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Abstract: Autonomous vehicles (AVs) are supposed to identify obstacles automatically and form
appropriate emergency strategies constantly to ensure driving safety and improve traffic efficiency.
However, not all collisions will be avoidable, and AVs are required to make difficult decisions
involving ethical and legal factors under emergency situations. In this paper, the ethical and
legal factors are introduced into the driving decision-making (DDM) model under emergency
situations evoked by red light-running behaviors. In this specific situation, 16 factors related to
vehicle-road-environment are considered as impact indicators of DDM, especially the duration of red
light (RL), the type of abnormal target (AT-T), the number of abnormal target (AT-N) and the state of
abnormal target (AT-S), which indicate legal and ethical components. Secondly, through principal
component analysis, seven indicators are selected as input variables of the model. Furthermore,
feasible DDM, including braking + going straight, braking + turning left, braking + turning right,
is taken as the output variable of the model. Finally, the model chosen to establish DDM is the T-S
fuzzy neural network (TSFNN), which has better performance, compared to back propagation neural
network (BPNN) to verify the accuracy of TSFNN.

Keywords: autonomous vehicles; driving decision-making model; the emergency situations;
red light-running behaviors; ethical and legal factors; T-S fuzzy neural network

1. Introduction

Research on autonomous vehicles (AVs) has examined social and technological trends in
the development of future vehicles for their potential value. Strategic innovations in AVs could
dramatically reduce congestion, emissions, traffic accidents, and the number of vehicles [1].
Furthermore, autonomous driving technology liberates humans from the driving task and significantly
eliminates operation error caused by humans. Equipped with an intelligent system, AVs will complete
attentive and precise tasks, including environment perception, decision-making, motion-planning,
control, and execution [2]. Among them, decision-making systems have the capability to deal with
complex decision environments and involve the layout of mathematical models [3]. Combined with
comprehensive cognitive sequence activities, it is required for AVs to design a driving decision-making
(DDM) model to form a prompt and accurate driving strategy. Taking the driver’s behavior
characteristic as the core, the micro-model, such as braking and lane-changing as the carrier, and the
driver’s behavior decision-making is modeled by machine learning [4]. Consequently, DDM is
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established in line with human driving habits. It is a key technology for the implementation of
AVs and the advanced driver assistant systems (ADAS).

Nevertheless, at present, DDM of AVs are mainly focused on normal driving situations [5] to
avoid collisions. DDM systems are usually affected by many elements, such as humans, vehicles,
roads, and environments [6]. One particular challenge is the limitation of pattern recognition and
obstacle detection, especially in most cases due to dead zones, object transparency, light reflection,
weather conditions, and sensor failure [7]. Therefore, some collisions are bound to happen under
emergent dangerous situations, which are defined as emergency situations. However, little research is
focused on DDM under emergency situations.

The design of DDM under emergency situations is faced with ethical and legal dilemmas.
AVs should reduce traffic accidents and avoid losses, but they will have to choose one between two
evils, such as hitting a barrier and killing passengers to protect pedestrians or protecting passengers
at the sacrifice of pedestrians [8]. The “trolley problem”, a typical case of decision-making under
emergency situations, has rapidly becoming the most recognizable scientific example of ethical and
legal situations, where individuals must decide whether to change the direction of a trolley that
will sacrifice one person to spare five passengers [9-11]. It is difficult for human beings to reach
consensus in decision-making when dealing with sacrificial dilemmas. In addition, AVs must obey the
law. However, there are few legal documents for AVs, and even fewer judge the liability of AVs in
traffic accidents. With more and more AVs on our roads, how to judge liability and who is scheduled
to be held responsible in case of traffic accidents must be decided, which involves not only legal
questions, but also moral ones [12]. Therefore, liability directly affects the design of DDM under
emergency situations. On the other hand, the use of machine learning techniques in ethics and legal
dilemmas concentrates on discriminating rules and principles that are often left implicit or obscured in
controversy involving ethical philosophy, psychology, and legal rule [13]. How to integrate the ethical
and legal factors into the DDM of AVs which accords with human-like decision-making mechanism is
a difficult problem requiring an urgent solution.

