting the system reliability.
The phased array radar has densely-placed thermal sources and cannot efficiently dissipate the
generated heat due to a limited space, and requires a high power-added efficiency for the power
amplifier. A high-efficiency power amplifier is usually realized using a switching mode such as class E,
class F or class J, whose second harmonic impedance is purely reactive. However, the class-E power
amplifier is sensitive to inherent parasitic capacitances of the transistor in a GHz frequency range.
In addition, it is difficult to define optimum load impedances at harmonic frequencies clearly at
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the intrinsic current generator plane in the class-F and class-J power amplifiers, without an accurate
large-signal equivalent circuit model of the transistor [6–8]. Since a typical high-power amplifier MMIC
with a power capability of tens of watts has a corporate configuration combining a large number of
transistors in parallel, the design of a switching-mode power amplifier, which should meet matching
conditions at several harmonic frequencies, tends to increase circuit complexity, thereby increasing
the circuit size. To address this issue in an X-band high-power amplifier MMIC, several groups
have attempted to improve the power-added efficiency by optimizing one or two harmonics without
adhering to specific amplifier classes [9–12].

In this paper, we present an X-band GaN high-power amplifier MMIC whose efficiency and
bandwidth performance are improved by third harmonic impedance tuning and lossy matching.
The design specifications of the power amplifier MMIC are a linear gain of 20 dB or more, a saturated
output power of 43 dBm or more, and a PAE of 35% at 9 to 10 GHz. The MMIC is fabricated using the
0.25 µm GaN HEMT foundry process of WIN semiconductors [13].

2. Device Technology

In this work, we used a 0.25 µm AlGaN/GaN HEMT on SiC process (NP2500MS) from WIN
semiconductors, Inc. (Taoyuan City, Taiwan). The GaN HEMT has a source-coupled field plate to
minimize charge trapping and dispersion effects, and has backside via-holes inside its source pads
to improve thermal dissipation. The transistor has a breakdown voltage of 100 V or more, a typical
power density of 4.0 W/mm, and a PAE of 50% at 10 GHz at a continuous-wave (CW) condition. At a
drain-source voltage of 28 V, the current gain cutoff frequency and the maximum oscillation frequency
of a 2 × 150 µm HEMT are 24.5 GHz and 75 GHz, respectively [13].

We simulated the small-signal and large-signal performance of 6 × 150 µm and 10 × 150 µm GaN
HEMTs using a nonlinear transistor model of WIN semiconductors. The maximum stable gain was
19.3 dB for both transistors at 9.5 GHz under bias conditions of Vds = 28 V and Ids = 100 mA/mm.
As shown in Figure 1, a parallel RC circuit is inserted at the gate to ensure unconditional stability
of the transistor. The load-pull simulation shows output power and PAE contours of the stabilized
6 × 150 µm and 10 × 150 µm GaN HEMTs at 9.5 GHz, as presented in Figure 2a,b. The 6 × 150 µm
HEMT has an output power of 35.7 dBm at a load impedance condition for the maximum PAE of
51.5%, and the 10 × 150 µm HEMT has an output power of 37.3 dBm at a load impedance condition
for the maximum PAE of 51%.
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Figure 2. Load-pull simulation results of the stabilized 6 × 150 μm and 10 × 150 μm HEMTs at 9.5 
GHz: output power and PAE contours of (a) the 6 × 150 μm; and (b) 10 × 150 μm. 

3. Circuit Design 

A simple schematic circuit diagram of our X-band high-power amplifier MMIC is illustrated in 
Figure 3. The power amplifier MMIC uses a two-stage configuration to achieve a linear gain of 20 dB 
or more. In order to enable the first-stage amplifier to drive the second-stage amplifier sufficiently, 
we use two 10 × 150 μm (10F150) HEMTs in the first stage and eight 6 × 150 μm (6F150) HEMTs in 
the second stage, which results in a periphery ratio of 1:2.4. The output matching network is 
configured by combining a 2:1 impedance transforming circuit and a third harmonic-tuned circuit, 
and the inter-stage and the input matching circuits utilize a low-pass filtering circuit structure, which 
is composed of microstrip lines and shunt capacitors. In the following subsections, we describe in 
detail design schemes including harmonic tuning for efficiency improvement and lossy matching for 
return-loss improvement. 
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Figure 4 shows a simplified output equivalent circuit model of the transistor where the current 
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transistor or packaged transistor. In a power amplifier such as class F and class J amplifiers, optimum 
load impedances at multiple harmonic frequencies should be defined at the intrinsic current 

Figure 2. Load-pull simulation results of the stabilized 6 × 150 µm and 10 × 150 µm HEMTs at 9.5 GHz:
output power and PAE contours of (a) the 6 × 150 µm; and (b) 10 × 150 µm.

