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Abstract: The ability to perform target detection through walls and barriers is important for law
enforcement, homeland security, and search and rescue teams. Multiple-input-multiple-output
(MIMO) radar provides an improvement over traditional phased array radars for through-wall
imaging. By transmitting independent waveforms from a transmit array to a receive array, an
effective virtual array is created. This array has improved degrees of freedom over phased arrays and
mono-static MIMO systems. This virtual array allows us to achieve the same effective aperture length
as a phased array with a lower number of elements because the virtual array can be described as the
convolution of transmit and receive array positions. In addition, data from multiple walls of the same
room can be used to collect target information. If two walls are perpendicular to each other and the
geometry of transmit and receive arrays is known, then data can be processed independently of each
other. Since the geometry of the arrays is known, a target scene can be created where the two data
sets overlap. The overlapped scene can then be processed so that image artifacts that do not correlate
between the data sets can be excised. The result gives improved target detection, reduction in false
alarms, robustness to noise, and robustness against errors such as improperly aligned antennas.
This paper explores MIMO radar techniques for target detection and localization behind building
walls and addresses different mitigation techniques, such as a singular value decomposition of
wavelet transform method to improve localization and detection of targets. Together, these techniques
demonstrate methods that show a reduction in size and complexity of traditional through-wall radar
systems while still providing accurate detection and localization. The use of the range migration
algorithm in single and multi-target scenarios is shown to provide adequate imaging of through the
wall targets in near and far field. Also, a multi-view algorithm is used to provide improved target
detection and localization by fusing together multiple wall views.

Keywords: MIMO radar; through-wall radar; ultra-wideband radar; virtual arrays; through-wall
imaging; range-migration algorithm; singular value decomposition

1. Introduction

One of the earliest reports of the use of radar for the detection of targets through walls appeared
in an advertisement [1]. To date, waveforms used for through-the-wall detection and imaging include
both classical (such as short pulse or impulse, and linear or stepped frequency-modulated) and
sophisticated (such as noise or noise-like, chaotic, and M-sequence phase coded) approaches [2–17].
Each of these waveforms has its own advantages and limitations. Most are traditionally designed for
achieving the desired range and/or Doppler resolutions as well as specific radar ambiguity patterns.
In addition, the wave propagation characteristics through the wall material also plays an important
part in dictating the frequency range of operation [18–21].

Electronics 2017, 6, 70; doi:10.3390/electronics6040070 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-3568-2702
http://dx.doi.org/10.3390/electronics6040070
http://www.mdpi.com/journal/electronics


Electronics 2017, 6, 70 2 of 28

While excellent down-range resolutions can be achieved by transmitting short pulses or
ultra-wideband radar waveforms, synthetic aperture techniques have traditionally been used to obtain
comparable cross-range resolutions. This approach is based on linearly translating the radar antennas
and exploiting the relative motion between the radar antenna and the imaged scene. However, in many
applications, such an arrangement can be unwieldy, and therefore multiple-input-multiple-output
(MIMO) radar systems are being investigated in recent years. MIMO radar is a multistatic architecture
composed of multiple transmitters and receivers, which seeks to exploit the spatial diversity of
radar backscatter.

We provide here a brief review of several MIMO radar approaches. The concept of MIMO radar
capitalizing on the radar cross section (RCS) scintillations with respect to the target aspect in order to
improve the radar’s performance was presented [22]. A generalized framework for the signal model
that can accommodate conventional radars, beamformers, and MIMO radar was introduced. Coherent
MIMO radar concepts, performance, and applications were discussed in detail in [23]. Coherent MIMO
radar was introduced in the context of the MIMO virtual aperture. MIMO radar performance for a
single scatterer, waveform optimization, and ground moving target indicator (GMTI) performance
were addressed in detail. The performance of a MIMO radar for search and track functions was
analyzed in detail [24]. It was concluded that MIMO radars are generally efficient for searching and
not for tracking of targets.

Four different array radar concepts were compared based on their detection performance for a
surveillance task in various environments, including an urban environment [25]. These were pencil
beam, floodlight, monostatic MIMO, and multistatic MIMO. The array radar concepts showed an
increase in complexity accompanied by an increase in diversity. An analysis of MIMO radar with
colocated antennas was presented in [26]. It was shown that the waveform diversity offered by
such a MIMO radar system enabled significant superiority over phased-array radars. An analysis of
MIMO radar with widely separated antennas was discussed in [27]. Widely separated transmit/receive
antennas were shown to capture the spatial diversity of the target’s radar cross section (RCS). It was also
shown that with noncoherent processing, a target’s RCS spatial variations could be exploited to obtain
diversity gain for target detection and angle of arrival and Doppler estimation. Some hybrid-MIMO
radars have been investigated as well [28,29].

It was shown that coherent processing over widely dispersed sensor elements that partly surround
the target may lead to resolutions higher than supported by the radar bandwidth [30]. The performance
of the high resolution coherent MIMO radar was compared to the non-coherent MIMO radar and the
effect on performance of the number of sensors and their locations. Several adaptive techniques for
(MIMO) radar systems were studied [31]. Exploitation of the linearly independent echoes of targets due
to independent transmit waveforms from different antennas resulted in excellent estimation accuracy
of both target locations and target amplitudes, and high robustness to the array calibration errors.