Bandana et al. [14] took full account of the legal factors in the process of lane-changing for AVs
and used a fuzzy controller to convert traffic rules into logical ones to control AVs, avoiding obstacles
without violating traffic regulations. Sarah et al. [15] studied lane-change decision-making when AVs
encountered obstacles. They took the comfort degree of the occupant as the ethical factor in the model
predictive control (MPC) and verified the cost function decision model by the experiment. Furthermore,
Goodall [16] proposed a three-stage strategy to standardize the ethical decision-making behavior of
AVs. The determined criteria for collision evaluation (such as death is more serious than injury) were
formed by ethics. Then, the results of the simulated collision test were combined with the neural
network for machine learning. The internal knowledge of the neural network was transformed into an
extractable rule to improve DDM. In addition, Iyad Rahwan, a cognitive scientist at the Massachusetts
Institute of Technology, conducted an online test called “Moral Machines” [17] to study the effects of
ethics on driving behavior, observing people’s choices for different emergency situations.

At present, much research uses neural network [18-20], decision tree model [21], support vector
machine regression [22], fuzzy set theory [23], expert system [24] and Petri net [25] to establish DDM
to study knowledge acquisition and presentation. Among them, neural networks are the most widely
used and successful learning algorithms to establish DDM. Neural networks have many advantages,
such as parallel computing, distributed information storage, fault tolerance, adaptive learning,
and so on. However, it is not suitable for representing rule-based knowledge. Meanwhile, fuzzy logic
is a process of uncertain and nonlinear reasoning. It is more suitable to express fuzzy and qualitative
knowledge. Its reasoning mode is more similar to human thinking. However, generally speaking,
it is not easy to achieve the function of adaptive learning. To sum up, the fuzzy neural network
combines the knowledge configuration of fuzzy logic and the self-study ability of neural network,
so it has the ability of uncertainty reasoning and self-study [26]. Combined with the advantages of
artificial neural network and fuzzy system, Takagi-Sugeno fuzzy neural network (TSFNN) is chosen to
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establish DDM in this paper. On the one hand, the parameters in TSFNN have clear physical meaning,
and can be assigned according to human experience, thus greatly improving the convergence rate.
On the other hand, it is simple to compute, which makes it handle large amounts of training samples
well. Meanwhile, it has strong adaptive ability to constantly correct parameters through self-learning.
In addition, in the research of DDM, TSFNN is widely used for obstacle avoidance control of intelligent
vehicles [27,28].

Previous research has failed to study DDM by ethical or legal factors under emergency situations,
which remains at the theoretical stage. In addition, the above study only considered either the ethical
or legal factor, both of which have a significant impact on DDM and cannot be ignored.

Only when the ethical or legal factors are used in a specific situation can we judge whether
DDM is consistent with the code of ethics and also legal. Therefore, in this paper, we take the
emergency situation evoked by red light-running behaviors as an example. In addition, ethical or legal
factors are described as the specific quantitative indicators in the situations by human drivers using
a questionnaire.

Specifically, this study makes the following contributions:

e In this specific scene, DDM under the emergency situation is subtly proposed, combined with
ethical and legal analysis.

e  Quantitative ethical and legal factors are represented by specific indicators under emergency
situations of red light-running behaviors. The duration of red light (RL), the type of abnormal
target (AT-T), the number of abnormal target (AT-N) and the state of abnormal target (AT-S) are
chosen to represent the ethical and legal factors.

e TSFNN model is developed to accomplish the inherent complex driving decisions,
including braking + going straight, braking + turning left, braking + turning right. By analyzing
the experimental data, TSFNN has better performance, compared to BPNN, for establishing DDM.

The remainder of the paper is organized as follows: Section 2 introduces the emergency situations
of red light-running behaviors. In addition, the decision-making in this situation is analyzed by
the dimensions of ethics and law. Section 3 presents the DDM involving ethical and legal factors.
In Section 4, a virtual decision-making experiment is designed to provide samples for DDM. In addition,
the validity of the model is verified by analyzing the experimental data. Finally, the conclusion is
drawn in Section 5.

2. Analysis of the Emergency Situations

2.1. Definition of the Emergency Situations of the Red Light-Running Behaviors

In this paper, the emergency situations of red light-running behaviors particularly refer
to where abnormal targets (pedestrians, non-motor vehicles, pets, etc., collectively regarded as
“abnormal target”) continue to pass through a crosswalk, even though the RL is on in the crosswalk of
the intersection. In this process, the avoidance space caused by the sudden entry of an abnormal target
is insufficient. Therefore, a collision cannot be avoided under the emergency situations. A typical
case is shown in Figure 1. We regard the blue vehicle as the AV. At this scene, the RLs are on for the
crosswalk and left-turn lane. The left view of the AV is obstructed by the left turn-waiting green bus,
thus the abnormal target fails to be detected in advance by the blue vehicle. It is about to encounter
the emergency situation.
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Figure 1. Typical emergency situation.