3. Circuit Design

A simple schematic circuit diagram of our X-band high-power amplifier MMIC is illustrated in
Figure 3. The power amplifier MMIC uses a two-stage configuration to achieve a linear gain of 20 dB
or more. In order to enable the first-stage amplifier to drive the second-stage amplifier sufficiently,
we use two 10 × 150 µm (10F150) HEMTs in the first stage and eight 6 × 150 µm (6F150) HEMTs
in the second stage, which results in a periphery ratio of 1:2.4. The output matching network is
configured by combining a 2:1 impedance transforming circuit and a third harmonic-tuned circuit,
and the inter-stage and the input matching circuits utilize a low-pass filtering circuit structure, which
is composed of microstrip lines and shunt capacitors. In the following subsections, we describe in
detail design schemes including harmonic tuning for efficiency improvement and lossy matching for
return-loss improvement.
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3.1. Output Matching Circuit Design with the Third Harmonic-Tuned Circuit

Figure 4 shows a simplified output equivalent circuit model of the transistor where the current
generator plane is illustrated with an extrinsic device plane, which is usually encountered in a die
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transistor or packaged transistor. In a power amplifier such as class F and class J amplifiers, optimum
load impedances at multiple harmonic frequencies should be defined at the intrinsic current generator
plane. However, since an intrinsic drain-source capacitance Cds and a parasitic inductance Ld cannot
be de-embedded from the large-signal nonlinear model provided by the foundry company, it is not
practically easy to define the optimum harmonic impedances accurately at the current generator
plane. In this work, load-pull simulations are performed at the device’s extrinsic plane to extract the
optimum harmonic load impedances, and the simulation results of the 6 × 150 µm HEMT are shown
at the fundamental frequency of 9.5 GHz in Figure 5. The simulation conditions are Vds = 28 V and
Ids = 100 mA/mm. Figure 5a shows the second-harmonic load-pull simulation results at the condition
where the transistor is optimally matched at the fundamental frequency and is open (very high
impedance) at the third harmonic frequency, and Figure 5b shows the third-harmonic load-pull
simulation results at the condition where the transistor is optimally matched at the fundamental
frequency and is open at the second harmonic frequency.
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Figure 5. Harmonic load-pull simulation results of a 6 × 150 µm HEMT at the device’s extrinsic plane
at the bias conditions of Vds = 28 V and Ids = 100 mA/mm where the fundamental frequency is 9.5 GHz:
(a) Load impedance contours at the second harmonic frequency (f0: optimal, 3f0: open); (b) Load
impedance contours at the third harmonic frequency (f0: optimal, 2f0: open).

As shown in Figure 5a, the maximum output power and PAE are 35.6 dBm and 52.8% in the
second-harmonic load-pull contour plot whose impedance range is −j 20 to −j 1 Ω and almost
purely reactive. In Figure 5b, the maximum output power and PAE are 36 dBm and 56.4%, and the
third-harmonic optimum load impedance point for them is 0.26 + j 5.9 Ω. Given that the maximum
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PAE of the 6 × 150 µm HEMT with no harmonic tuning is 51.5%, the PAE increases by 1.3%
with the second-harmonic tuning and by 5% with the third harmonic tuning. From the contour
plots in the figure, it is noticeable that the PAE degrades very slowly with the second-harmonic
impedance condition and varies very rapidly with the third-harmonic impedance condition. As a
result, the third-harmonic impedance tuning is very important for the efficiency improvement, and PAE
improvement of about 6% can be obtained if the second-harmonic and the third-harmonic load
impedances are simultaneously tuned. Both second and third harmonic tuning is not effective in terms
of the size of the matching circuit, which requires many elements and occupies a large area. In this
work, we focus on only the third-harmonic output impedance tuning, which accounts for most of the
PAE improvement.