Two options were proposed for data fusion for MIMO signal processing [32]. In the first option,
the raw data are transmitted to the central processor without delay but with the need for a large
communication bandwidth. The second option is to have distributed signal processing; i.e., some or all
of the required signal processing performed can be performed at the sensors, resulting in some delay
while conserving bandwidth.

The focusing property of a 2D circularly-rotating MIMO array was investigated for narrowband
and ultra-wideband cases within different media [33]. A sampling interval shorter than half wavelength
was shown to benefit the focusing property of the array.

Noise waveforms are optimal for MIMO radar applications due to the fact that independent noise
transmissions from different antennas are uncorrelated and therefore orthogonal [34,35].

Several hardware implementations of MIMO radar have been developed and tested. An
ultra-wideband MIMO radar system using a short pulse with a frequency content ranging between 2.0
and 10.6 GHz was discussed in [36]. A MIMO radar test-bed operating at 2.45 GHz was developed
and tested [37]. A MIMO radar imaging system operating over the 3–6 GHz frequency range was



Electronics 2017, 6, 70 3 of 28

described in [38]. A near-field MIMO radar imaging system operating over the 8–18 GHz frequency
range was described in [39]. A millimeter-wave MIMO radar system operating over the 92–96 GHz
was discussed in [40].

A generalized 3D imaging algorithm was presented for through-wall applications using MIMO
radar compensating for the wall effects [41]. The imaging algorithm was applicable to the imaging of
targets behind either single- or multilayered building walls. The through-the-wall MIMO beamformer
was shown to provide high-quality focused images in various wall-target scenarios. MIMO radar was
also explored for blast furnace application [42]. To considerably reduce operating costs and improve
the furnace’s productivity by means of an optimized charging process, the full 3-D burden surface
distribution was obtained using the MIMO radar principle.

2. Virtual Array Implementation

2.1. Basic Theory of Virtual Arrays

This section briefly reviews the theory of virtual arrays. Virtual arrays allow for a reduced
number of real antenna elements while still getting an effectively fully populated linear array. Linear
arrays are desirable for signal processing because many computationally efficient imaging algorithms
utilize linear arrays [43]. Virtual arrays take advantage of MIMO radar’s transmission of orthogonal
waveforms to increase the degrees of freedom [23]. The transmit and receive antennas can be in
arbitrary positions in three-dimensional space. The transmitting array has M elements, and the receive
array has N elements. The M transmit and N receive elements are located at xT,m ∈ R3 and xR,n ∈ R3,
respectively, where m = 0, 1, 2, . . . M− 1 and n = 0, 1, 2, . . . N − 1.

If the m-th and the n-th transmit element transmit signals are represented as φm(t) and φn(t),
respectively, the orthogonality of the transmitted waveforms can be expressed as [23]∫

φm(t)φ∗n(t)dt = δmn (1)

where δmn is the Kronecker delta. Therefore, a total of N ×M = NM signals can be recovered.
Now, the return from the transmitted signals can be modeled with respect to a far-field point

target for further analysis. The return from a far field point target at receiver located at xR,n from a
transmitter located at xT,m can be represented in slow time as [44]

ym,n(t) = ρtφm(t) exp
(

j
2π

λ
[u · (xT,m + yR,n)]

)
(2)

where ρt is the target reflectivity, λ is the wavelength, and u is the unit vector pointing toward the
point target from the location of the antenna array.

From this formulation, it can be inferred that the positions of both the transmit and receive
antennas will contribute to a phase difference observed in the returned transmitted signal. This phase
difference will help us to analyze the virtual array so it can be used as an advantage. From Equation (2),
it can be noted that this is the same as receiving from NM antenna elements at locations xT,m + yR,n.
This system of NM elements is what is known as the virtual array. This is because there are only
N + M real antenna elements, but there are effectively NM antenna positions. For this formulation,
it is assumed that the antennas are spaced far enough apart that there is no overlap; however, the
analysis would still be generally valid if there was overlap.

To simply the analysis further and to make it easier to synthesize arrays for practical use, it is
useful to present virtual arrays in the form of a convolution. First, the sum of the transmit positions
and the sum of the receive positions are represented as, respectively,

gT(x) =
M−1

∑
m=0

δ(x− xT,m) (3)
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gR(x) =
N−1

∑
n=0

δ(x− xR,n) (4)

The positions of the virtual array can thus be defined by

gT(x) =
M−1

∑
m=0

N−1

∑
n=0

δ(x− (xT.m + xR,n)) (5)

which can be recognized to be the convolution expressed as

gv(x) = gT(x)⊗ gR(x) (6)

The relationship in Equation (6) can be used to easily synthesize virtual arrays. If each real element
is treated as a “1” and each empty position is a “0” spaced out by a constant length, then different
uniform linear arrays can easily be constructed. Therefore, using this condition, the number of real
antenna elements can be reduced. This also reduces the weight and complexity of the system.