2.2. Analysis the Ethical Factor of DDM

Ethics refers to the norms of people’s internal values and external behavior [29]. To behave

like a human being, it is necessary for a module to interpret ethics and morality into indicators by
machine learning. Based on the statistical analysis of hundreds of questionnaires in “Moral Machines”
and combined with the specific scene of the emergency situations, the ethical indicators of DDM are
classified into the following four types.

Type of Abnormal Target: refers to the types of targets in front of AVs under emergency
situations, which are divided into human beings, animals, and transportation facilities. Meanwhile,
human beings can be further subdivided into age, gender, and physical condition and so on.
Number of Abnormal Target: refers to the number of targets in front of AVs under emergency
situations. In addition, a survey [8] shows that saving more lives is a significant factor in DDM.
Decision-making made by human drivers will change dramatically as the number of rescue
targets changes.

Special State of Abnormal Target: refers to prominent features that distinguish a target from an
ordinary person, such as thieves, pregnant women, tramps, etc., as well as people violating the
law (red light-running or reverse driving).

Priority Protection: The principle of priority protection in driving decision can be divided into
protecting the passengers and personnel inside the vehicle, protecting the pedestrians outside
the vehicle, or reducing the total loss of the collision and so on. AVs may avoid harming several
pedestrians by swerving to sacrifice one pedestrian or be faced with the dilemma of sacrificing its
own passenger to save one or more pedestrians.

In fact, if all the above indicators are considered, the dimensions are sizable, and the complexity

of DDM will be dramatically increased. At the same time, differences in individual cognition will
cause considerable controversy in the selection of specific indicators. Therefore, we select the first
two indicators for the study. Referring to German ethical principles of AVs [30], we define selection

principles of ethical factors as follows: distinguish pedestrians, non-motorized vehicles, and pets;
do not distinguish pedestrian’s age, gender, race, or body condition; do not distinguish brand, value of
vehicles; do not distinguish breed of pets.
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2.3. Analysis the Legal Factor of DDM

Under emergency situations, drivers will take full account of their own liability when making
decisions. In China, due to a lack of legal documentation to deal with AV traffic accidents, we take
existing legal documents as the basis for the legal analysis of the traffic accident liability judgment.

Traffic accident liability judgment of colliding with the abnormal target while going straight is
as follows:

Referring to a real case of “red light-running behaviors” [31], we feature the detail of traffic
accident liability judgment which is mainly related to the type (AT-T), state (AT-S), position of the
abnormal target as well as the duration of RL through the crosswalk.

1. In case of the emergency situations, if the RL comes on and the abnormal target has passed the
central line of the crosswalk, the driver has an obligation to avoid collision;

2. If the RL has lasted for a period of time and the abnormal target fails to pass the central line of
the crosswalk, the liability should be determined according to the specific situations.

Traffic accident liability judgment of colliding with the abnormal target while changing lanes is
as follows:

According to the relevant legal documents in China, the lane-change decision taken by the driver
under dangerous conditions is defined as an emergency risk aversion [32]. If the driver can ensure
the total loss caused by changing direction and collision is smaller than that of not changing lane,
the driver’s lane-change decision will be allowed and the party causing the dangerous situations
should bear full liability. In the actual situation, the damage caused by the collision is difficult to
describe quantitatively, and traffic police departments rely more on experience to judge and make the
responsibility determination. To reduce complexity, it is assumed that all lane-change decisions meet
the definition of the emergency risk aversion. The results of the traffic accident liability analysis are
shown in Table 1.

Table 1. The results of the traffic accident liability analysis.