Figure 6 shows an output matching circuit that simultaneously performs the optimum impedance
matching at the fundamental frequency and the third-harmonic impedance tuning for two 6 × 150 µm
HEMTs. The third-harmonic impedance tuning can be accomplished by placing the third-harmonic
load impedance at very low impedance with a shunt capacitor C1 and then moving to the optimum
third-harmonic load impedance through a series inductor L1. A parallel inductor Lb is combined with
a shunt capacitor C1 to make a parallel LC resonant circuit, where Lb can be used as an RF-choke
inductor for a drain bias supply. The parallel LC resonant circuit compensates the reactance of the
output impedance Zd including L1 to obtain the impedance Zd’ with a low-Q value, thereby facilitating
wideband impedance transformation at the fundamental frequency [14].

The output impedance Zd’ at the fundamental frequency whose reactance is minimized by the
parallel LC resonant circuit is matched to 100 Ω through an LC low-pass matching circuit of L2 and C2.
Since the matching circuit gives an output impedance of 100 Ω, output impedance of 50 Ω is obtained
when the circuits in Figure 6 are combined in pairs. Figure 7 shows loci of the load impedance Zopt,
which is the impedance of the output matching circuit seen from the transistor. The impedance loci are
illustrated with a contour plot of the load-pull simulation results at the maximum PAE condition of
the combined power cell, which consists of two 6 × 150 µm HEMTs in parallel.
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Figure 6. Output matching circuit that performs optimum impedance matching at the fundamental
frequency and the third harmonic impedance tuning for two 6 × 150 µm HEMTs.

The impedance matching at the fundamental frequency range of 8.5 to 10.5 GHz was well
implemented. The designed load impedance trace at the third harmonic frequency range of 25.5 to
31.5 GHz moves in the opposite direction to the required optimum harmonic load impedance contours,
but the former in the frequency range of 27 to 30 GHz corresponding to the third harmonic frequencies
of 9 to 10 GHz is located in the position where the PAE of the power amplifier improves by at least
2 to 4%. As a result, the designed output matching circuit achieves wideband impedance matching in
the fundamental frequency range as well as an improved PAE through the third harmonic impedance
tuning while maintaining an area-efficient matching circuit due to a simple LC configuration.
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4. Fabrication and Measurement

A chip photograph of the fabricated power amplifier MMIC is shown in Figure 10, and the chip
size is 3.4 mm × 3.9 mm. The series and parallel inductors used in the circuit design are implemented
using microstrip lines. Interstage and output matching circuits into which high drain DC current
flows are designed using double-layered metal lines to withstand high current and minimize line loss.
TaN resistors of 20 Ω are used between transistor cells to prevent plausible odd-mode oscillations that
may be caused by a transistor imbalance of the corporate structure.
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Figure 10. Photograph of the fabricated X-band GaN power amplifier MMIC. The chip occupies an
area of 3.4 mm × 3.9 mm (13.26 mm2).

Figure 11 compares the measured S-parameter results with the simulated results at bias conditions
of Vds = 28 V and Ids = 700 mA. The measured linear gain is 21.2 to 25.1 dB from 8.5 to 10.5 GHz and
shows a tendency to gradually decrease within about 1 dB from 9.5 to 10.5 GHz. The input return loss
is 7 dB or more at 8.5–10.5 GHz and 10 dB or more at 9–10 GHz, and the output return loss is 10 dB or
more at 8.5–10.5 GHz.
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Figure 11. Comparison of simulated and measured S-parameter results of the fabricated power
amplifier MMIC at the bias conditions of Vds = 28 V and Ids = 700 mA.