For our work, the virtual array formed by a specific arrangement of a uniform linear array (ULA)
shown in Figure 1 was used, where d is the virtual array spacing. This particular ULA geometry was
chosen to give a smaller aperture with larger number of virtual elements [45].
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used as calibration targets for different algorithms that will be discussed. The human targets were 
about 1.8 m (6 feet) in height. The targets in the two wall scenario were located at two ranges behind 
the wall: 2.13 m (7 feet) and 3.96 m (13 feet).  

The data were collected using a Keysight vector network analyzer (VNA) Model PNA N5225A. 
Two dual-polarized horn antennas were used to transmit and receive through a wall. A chirp 
waveform was generated by the VNA over the 2.5–4.5 GHz frequency range and transmitted. This 
frequency range represents a good tradeoff between penetration of wall material and range 
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Figure 1. Virtual antenna array geometry, wherein the top row indicates transmit and the bottom row
receive. The middle row is the evenly spaced linear virtual array creating a 4 × 4 array.

2.2. Experimental Setup

Data were collected of humans and corner reflectors through a wall constructed for through-wall
radar applications. The corner reflectors served the purpose of targets of interest and were also used
as calibration targets for different algorithms that will be discussed. The human targets were about
1.8 m (6 feet) in height. The targets in the two wall scenario were located at two ranges behind the
wall: 2.13 m (7 feet) and 3.96 m (13 feet).

The data were collected using a Keysight vector network analyzer (VNA) Model PNA N5225A.
Two dual-polarized horn antennas were used to transmit and receive through a wall. A chirp waveform
was generated by the VNA over the 2.5–4.5 GHz frequency range and transmitted. This frequency
range represents a good tradeoff between penetration of wall material and range resolution. It is
commonly used in the literature and produces good results when transmitting through materials such
as brick and cinderblock. A total of 402 frequency points were collected over the frequency range.

The range resolution ∆R is given by [46]

∆R =
c

2B
(7)
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where B is the bandwidth and c is the speed of light. For the 2 GHz bandwidth used, the range
resolution is computed as 7.5 cm. Transmit power for data collection was 0 dBm nominal.

The transmit and receive antennas used were vertically polarized horn antennas. A cart was
constructed to mount the antennas and create consistent and repeatable transmit and receive array
positions. Both the wall and the cart were movable so that data could be easily collected in multiple
environments. The antennas were excited from the output of the VNA. A total of 16 different antenna
positions were used from using the fully populated array. The scattering parameter S21 was collected
for each transmit and receive position, from which the received power was computed using

|S21|2 = kPR
PT
⇒ S21(dB) = k(dB) + PR(dBm)− PT(dBm)⇒ PR(dBm) = S21(dB) + PT(dBm)− k(dB) (8)

where PT is the transmitted power, PR is the received power, and k is a system calibration constant.
For each transmit and receive position, an empty dataset was taken without the target present in
the scene, which was used for background subtraction to remove non-moving clutter. Orthogonal
signals were generated by ensuring that each transmit and receive position was only active while it
was transmitting or receiving.

A movable wall was constructed for the purpose of carrying out the through-wall radar
experiments. The wall was 2.44 m × 2.44 m (8 feet × 8 feet) and had large caster wheels so it could
be moved to different areas to collect data easily. The wall was also reconfigurable so that it could
accommodate a variety of different wall materials. The wall was designed to handle cinder-block and
standard bricks. These are two common wall materials and represent different challenges. Cinderblock
leads to more internal reflections due to cavities as opposed to the solid brick material. The wall could
also be adjusted to handle widths of 20 cm, 15 cm, and 10 cm (8 in, 6 in, and 4 in respectively). The wall
was designed to be dry stacked so that different wall materials could easily be changed in and out of
the wall. In our work, we used only bricks for the wall material.

The geometry of the data collection arrangement is shown in Figure 2 and a photograph of the
test setup is shown in Figure 3.
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3. Range Migration Algorithm and Data Calibration

This section briefly reviews the range migration algorithm (RMA), which is an SAR imaging
algorithm that is used in airborne systems. However, it can be applied to short range through-the-wall
systems as well [47]. The RMA differs from other imaging algorithms because it does not assume that
the wavefronts incident on the targets are planar. Therefore, it makes an ideal candidate for short range
radar applications such as through-the-wall radar. Also, in terms of computational complexity, the
RMA can be competitive with other imaging algorithms. The RMA accounts for geometric waveform
distortion which again makes it ideal for short range imaging, imaging large scenes, and imaging
at a low center frequency. A drawback to RMA is that it requires a higher along-track sample rate
compared to other algorithms [48]. However, this is not necessarily a problem with through-wall-radar,
because the antennas are relatively closely spaced compared to airborne systems.