Locati £A 1 s N
Serial Number RL ATT ATS ocatlor}r :r e:anorma Liability of Drivers
8 Going Straight Changing Lanes

1 Pedestrians Run

2 Red light Comes Non-motor Vehicles Hold Has Alrea.dy Passed the Above Primary Liability

3 on Just Now Ride Center Line Just Now

4 Pet Hold

5 Not Pull

6 Pedestrians Run Equal Liability

7 Red light Flas Non-motor Vehicles & Has Not Pgssed the No Liability

Already On : Center Line Yet
8 Ride e
Secondary Liability
9 Pull
Pet - -0
10 Not Pull No Liability

3. Design of DDM

Based on the environment perception, the decision-making system is central, which analyzes
logic reasoning and provides decision-making for AVs. Among them, DDM is the mathematical
model of the decision-making system, which plays an important role in vehicle avoidance and conflict
avoidance. Using situation information, the environment perception system will detect the emergency
situation mentioned in this paper. In addition, then, the decision-making system will classify and
predict the behavior of other targets in the situations by a specific classifier.

3.1. Establish of DDM

We design a set of complete processes to establish the DDM, as shown in Figure 2.
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Figure 2. Design of driving decision-making model (DDM) under the emergency situations of red
light-running behaviors.

DDM is supposed to have the ability to learn, so that it can be perfected during learning. Therefore,
the whole process is divided into two parts. The first part is the theoretical modeling. We need to
clear the impact factors of decision-making under the emergency situations of red light-running
behaviors [33]. According to the analysis of Section 2, covering the conventional vehicle, road,
environment, as well as ethics and law, the selected factors are regarded as the input variables of
DDM, and the output variable of DDM is the driving decision-making. The second part is acquisition
of the data; we designed a virtual driving experiment that reproduces the emergency situations of
red light-running behaviors. The driver controls the driving simulator to complete the experiment,
which provides data for the learning of DDM.

Nonetheless, in the previous analysis of ethics and law, there are still some vague concepts in the
indicators to characterize driving decisions, such as some legal factors, especially the duration of RL,
and how long it can take to describe a signal light that has just changed from green to red? In this
paper, we will present a clear answer. Furthermore, to enable DDM to deal with fuzzy information
and have the ability to learn, we build a DDM based on TSFNN and compare it with BPNN to verify
the effectiveness and superiority of TSFNN.
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3.2. TSFNN

A TSFNN is introduced in this paper and its structure is shown in Figure 3.

Consequent
Network p}i Y11

1 —

Feedback
Network

Antecedent ~ J
Network

Figure 3. Structure of T-S fuzzy neural network (TSFENN).

Fuzzy neural network merges the reasoning ability of fuzzy logic system with the self-learning
ability of artificial neural network. It is a powerful tool to address uncertainty and nonlinear
problems. Since its fuzzy rules use a linear equation as the conclusion, in the process of dealing
with multivariable systems, the number of fuzzy rules can be effectively reduced. In addition, it is
easier to combine with self-adaptive method, which has been widely used in the field of intelligent
control and decision-making.

The basic principle of the TSFNN is to characterize the membership degree u(u) of each element
u to the fuzzy subset f by specific numerical values, so that many fuzzy concepts can be quantitatively
described. The specific rules are as follows.

Suppose x = [x1,X2,..., xn}T denotes an input vector, each component x; is a fuzzy linguistic
variable, then: ' ' '

Rp:If xyis Al xpis Ab,...,x, is Al (1)

theny; = pjo+ ppx1 + ...+ PjnXn (2)

where R; is the j fuzzy rule, A{: is the j** linguistic value of the input variable x;, y; is the output
variable, according to the fuzzy rule, pj; is the fuzzy system parameter.
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3.2.1. The Antecedent Network of TSFNN

The antecedent network is divided into 4 layers [34,35].

Layer A (Input layer): The number of nodes is determined by the number of inputs, which is used
to convey each input variable.

Layer B (Fuzzy layer): It is used to calculate the membership degree u A of each input variable.

In this study, the Gaussian membership function is adopted.

y=e a2 (3)

The parameter ¢ and o determine the center point of the function and the width of Gaussian
membership function, respectively.

Layer C (Rule layer): It is used to calculate the firing strength «; of every fuzzy rule. In this paper,
the continuous multiplication operator is adopted.

“7:”A{(xl)*”AQ(XZ)”'*L{A’,',(X”) 4)

where u A (x;) is the corresponding subordinate function.

LayeIr D (Normalized layer): It is used to calculate the normalized firing strength of corresponding
rules [36]. The output variable &; of the front part network is calculated by a weighted average method,
which can be given by:

E]' = 06]/2 147 (5)
i=1

3.2.2. The Consequent Network of TSFNN

The consequent network of TSFNN is divided into 3 layers, consisting of r parallel sub-networks
with the same structure, each of which produces an output variable.