Figure 12 shows the measured output power, PAE, and power gain at Vds = 28 V and Ids = 1.2 A
in a pulsed mode with a duty cycle of 10% and a pulse width of 100 µs. An output power of 43.2 to
44.6 dBm and a PAE of 33 to 37% are measured together with an associated gain of 17.7 to 19.6 dB at an
available input power of 25 dBm in 8.5–10.5 GHz. The saturated output power is 43.2 to 44.7 dBm
and at that condition the PAE is measured to be 35 to 37% with an associated gain of 16.0 to 19.1 dB in
8.5–10.5 GHz. At the saturated power condition, the output power increases by 0.3 to 0.7 dB and the
PAE increases by 0.3 to 1.9% from 9.5 to 10.5 GHz. The output power is saturated below 9.5 GHz at the
input power of 25 dBm, and a further increase of the input power seldom changes the output power
and PAE. Figure 13 compares the measured power performance with the input power at 9.5 GHz with
the simulated results. The measured PAE at the saturated output power condition is reduced by 5%,
compared with the simulated results, and this is discussed in the next section.
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Figure 12. Measured output power, power gain, and power-added efficiency of the fabricated power
amplifier MMIC at Pin = 25 dBm and the input power condition for the saturated output power. The bias
conditions are Vds = 28 V and Ids = 1.2 A, and the measurement is done under pulsed conditions with
a pulse width of 100 µs and a duty cycle of 10%.
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Figure 13. Simulated and measured power performance of the fabricated power amplifier MMIC with
input power at 9.5 GHz.

We compared the results of our work with previously published state-of-the-art X-band GaN
power amplifier MMIC results in Table 1. The comparison shows that our work is competitive in terms
of the output power density and has reasonable performance over all.

Table 1. Summary and comparison of our work and previously published state-of-the-art X-band GaN
power amplifier MMIC results.

Reference Technology Frequency
(GHz)

Pulse Width/Duty
(µs/%) Vds (V) Pout (W) PAE (%) Area (mm2)

Power Density
(W/mm2)

[9] 0.25 µm GaN 8.5–11.0 20/10 25 25–43 33–52 18 2.89
[10] 0.25 µm GaN 8.5–10.5 100/10 30 17–19 32–35 13.5 1.41
[11] 0.25 µm GaN 10.0–10.5 CW 25 10–14 45–61 9.2 1.52
[12] 0.25 µm GaN 8.6–10.6 50/15 26 12–15 38–43 18 0.83
[15] 0.5 µm GaN 8.0–10.5 10/1 35 50–57 27–32 16 3.56
[16] 0.25 µm GaN 8.8–10.2 100/30 30 28–32 36–37 22 1.45
[17] 0.25 µm GaN 8.8–10.8 100/10 28 30–40 38–44 20.7 1.93
[18] 0.25 µm GaN 8.0–11.0 100/10 28 32–47 37–44 17.28 2.72
[19] 0.25 µm GaN 9.0–10.5 100/10 28 18–20 40–43 13 1.54

This Work 0.25 µm GaN 8.5–10.5 100/10 28 21–29 35–37 13.26 2.19

5. Discussion

The measured PAE of the fabricated MMIC is reduced by about 5% compared with the PAE
expected by the simulation. This is because the gate-source pinch-off voltage of the fabricated transistor
shifts in a positive direction by about 0.5 V. The nonlinear transistor model provided by the foundry
company has a pinch-off voltage of Vgs = −3.0 V at Vds = 28 V, but the fabricated transistor has a
pinch-off voltage of Vgs = −2.5 V at Vds = 28 V. As shown in Figure 14, under a negative gate-source
voltage range of 0 V to the pinch-off voltage, the fabricated transistor has a reduced drain current
curve due to the pinch-off voltage shift, compared with the transistor model. Finally, the optimum
load resistance of the fabricated transistor is larger than the designed load resistance, and the PAE
hence decreases slightly because of the drain current clipping effect.
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6. Conclusions

In this work, we presented an X-band GaN power amplifier MMIC that was developed using a
0.25 µm GaN HEMT foundry process of WIN semiconductors. The output matching circuit utilized
an area-efficient corporate structure and was tuned at the third harmonic frequency for the PAE
improvement. The input matching circuit was designed to have a low input VSWR while reducing the
number of stages of the LC low-pass matching circuit through a simple lossy matching. The measured
results of the fabricated power amplifier MMIC showed a linear gain of 20 dB or more, a saturated
output power of 43.2 to 44.7 dBm, and a PAE of 35 to 37% from 8.5 to 10.5 GHz. If the transistor’s
pinch-off voltage can be controlled more accurately, the developed power amplifier MMIC is expected
to show very similar measured results to the simulated results. The developed MMIC chip could be
effectively used for X-band radar system applications.
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