The RMA operates in the range frequency and azimuth frequency domains; this means that it
operates in the spatial frequency domain also known as the wavenumber domain. The RMA belongs
to a class of algorithms known as wavenumber domain algorithms. The algorithm takes the returns
from each antenna transmit position described by the virtual arrays in the frequency domain as inputs.
The input data matrix S is s(xn, ωm) and be described as

s(xn, ωm) =


σ1,1e−jω1τ1,1 σ1,2e−jω2τ1,2 . σ1,m−1e−jωm−1τ1,m−1 σ1,me−jωmτ1,m

σ2,1e−jω1τ2,1 σ2,2e−jω2τ2,2 . σ2,m−1e−jωm−1τ2,m−1 σ2,me−jωmτ2,m

. . . . .
σn−1,1e−jω1τn−1,1 σn−1,2e−jω2τn−1,2 . σn−1,m−1e−jωm−1τn−1,m−1 σn−1,me−jωmτn−1,m

σn,1e−jω1τn,1 σn,2e−jω2τn,2 . σn,m−1e−jωm−1τn,m−1 σn,me−jωmτn,m

 (9)

where σn,m is the complex reflectivity at the n-th position and m-th frequency and τn,m is the two-way
propagation delay from the radar to the target. The formulation of the RMA will continue from this
input matrix and progress as shown in the block diagram shown in Figure 4.
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3.1. Along Track Fourier Transform

The first step of the algorithm is to perform the discrete Fourier transform in the along-track
direction. This converts the spatial locations into frequency with units of radians per meter.
The frequency in the range direction is scaled by 4π/c and is denoted by KR. The frequency after
scaling varies between

fmin =
4π
(

fc − B
2

)
c

(10)

and

fmax =
4π
(

fc +
B
2

)
c

(11)

where fc is the center frequency. The azimuth spatial frequency after the along track FFT is denoted as
Kx and varies from π/∆x to −π/∆x where ∆x is the spatial sample spacing. The correction of warping
the range extent of a returned signal is done by remapping KX , which is achieved via Stolt interpolation.

3.2. Matched Filtering

The second step of the algorithm is to perform matched filtering. This operation is to correct the
range curvature of the scatterers and match targets to the scene center spatially in the wavenumber
domain. It is not the traditional matched filtering in time domain. This operation perfectly corrects the
curvature at the scene center range Rs but only partially corrects at other distances. This is done in the
azimuth frequency domain rather than the along track position domain. The phase of the matched
filter is

Φm f (KX , KR) = −RsKR + Rs

√
K2

R − K2
X (12)

At this point, the signal is of the form

S̃(KX , KR) =
∣∣∣S̃(KX , KR)

∣∣∣e−jΦ(KX ,KR) (13)
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After multiplication with the matched filter, it takes the form

S(KX , KR) =
∣∣∣S̃(KX , KR)

∣∣∣e−jΦ(KX ,KR)e−jΦm f (KX ,KR) (14)

The matched filter over compensates for targets further than the scene center and under
compensates for targets closer than the scene center. Therefore, we need another operation to complete
correcting the curvature of the return signals. This is done using the Stolt interpolation.

3.3. Stolt Interpolation

The Stolt interpolation operation corrects for the range curvature of all of the scatterers in the
scene. The spatial frequency KR of a scatterer varies over KX. This can be thought of as a sinusoid
with increasing frequency. The Stolt interpolation is a one-dimensional mapping from KR to KY as
a function of KX. This is like stretching a one dimensional sinusoid to reduce the frequency. The
goal is to have a constant KR frequency over KX which would in a sense straighten out the signal.
The mapping to KY is done using

KY =
√

K2
R − K2

X (15)

After this interpolation, the range curvature has been corrected for all the scatterers. Now the
signal needs to be truncated in the wavenumber domain to suppress spatial invariant side lobes.
Rewriting KR in terms of KX and KX , S(KX , KR) in Equation (14) can be expressed as S(KX , KY).

3.4. Space-Variant Impulse Response

In spotlight SAR, the azimuth angles over which the aperture observes each scatterer varies.
Therefore each scatterer returns a varying amount of range walk that contributes a linear component
to the azimuth spectrum that shifts the spectrum center to a non-zero carrier frequency [45]. The size
of this carrier frequency varies with the range-walk, so it varies with the scatterer’s position. Thus, the
spectra in the wavenumber domain will be slightly shifted with respect to each other depending on
their position in the scene. This causes the processing aperture to vary with respect to the different
scatterers after the 2D inverse Fourier transform. To correct for this, the wavenumber domain can be
truncated after the Stolt interpolation to only include a rectangular processing aperture. This truncation
makes it so that the spectra of each scatterer are processed by a common aperture. This corrects the
distribution of the side lobes caused by the space-variant impulse response. A Hanning window can
also be applied in range and azimuth before or after the data truncation. The Hanning window is
described by

w(n) = 0.5
(

1− cos 2π
n
N

)
, 1 ≤ n ≤ N (16)

The Hanning window suppresses the first sidelobe to −31.5 dB but also widens the −3 dB
response of the target. Overall, this is beneficial in this application because precise resolution in range
and azimuth is not the goal. The more important application is to determine the precise number of
unique targets behind the wall.

3.5. 2D Inverse Fourier Transform

The two-dimensional inverse Fourier transform can now be performed on S(KX , KY) to compress
the range and azimuth scatterers into the imaging domain S(X, Y). The 2D inverse discrete Fourier
transform can be easily computed in MATLAB.