Layer E (Input layer): To compensate the constant in the fuzzy rule, the 0/ node of the input layer
is Xg = 1.

Layer F (Function layer): It is used to calculate the consequent parameters of every rule. Let input
weight average to the unadjusted rules:

Yij = Plo + Pix1+ .+ phyxn (6)

Layer G (Combined layer): It is the output layer of the entire network.
m
yi =) &yij (7)
=1

wherey; (i=1,2,...,r)is the weighted sum of each rule. The output of the antecedent network is
used as the connection weight of the layer G.

3.2.3. Network Learning Parameters

The learning parameters of TSFNN mainly include the connection weight p}i of the consequent
network and the central value c¢;; and the width 0;; of the membership functions of the nodes in layer B
of the antecedent network. Suppose the error cost function as:

r

E= %Z(fi*yi)z ®)

i=1
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In the formula, t; and y; represent the desired output and the actual output, respectively.
The learning algorithm of the parameter péi is:

oE _
EP —(t — y1)a;x; 9
Pji
pii(k+1) = pi(k) + Bt — y1)Tjx; (10)

By adjusting parameter péi, the structure of TSFNN can be simplified. The simplified structure is
also a kind of multilayer feedforward network. Therefore, we refer error backpropagation algorithm
of Back Propagation (BP) network into the learning algorithm to adjust parameters. The learning
algorithm for parameter adjustment is as follows:

ik +1) = (k) — ﬁgi (11)
9
oy (k+1) = a3 (k) — ﬁaf] (12)

4. Parameters of DDM

The selected parameters of DDM, namely the input and output variables of model, will directly
affect the validity of the model.

4.1. Input Variables of DDM

Based on the classification of influencing factors of decision-making in the existing research [37],
the ethics and legal factors are taken into account as well, and a total of 16 influencing indicators are
selected to design the questionnaires according to the emergency situations evoked by red light-running
behaviors. Influencing indicators are as follows: velocity of host vehicle (V1), braking capacity of host
car (B), the distance between the host vehicle and the obstacle (D), type of the right-lane vehicle (T),
velocity of the right-lane vehicle (V;), the road line shape (LS), the lane width (W), the road mark
(RM), duration of red light (RL), the weather condition and the visibility (WE), type of abnormal target
(AT-T), number of abnormal target (AT-N), state of abnormal target (AT-S), velocity of abnormal target
(AT-V), angle before collision (0), damage area (DA).

2000 questionnaires were distributed, 1244 were recovered and the recovery rate reached 62.2%,
among which 1148 effective questionnaires were obtained, and effective recovery rate reached 92.3%.
Through analyzing and processing of the questionnaire data, the input variables of the model
are determined.

As for input variables, on the one hand, if the input number is less, the model is too simple to
reflect the driver’s decision rule precisely. On the other hand, if it is too much, the coupling relationship
between the other influencing factors will increase the complexity of DDM and the training time.
In this paper, principal component analysis (PCA) is adopted to convert multiple correlated indicators
into fewer linear uncorrelated ones. PCA is an accepted tool in data analysis, and more generally [38].
The results of PCA for 16 influencing indicators are shown in Figure 4.

The cumulative variance contribution rate of the first five principal components reached 78.94%,
indicating that components can represent the influencing factors of DDM. The further output of the
rotational component matrix is shown in Table 2.

Among them, each load value is the correlation coefficient between each variable and PC. The PC
with large correlation coefficients is screened; thus, the decision-making indicator set is determined,
which is as shown in Table 3.
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Figure 4. The results of principal component analysis (PCA) for 16 influencing indicators. The x-axis
represents the first five principal components; y-axis represents the variance contribution rate of the
principal component.

Table 2. Influencing factors of driving decision-making rotational component matrix.