3.6. Range Migration Algorithm Results

The range migration algorithm was used to image a corner reflector through a wall as a baseline
case to compare other images to. The corner reflector was placed 3.96 m (13 feet) centered down-range.
The wall material used was concrete. The antenna array was at a standoff distance of 0.3 m (1 foot).
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A target scene case and an empty range set case were used to background subject stationary clutter
such as the wall response. Figure 5 shows the images formed by the RMA from 10 to 50 dB image
dynamic range. A D-dB dynamic range means that all pixel values lower than D-dB below the peak
value were set to zero. The corner reflector is localized in both down-range and cross-range extents.
The sidelobes only start to appear significantly past 30-dB dynamic range.
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Figure 6 shows the corner reflector imaged at 50-dB dynamic range with varying applications
of windows and data truncation. When no data truncation is applied, the corner reflector shows
distorted side lobes and is also stretched out the cross-range extent. After data truncation, the return
from the corner reflector is more focused in the cross-range extent and the sidelobes are no longer
distorted. The application of the Hanning window before and after truncating the data is also examined.
The application of the window after the truncation reduces the sidelobes more significantly than after
the truncation because the Hanning window is smaller and the weights are larger. However, the
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3-dB response from the target is also widened as expected. The application of the window after the
truncation gives the best tradeoff between resolution and side lobe reduction.
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Figure 6. Images of corner reflector through wall at 3.96 m (13 feet) with varying window and
truncation application: (a) No truncation, no window; (b) No truncation, with window; (c) Truncation,
no window; (d) Truncation first, then window; (e) Window first, then truncation.

It can be seen that the RMA can completely compensate motion through range cells. Large scenes
do not suffer from geometric distortions using the RMA. More importantly for short range systems,
the RMA corrects the range curvature of every scatterer in the scene simultaneously. The RMA is
also computationally comparable to other algorithms and has been used for real time through-wall
imaging systems up to 10-Hz frame rate [49]. These considerations make the RMA an ideal algorithm
for use in short range through-wall radar systems.

3.7. Data Calibration Process

A calibration process exists to calibrate the virtual array to a known scatterer’s scene center for
use with the RMA [47]. This calibration is useful in uncalibrated radar systems using this imaging



Electronics 2017, 6, 70 11 of 28

technique [48]. The calibration can be performed for any target that has a large radar cross section and
resembles a point target. For example, a corner reflector or metal pole could be used as a calibration
target. The calibration target should be placed centered down-range at a range Rcal to the calibration
target scene center. A background scene should also be measured to eliminate noise from clutter in the
scene. The calibration measurement can therefore be represented as

scal(xn, ωm) = scal, target(xn, ωm)− scal, empty(xn, ωm) (17)

Now, a theoretical return from a point target at the same distance can be formulated as

scal,theory(xn, ωm) = e−j2kr Rcal (18)

in which Rcal is given by

Rcal =
√

x2
n − d2

cal (19)

where xn is the cross-range position of the target and dcal is the down-range position of the target.
Therefore, if the target is centered downrange (xn = 0), Equation (19) reduces to the distance
down-range to the target.

Now, a calibration factor can be obtained by taking the ratio of the quantities from Equations (17)
and (18) as

scalfactor(xn, ωm) =
scal, theory(xn, ωm)

scal(xn, ωm)
(20)

This calibration factor can then be applied to the experimental data.

scalibrated (xn, ωm) = s(xn, ωm)scalfactor (xn, ωm) (21)

Now, the array is calibrated based on that geometry. The calibration factor can be preloaded and
applied to new input data.

4. Multi-View Through-Wall Imaging Results

A multi-wall (two walls at right angles) view was investigated to try to improve the detection
and localization of targets through wall. The motivation for this is to suppress side lobes and multi
path returns associated with through wall SAR imagery [50]. These sidelobes and multipath image
artifacts can be misinterpreted as true targets and there is a requirement to create images of higher
dynamic range to reduce false positives and increase true positives. To accomplish these improvements,
a multi-view data fusion approach was investigated by creating two images of the same scene imaged
from viewing angles that are at 90 degrees to each other. This allows for rotation of the images to
accomplish image fusion using methods that are not computationally expensive and can provide
significant improvements as opposed to single view imagery. The tradeoff for this method is greater
hardware requirements as well as communication between independent radar units.

This work investigated two scenarios. The scenarios were a single target from two views and
two targets from two views. Figure 7 shows the multi-view through-wall radar setup. These were
chosen to show how this method can be used to improve some of the challenges with imaging both
scenarios. Figures 5 and 6 illustrated the problem of sidelobes and image artifacts as the dynamic
range of the image increases. To address this, the two scenarios were examined, and the advantages
will be discussed.
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4.1. Multi-Wall Processing Approach

For exploring multi-wall fusion, a typical geometry was assumed for the target location(s) from
each 90-degree wall, and data collected using this arrangement from the single available wall at the
respective distances. One of the datasets was then appropriately rotated to simulate the view from the
right-angled wall and the combined data were fused.

The multi-wall fusion is performed by rotating the pixels from the formed image by 90 degrees to
overlap with the pixels from another image. The rotation of the pixels can also be arbitrary and can be
represented by the follow transformation[

X′n
Y′n

]
=

[
cos θ − sin θ

sin θ cos θ

][
Xn

Yn

]
(22)

where Xn and Yn are the 2D coordinates of the original pixel, X′n and Y′n are the transformed
pixel coordinates, and θ is the angle of the wall view with respect to the primary wall view.
This transformation is valid for clockwise rotation of angle θ. In our case, θ is 90 degrees. The primary
wall view can be selected arbitrarily.

After the rotation, the images need to be truncated to an area of common overlap. This is
done in the processing of the RMA because the data can be truncated to any arbitrary down-range
and cross-range extent. By performing this truncation, the images can then be fused to provide
improvements to the data.

First, the two images should be normalized to account for differences in path length and scene to
scene multipath and miscellaneous system losses [51]. The normalization of the formed images can be
described as

Sk,norm(Xn, Yn) =
|Sk(Xn, Yn)|

max(|Sk(Xn, Yn)|)
(23)

where the maximum pixel value of scene in the denominator and the numerator is the n-th pixel in k-th
scene produce the image with normalized values. The scenes can then be fused using multiplicative
combining. Multiplicative combining can be represented by the following equation

Sfused(Xn, Yn) =
K

∏
k=1

Sk,norm(Xn, Yn) (24)
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where K is the total number of scenes (two, in our case).
This can improve the image quality because the target remains in the same location in each image,

but returns due to multipath, image artifacts, and noise generally vary with each image scene [51].

4.2. Single Target Scene

This scenario had a single target downrange from views of 2.13 m (7 feet) and 3.96 m (13 feet)
respectively. The targets were both centered in cross-range. The wall was made of cinder-blocks
dry stacked.

4.2.1. Single Target View 1

The target was imaged through the wall. Figure 8 shows the images produced by imaging the
target 2.13 m (7 feet) down-range through a single wall. The image target can be clearly seen up to
20 dB image dynamic range. Although not shown, beyond a 30 dB image dynamic range, the target
starts to spread in cross-range and a second target appears to form next to the main target, as the
sidelobes start to appear past 30 dB.Electronics 2017, 6, 70  13 of 28 
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4.2.2. Single Target View 2

This case shows the target image at a distance of 3.96 m (13 feet) down-range, where it can clearly
be seen in Figure 9. As before, beyond 30 dB image dynamic range, it was noted that the sidelobes
appeared stronger and could begin to be misinterpreted as a second target.
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4.3. Multiple Target Scene

This scenario had two targets imaged from two different wall views. In the first view, the targets
were about 4.27 m (14 feet) and 3.2 m (10.5 feet) down-range separated by about 1.52 m (5 feet). In the
second view, the targets were at about 4.57 m (15 feet) and 3.35 m (11 feet) down-range and separated
by the same distance.
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4.3.1. Multiple Target View 1

The two targets from View 1 can be seen in Figure 10. The two targets are clearly visible at 20 dB
image dynamic range, but beyond that, the sidelobes from the stronger target start to rival the weaker
target response in magnitude.
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4.3.2. Multiple Target View 2

The two targets from View 2 can be seen in Figure 11. The two targets in this scenario can be
distinguished up to 30-dB image dynamic range before sidelobes start presenting an issue. In this view,
the two targets contribute more equal magnitude responses.
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4.4. Two Wall Image Fusion

The images of the two views were fused using Equation (24). The results from these fusions are
shown in the following sections.

4.4.1. Single Target

The fusion of the single target view can be seen in Figures 12 and 13. The image is fused from the
perspective of the target from 3.96 m (13 feet) down-range. The fusion of the target views from the two
perspectives shown in Figures 8 and 9 shows a clear target response up to even a 50-dB image dynamic
range with minimal sidelobe response. However, the target is slightly spread in the down-range and
cross-range extent; overall, however, the image can be seen to a dynamic range of 20 dB higher than
from each single wall view.
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4.4.2. Multiple Targets

The fusion of the multiple target view can be seen in Figures 14 and 15. The image was fused
from the perspective of View 1 of the multiple target scene. The fusion of the two targets suppresses
the side lobes and the two targets can be imaged up to 50 dB image dynamic range. However, the
weaker target response only shows up after about 20 dB dynamic range. Therefore, while the two
distinct targets can still be clearly imaged, the target responses on different scales still pose difficulties
to successfully detect both targets.
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Figure 15. Fused images of multiple targets over 30–50 dB image dynamic range: (a) 30 dB; (b) 35 dB; 
(c) 40 dB; (d) 45 dB; (e) 50 dB. 

5. Wavelet-Singular Value Decomposition (Wavelet-SVD) Approach 

The images obtained using the RMA approach show relatively high sidelobes beyond 20 dB 
image dynamic range. The two-wall fusion technique succeeded in suppressing sidelobes, but at the 
cost of greater hardware requirements. In addition, the technique requires the use of some form of 
background subtraction to remove the response from the wall and other stationary clutter. A method 
that produces images with low sidelobes and no background subtraction is desirable, which will relax 
hardware and processing requirements. 