Indicators Components
1 2 3 4 5
Vi 0.938 —0.045 —0.088 0.022 —0.052
RL 0.927 —0.009 —0.027 0.209 —0.118
AT-N 0.889 —0.073 —0.014 0.255 0.037
W 0.787 —0.106 —0.091 0.303 —0.109
B —0.079 0.413 0.741 —0.131 0.053
LS 0.728 —0.012 0.134 0.061 —0.112
Vs 0.699 —0.156 —0.122 0.318 0.097
AT-T —0.129 0.924 0.064 —0.046 0.048
AT-S —0.014 0.907 0.127 —0.054 —0.046
RM —0.207 —0.047 0.898 0.250 —0.228
AT-T —0.079 0.413 —0.131 0.864 0.053
DA 0.255 0.030 0.691 —0.424 0.242
T 0.511 0.001 —0.014 0.612 0.142
WE 0.491 0.096 —0.086 0.530 —0.148
D —0.168 0.004 —0.011 0.049 0.832
0 -0.191 0.032 0.105 —0017 0.593

What bold indicates higher value in a column are selected as principal components; extraction method:
Main component; rotation method: with the Kaiser standard orthogonal rotation method; a. the rotation converges
after 8 iterations.

Table 3. Indicator set of DDM.

Number Indicator of Decision-Making

1 Velocity of host vehicle (V1)

Duration of red light (RL)

Number of abnormal target (AT-N)

Type of abnormal target (AT-T)

State of abnormal target (AT-S)

The road marking RM

Velocity of the right-lane vehicle (V;)

The distance between the host vehicle and the obstacle (D)

PO Ul W

The indicator set of DDM shows that the above factors with large correlation coefficients have an
important impact on driving decision-making. In the analysis of Sections 2.2 and 2.3, the indicator
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AT-T and AT-N imply the ethical factors; AT-T, AT-S, RL and RM imply the legal factors. As for the
indicator road mark (RM), since the emergency situations occur before the intersection stop line,
each lane marking line is a solid line. Drivers cannot drive over the solid line, otherwise they will be
judged as violating traffic law in China. Furthermore, there is no discrimination between the samples,
thus, RM is removed. The input variables of the remaining 7 indicators of DDM are marked as X;-Xy.
Details of each input variables is shown in Table 4.

Table 4. Information of the input variable of the model.

Input Variables Meanings of Input Variables Principle of Process Data

Velocity of host vehicle (V) refers to the
X1 instantaneous speed of the experimental vehicle
when the driver is making decisions.

Duration of red light (RL). 0 < RT < 3, the right
X3 light is on just now; RT > 3, the right light has
already been on.

V1 € [0,40], keep the data;
V1 € (40, 0), eliminate the data.

0<RT<3Xy=1;
RT >3, X, = 2.

Number of abnormal target (AT-N). Two groups
X3 of control experiments of AT-N =1 and AT-N =3
are set.

AT-N=1,X;3=1;
AT-N=3,X; =2.

Type of abnormal target (AT-T) is divided into AT-T = pedestrians, Xy = 1;

X4 pedestrians, non-motorized vehicles, pets AT-T = non-motorized vehicles,
! ! ' Xy =2; AT-T = pets, X4 = 3.
State of abnormal target (AT-S) is divided into
legal and illegal behaviors. Pedestrian running,
X holding non-motorized vehicles, pulling pets are ~ AT-S = legal behaviors, X5 = 1;
5 classified as the legal behaviors; cycling AT-S = illegal behaviors, X5 = 2.

non-motorized vehicles, not pulling pets are
classified as the illegal behaviors.

Velocity of the right-lane vehicle (Vy) refers to the
Xe- instantaneous speed of the vehicle in the right
lane when the driver is making a decision.

V; € [0,40], keep the data;
V1 € (40, 0), eliminate the data.

It is obtainedy joint calculation of
the centroid coordinate of each
object in the situations,

regardless of the height difference
in the centroid of two vehicles.

The distance between the host vehicle and the
obstacle (D) refers to the distance between the
centroid of the host vehicle and the

abnormal target.

X7

Note: Some provinces and cities in China stipulate that motor vehicles cannot exceed the speed of 40 km/h when
passing through urban road intersections.

4.2. Output Variables of DDM

The driving decision-making (D) is taken as the output variable of DDM. In the emergency
situations of Section 2.1, the blue vehicle is in the middle lane, and the abnormal target bursts in front
of the vehicles. In this case, the driver’s decision-making is divided into the following three situations,
as shown in Table 5.

Table 5. Output variables of decision-making models.