To achieve the desired results without using background subtraction, an approach using the 
wavelet transform was utilized. The wavelet transform gives the notion of resolution and scale. The 
inspiration for this method comes from wavelet denoising. In wavelet denoising, a multi-level 
wavelet transform is used to threshold out the noise from an image at different scales. In wavelet 
denoising, the noise is much weaker than the actual image. However, in through-wall radar, the wall 
response is much stronger than the target response. So instead of thresholding out the coefficients 
that represent the noise, the coefficients that contain the wall response can be thresholded to remove 
it. The wavelet coefficients can be operated on by a singular value decomposition (SVD). Large 
singular values represent the wall response and can be removed. The SVD outcome can be reversed, 
and the inverse wavelet transform can be used to return to the radar return domain. 
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5. Wavelet-Singular Value Decomposition (Wavelet-SVD) Approach

The images obtained using the RMA approach show relatively high sidelobes beyond 20 dB
image dynamic range. The two-wall fusion technique succeeded in suppressing sidelobes, but at the
cost of greater hardware requirements. In addition, the technique requires the use of some form of
background subtraction to remove the response from the wall and other stationary clutter. A method
that produces images with low sidelobes and no background subtraction is desirable, which will relax
hardware and processing requirements.

To achieve the desired results without using background subtraction, an approach using the
wavelet transform was utilized. The wavelet transform gives the notion of resolution and scale.
The inspiration for this method comes from wavelet denoising. In wavelet denoising, a multi-level
wavelet transform is used to threshold out the noise from an image at different scales. In wavelet
denoising, the noise is much weaker than the actual image. However, in through-wall radar, the wall
response is much stronger than the target response. So instead of thresholding out the coefficients that
represent the noise, the coefficients that contain the wall response can be thresholded to remove it.
The wavelet coefficients can be operated on by a singular value decomposition (SVD). Large singular
values represent the wall response and can be removed. The SVD outcome can be reversed, and the
inverse wavelet transform can be used to return to the radar return domain.

A new image can then be formed using the RMA from Section 3. In this section, we provide a brief
review and then examine both the SVD approach to mitigate the wall response, and the wavelet-SVD
method to remove the wall response. The use of a SVD for filtering singular values has been explored
and its merits convincingly established [52,53].
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5.1. Singular Value Decomposition (SVD)

A matrix A, in the form of Equation (9), can be decomposed using SVD, which is described as

A = UΣVT =
r

∑
i=1

uiσivT
i (25)

where U is a matrix whose columns are the orthonormal eigenvectors of AAT , V is a matrix whose
columns are the orthonormal eigenvectors of ATA, and the diagonal matrix Σ represents the singular
values of the matrix in terms of the square roots of the eigenvalues. These values are ordered from
greatest to least magnitude and represent the diagonal matrix where σ1 is the largest singular value
and σr is the smallest singular value.

The first singular value represents the best rank 1 approximation of the matrix [54]. For the matrix
Σ, each successive singular value represents the next best rank 1 approximation of the matrix. For the
application to through-the-wall radar, the largest singular values will represent the returns from the
wall. After some value σn, where 1 ≤ n ≤ r, the singular values will start to represent the target
space. So, by the removal of these n singular values, the response from the wall can be removed from a
data matrix A. This fact will be used for the SVD wall mitigation method as well as the wavelet-SVD
method. To reverse the SVD, the terms can be recollected after the desired singular values are nulled
and the data matrix A can be recovered using Equation (25).

5.2. 2-D Wavelet Transform

A 2D Wavelet Transform can be performed on the input matrix S. This can be represented as a
series of 1D filters and downsample operations as shown in Figure 16 [55,56]. The resulting cascade of
filters gives four sub-bands {A, H, V, D}. Each of these sub-bands can be the new input matrix S in
Equation (26). The number of singular values to remove from each sub-band, n, was chosen based on
experience after working with several images.
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For this application, a wavelet basis is selected based on how much it resembles the signal
trying to be recovered. For our application, the Daubechies 8 and bior 6.8 bases gave the best results.
The filters in Figure 16 can be cascaded to decompose the 2D matrix into different decomposition
levels. Each of these levels contributes a new set of sub-bands, and each sub-band can be operated on.
An inverse discrete wavelet transform can be taken to recover the matrix back into the original input
signal domain. This signal can then be used to image the scene. The matrix S containing the radar
returns s(xn, ωm) can be decomposed by Equation (25) to the form

S = UΣVH (26)
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This denotes the SVD of the input signal matrix. The wall subspace can be defined as

Sw = ∑
i∈n

uivH
i (27)

where n is the index of the singular value which includes the singular values of the wall. The orthogonal
subspace to the wall is

S⊥w = I− SwSH
w (28)

Hence, the wall response can be removed by the following equation

Snew = S⊥w S (29)

The new matrix shown in Equation (29) has now mitigated the wall response by effectively
zeroing out the singular values associated with the wall response [53]. This can either be done
once in the case of the simple SVD wall mitigation, or done for each sub-band as is the case for the
wavelet-SVD method.