Decision-Making Symbol Threshold Output Threshold Range
Braking + going straight Dy 0.5 [0,1]
Braking + turning left D, 1.5 (1,2)
Braking + turning right Ds 2.5 [2,3]

D refers to braking + going straight, which means that the driver drives along the current lane
while braking. The abnormal target will be injured. Personnel of the host vehicle and the adjacent
lane vehicles will be safe; D, refers to braking + turning left, which means that the driver turn left
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while braking. The cockpit of the host vehicle will hit the vehicle in the left lane. The personnel of the
host vehicle and the left side vehicle will be injured. The vehicle in the right lane and the abnormal
target will be safe; Dj refers to the braking + turning right, which means that the driver turns right
while braking, hitting the vehicle in the right lane. Personnel of vehicle in the right lane will be injured,
and the host vehicle and the abnormal target will be safe. The DDM is described as shown in Figure 5.

Figure 5. Three feasible driving decision-making.

5. Verification and Analysis of DDM

After establishing the model of seven input variables and one output variable, we need to use a
driving simulation experiment to provide samples to train and verify DDM.

5.1. Virtual Driving Experiment

5.1.1. Scenes and Equipment of Experiment

After establishing the model of seven input variables and one output variable, we need to use a
driving simulation experiment to provide samples for the model, to train and verify the factors.

UC-win/Road software is used to establish the virtual emergency situations. Virtual scene can
access FORUMS.0 driving simulator which is a real vehicle control unit and the sample collection
frequency is set to 20 Hz. Driving simulator can be perfectly compatible with the virtual scene
to present the driver real driving experience. At the same time, the experimental equipment can
synchronously output more than 80 types of parameters such as target speed and steering wheel angle
in the scene. On the one hand, using the UC-win/Road data recording module, the driver’s operation
process is recorded, which facilitates the experimental screening. On the other hand, it has ability to
output more than 80 types of recorded items to record the physical status information of the vehicle
and the surrounding objects when the emergency situations occur.

Based on the ten different scenarios listed in Table 1, the input variables X;, X3, X4 and X5 are used
as the basis for the division of experimental scenes. Furthermore, the dimension of X3 is taken into
account, thus, the 2 x 10 = 20 scene is set up, which corresponds to ten kinds of situations analyzed by
Section 2.3. After data processing, data of input variables X;, Xg and Xy can be obtained.
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5.1.2. Staffs of Experiment

In the driving simulation experiment, 45 experienced drivers are recruited from those who
participated in the questionnaire. Among them, there are 35 male drivers, 10 female drivers.
Driving ages range from 2 to 10 years. In addition, the total driving mileage is more than 5000 km.
The experimental staff are both physically and mentally healthy and energetic.

5.1.3. Process of Experiment

The volunteers firstly drive freely in the urban road network according to the traffic rules and
will test after being familiar with the experimental equipment. After each scene begins, the driver
drives normally. When the volunteers are about to arrive at the intersection, the control staff can
control the abnormal targets and the adjacent lane vehicles, and artificially create the emergency
situations. The driver makes decisions and then performs decisions until the collision with any target
in face of the emergency situations, which is a set of experimental samples. In addition, each driver
will participate in ten scenes. Therefore, 10 x 45 = 450 groups of experimental data are collected.
The driving simulation experiment process is shown in Figure 6.

Figure 6. The driving simulation experiment process.

5.2. Process of Experimental Data

5.2.1. Statistics of Experimental Data

Taking AT-T as the basis for data statistics, results of DDM are shown in Figure 7.

Among the three kinds of decision-making, the number of braking + going straight is up to 25§;
accounting for 57.3% of the total, and the number of braking + turning right decisions is 182; accounting
for 40.4%; only ten decisions are braking + turning left, accounting for 4.5%. Combined with the
experimental questionnaire, the following analysis can be made:

e  Most drivers believe that braking + turning left decision will have more severe consequences.
Drivers drive on the right side of the road in China. Therefore, the left-turning decision will cause
the cockpit to hit the abnormal target directly, which is easy to cause damage to the driver.

e  When the abnormal target is pedestrian, there is no significant difference in the number
of decisions making between braking + going straight and braking + turning right; as for
non-motorized vehicles, braking + turning right decision slightly increased.

e  When the target is a pet, in the case of uncertainty about the collision consequences of turning
right, a host of drivers will choose to go straight to sacrifice pets avoiding the right side of the
vehicle caused by unknown consequences.
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Figure 7. Statistics of experimental data.
5.2.2. Screening of Experimental Data

Human drivers may make mistakes in the execution of decision-making. Some drivers may
be nervous, hesitant, and so on, leading to the results of the experiment are not consistent with the
driver’s real decision-making in their mind. Therefore, to solve the above problems, some unqualified
experimental data need to be corrected or eliminated. The playback function of UC-win/Road 13.0
is enabled to reproduce the previous experiment process, and the volunteer can revise the previous
decision to ensure that the decision is consistent with the actual operation. In addition, the volunteers
also randomly select the others” experimental video to rate. A low score sample indicates that the
decision is not acceptable to the public. We should eliminate such samples and improve the recognition
of the total samples.

5.3. Results of Experiment

After the data processing, we eliminate 30 group data. 420 groups are used as samples for training
and testing. 336 groups (80% of the total number of samples) are used as training samples (188 groups
of straight samples and 148 groups of right-turning samples), and the remaining 84 groups are taken
as test samples (49 groups of straight samples and 35 groups of right-turning samples) to train and
verify the proposed DDM.

At the same time, back propagation neural network (BPNN) is used to establish the
decision-making model for comparison. The experimental data is recorded by the data output
module to train and verify DDM. BPNN is used for comparison to verify the validity of the
model. With integrated system, explicit algorithmic process, data identification and simulation
function, BPNN is one of most popular learning algorithms with the excellent ability to solve
nonlinear problem [22,39]. To verify the performance of TSFNN, a typical feedforward BPNN is
established to compare with TSFNN on the relationship between decision influencing factors and
driver decision-making [22].

The training results of TSFNN and BPNN are shown in Figures 8 and 9 respectively, and the error
comparison results of the two models are shown in Figure 10.

For further comparison, the mean absolute error (MAE) and the root-mean-square error (RMSE)
are calculated, respectively. MAE can better reflect the actual situation of the forecast value error,
and its calculation formula is as follows:

1 m
MAE = =) |fi — yil (13)
m3

In this formula, f; is the predicted value y; is the actual value and m is the sample number.
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Figure 10. The error comparison results of TSFNN and BPNN.

RMSE is used to measure the deviation between the observed value and the actual value, and the

formula is as follows:
m

RMSE =[5 (i~ vi) (14)
i=1

The comparison of the two models is shown in Table 6.
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The comparison results show that the decision model based on TSFNN has obvious advantages
in accuracy and the overall error is smaller than BPNN. Therefore, TSFNN can accurately reflect the
relationship between decision-making factors and DDM.

Table 6. Comparison of TSFNN and BPNN Prediction results.

TSFNN BPNN
Training Samples Test Samples Training Samples Test Samples
Braking +  Braking+  Braking+  Braking+  Braking+ Braking+ Braking+  Braking+

Going Turning Going Turning Going Turning Going Turning

Straight Right Straight Right Straight Right Straight Right

MAE 8.08% 8.80% 7.24% 10.77% 12.11% 12.35% 11.43% 15.44%

RMSE 0.0044 0.0053 0.0037 0.0083 0.0099 0.0112 0.0092 0.0146
Maximum absolute error 17.96% 16.51% 19.60% 17.40% 27.18% 27.43% 31.18% 29.52%

6. Conclusions

In this paper, a DDM was developed to make accurate driving decision-making for AVs under
the emergency situations evoked by red light-running behaviors. The ethical and legal factors which
were difficult to describe in DDM were quantitatively characterized. RL, AT-T, AT-N and AT-S
indicated ethical and legal factors. Seven main influencing factors of DDM were determined by
PCA as the input variable of DDM. The driving decision-making (D) was developed to accomplish
the inherent complex and precise tasks, including braking + going straight, braking + turning left,
braking + turning right, which was taken into account as the output variable. Consequently, a DDM
based on TSFENN was established. Training samples were collected by driving virtual experiments.
At the same time, considering the interference of artificial factors, we eliminated the unqualified
sample data. TSFNN was trained and compared with BPNN. Experimental results showed that
the output results of TSFNN were more accurate, and the error was smaller than that of BPNN,
and the quantitative ethical and legal factors could be accurately and successfully estimated by the
proposed DDM.

Although this article integrates ethical and legal factors into DDM, there are still some limits.
This paper considers the emergency condition evoked by red light-running behaviors at the
intersections, but the traffic scene is infinite. We will consider more situations in the future. In addition,
in the process of establishing a decision model, the correlative parameters of vehicle dynamics and the
transient static decision are not considered. In addition, the influence of the dynamic space state of
other objects in the situations on the driving decision is not considered either. The establishment of
dynamic and real-time DDM is required in future study.
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