5.3. Wall Effect Mitigation Using SVD

For these images, the wall clutter was mitigated without background subtraction using the SVD
decomposition. This removed the singular values associated with the wall response to enhance
the target.

5.3.1. Single Target

In the single target case located at 3.96 m (13 feet) down-range, the wall response was successfully
removed. However, at higher image dynamic ranges, the sidelobes start to become indistinguishable
from the main target response. Figure 17 shows the responses. Anything over 10-dB image dynamic
range can be regarded as multiple targets and it becomes difficult to distinguish the target from
sidelobe responses.
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5.3.2. Multiple Targets

The multiple target case has similar performance, as shown in Figure 18. Targets are placed at 3.35
(11 feet) and 4.57 m (15 feet) down-range. The wall response has been successfully mitigated but the
two targets are hard to be independently resolved beyond the 10 dB image dynamic range. The two
targets are difficult to image together because of their different amplitude responses.
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5.4. Wall Effect Mitigation Using Wavelet-SVD

These images were created using the wavelet-SVD based wall mitigation technique. The images
were created with a Daubechies 8 filter and using a three-level decomposition. Similar to the SVD case,
wall clutter was mitigated without background subtraction.

5.4.1. Single Target

The single target images from the target at 2.13 m (7 feet) down-range show that in this case the
performance is good all the way up to 50-dB image dynamic range. The target shows some spreading
in cross-range but it still suppresses the side lobes well. Figure 19 shows this case.
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5.4.2. Multiple Targets

The multiple target case with targets placed at 3.35 (11 feet) and 4.57 m (15 feet) down-range
shows that the wavelet-SVD method performs quite well with multiple targets. Figure 20 shows the
response. Both of the targets imaged are clearly visible up to 50 dB image dynamic range with no
significant sidelobes or image artifacts.
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6. Image Analysis

We propose and use the target-to-clutter ratio (TCR) as a metric to perform quantitative
comparisons between the various approaches. This metric has been used in other through the wall
radar work [52]. We define TCR as

TCR =
1

Nt
∑q∈At |I(q)|

2

1
Nc

∑q∈Ac |I(q)|
2 (30)

where At and Ac are the target and clutter regions of the image I(q), respectively, and Nt and Nc are
the number of image pixels in the target and clutter regions, respectively. Any pixel that does not
belong to the known target region is considered a clutter pixel.

Results of our image analyses are shown in Tables 1–4.
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Table 1. Comparison of processing methods.

Method TCR (dB)

No windowing and no truncation 43.76
No truncation and windowing 49.22
Truncation and no windowing 48.89

Truncation and windowing 50.39

Table 2. Comparison of single target 2-wall case.

Method TCR (dB)

Background subtraction Wall 1 40.99
Background subtraction Wall 2 38.87

Image fusion 61.10

Table 3. Comparison of multiple target 2-wall case.

Method TCR (dB)

Background subtraction Wall 1 44.12
Background subtraction Wall 2 44.49

Image fusion 51.36

Table 4. Comparison of wavelet and SVD approaches.

Method TCR (dB)

Single target SVD 26.79
Multiple target SVD 31.70
Single target wavelet 45.04

Multiple target wavelet 47.53

From Table 1, we infer that combined truncation and windowing improves the TCR by about
6.6 dB compared to the no truncation and no windowing case. When one of these operations is
performed, the TCR improves by about 5.3 dB.

Table 2 reveals that image fusion significantly enhances the TCR by about 21 dB for the single
target case compared to just using background-subtracted data from a single wall. However, from
Table 3, we note that similar improvement is not as dramatic for the multiple target case, but still
significant at about 7 dB.

Finally, Table 4 shows that the wavelet approach outperforms the SVD approach, with TCR
improvements ranging from 18.2 dB for the single target and 15.8 dB for the multiple target
cases, respectively.

7. Conclusions

This paper presented and discusses several approaches for MIMO radar imaging of single and
multiple targets through walls and presented extensive experimental results on different techniques
investigated. The virtual array configuration was employed to collect data with a lower number of
elements compared to a conventional linear array. For the RMA approach, multi-look images from
orthogonal aspect views were fused to localize and image single and multiple targets with excellent
down-range and cross-range resolutions after implementing image subtraction to reduce wall clutter.
A data truncation operation was applied to improve upon existing implementations of the algorithm.
To overcome the need for image subtraction which may not always be an option, the SVD and the
wavelet-SVD approaches were investigated to directly excise the strong response due to the wall and
perform further processing to obtain high-range resolution localization of single and multiple targets.
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The methods presented can be applied to any uniform linear array configuration of
through-the-wall radar data. The imagery can be used as the final images of a through wall system, or
be another input to further processing such as constant false alarm rate (CFAR) detection or tracking.
Future work in this area could address the choice of wavelet bases for the wavelet method, as well as
choice of appropriate wavelet coefficients to mitigate at each decomposition level.
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