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Abstract: Sensing services for the detection of humans and animals by analyzing the environmental
changes of wireless local area network (WLAN) signals have attracted attention in recent years.
In object detection using WLAN signals, a widely known technique is the use of time changes
in received signal strength indicators that are easily measured between WLAN devices. Utilizing
channel response, including power and phase values per subcarrier on multiple input multiple output
(MIMO), the orthogonal frequency division multiplexing transmission was researched as channel
state information (CSI) to further improve detection accuracy. This paper describes a WLAN-based
CSI monitoring system that efficiently acquires the CSI of multiple links in a target area where
multiple CSI measuring stations are distributed. In the system, a novel CSI monitoring station
captures wireless packets sent within the area and extracts CSI by analyzing the packets on the
sounding protocol, specified by IEEE 802.11ac. The paper also describes the system configuration
and shows that indoor experimental measurements confirmed the system’s feasibility.

Keywords: channel state information (CSI); received signal strength indicator (RSSI); sensing;
object detection; CSI feedback; IEEE 802.11ac; multiple input multiple output (MIMO);
orthogonal frequency division multiplexing (OFDM)

1. Introduction

The widespread use of mobile devices (e.g., smartphones, tablet personal computers, etc.) has
explosively increased wireless communication traffic [1]. To stably and efficiently accommodate
the massive amount of traffic, it is necessary to further improve system capacity on the current
wireless communication systems (i.e., mobile and wireless local area network (WLAN) systems) [2–5].
Reusing the facilities of these systems has attracted attention because it enables other use scenarios of
wireless signals to be developed, including sensing services that provide localization, object detection,
and so on.

The Global Positioning System (GPS) was developed as an outdoor localization service for
providing the positions of mobile devices, automobiles, and so on. This included the widespread
development of GPS receivers that monitor multiple satellites and solve equations to determine the
precise positions of objects by using deviations from true time. However, it is difficult to use the GPS
in indoor environments where signals from satellites do not reach. Consequently, indoor localization
services have been developed in which receiving power and arrival direction are calculated by using
WLAN and/or Bluetooth signals and various sensors [6–9].
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Other sensing services were studied in which objects (e.g., humans, animals, etc.) are detected
by analyzing environmental changes of wireless signals and sensors [10–13]. It is widely known
that object detection in WLAN systems can be achieved by analyzing environmental changes in the
received signal strength indicator (RSSI). From analyzing the RSSI, the average receiving power within
the frequency channel between WLAN devices [10–12] can be easily acquired at most WLAN devices
with a small amount of information. This approach is widely used in the various object detection
services. In the current evolution of machine learning techniques, research was done not only on object
detection, but also on behavior detection (e.g., detecting biological activities and gestures) [12–14].
However, its detection accuracy is limited because RSSI is averaged by multiple components such
as antennas and subcarriers. To further improve the accuracy, channel state information (CSI) was
studied by utilizing channel responses, which included received power values per subcarrier on the
orthogonal frequency division multiplexing (OFDM) transmission [13–15]. They also included relative
values (power and phase information) between transmitter and receiver antennas via multiple input
multiple output (MIMO) transmission [16]. However, as devices capable of outputting CSI exist mainly
for research applications [17], it is difficult for general devices to acquire this function. Therefore,
we consider that the utilization of general devices and efficient acquisition of CSI are issues to improve
CSI monitoring, because the CSI to be acquired in the future will increase.

In this paper, we propose a WLAN-based CSI monitoring system that efficiently acquires the CSI
of multiple links in a target area where multiple CSI measuring stations are distributed. In the proposed
system, the CSI measuring stations assume the WLAN device specified by IEEE 802.11ac [18]. Then,
a novel CSI monitoring station located in the target area captures wireless packets sent from measuring
stations and extracts CSI by analyzing the CSI feedback frame specified by IEEE 802.11ac in the
captured packets. Against issues described in previous paragraphs, to demonstrate the effectiveness of
efficient CSI acquisition and the system’s feasibility based on indoor experimental results, we show a
configuration of the system using general WLAN devices.

The remainder of the paper is organized as follows: Section 2 explains the very high throughput
(VHT) sounding protocol specified by IEEE 802.11ac. Section 3 describes the proposed WLAN-based
CSI monitoring system with a specific system configuration. Section 4 shows how indoor experimental
results confirmed the system’s effectiveness. Finally, a summary is given in Section 5.

2. VHT Sounding Protocol Specified by IEEE 802.11ac

This section explains the VHT sounding protocol, which is the key elemen.t of the proposed system.
Generally, transmit beamforming for single-user (SU) and multi-user (MU) MIMO transmissions
requires knowledge of channel responses as CSI to calculate a pre-coding matrix that is applied to the
transmitted signal to optimize reception at one or more receivers. Note that the IEEE 802.11ac specifies
an explicit feedback mechanism in which the receiver directly estimates the channel responses per
subcarrier from the training symbols transmitted by the transmitter, and sends back the CSI to the
receiver via the VHT sounding protocol.

Figure 1 shows an example of the VHT sounding protocol for measuring the channel responses as
CSI between WLAN access point (AP) and two WLAN stations, STA-1 and STA-2. This protocol is
composed of a VHT null data packet (NDP) announcement, VHT NDP, VHT compressed beamforming,
and beamforming report poll frames. In the protocol, AP transmits the VHT NDP announcement
frame in order to call STA-1 and STA-2. AP continually broadcasts the VHT NDP frame to estimate
the channel responses between AP and both STA-1 and STA-2. At the same time, STA-1 and STA-2
estimate the channel responses using the training symbols of the received VHT NDP frame. In addition,
the estimated channel responses are compressed by the compression method specified by IEEE 802.11ac.
Thereafter, STA-1 stores the compressed channel responses in the VHT compressed beamforming frame
and feeds its CSI back to the AP. Next, STA-2 feeds back the CSI in accordance with the beamforming
report poll frame of the AP. The detailed functions of each frame are described below.
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Figure 1. VHT sounding protocol specified by IEEE 802.11ac.

2.1. VHT NDP Announcement and VHT NDP Frames

The VHT NDP announcement frame offers to call one or more stations that require the transmit
beamforming for SU-MIMO or MU-MIMO transmissions by specifying the identification (ID) of the
target station to the STA Info field within the VHT NDP announcement frame. The STA info field
also includes the feedback type (SU or MU) and index, as well as Nc, the indicated column size of
channel response matrixes. After transmitting the VHT NDP announcement frame, the VHT NDP
frame including only the training symbols is continually broadcast to estimate the channel responses
per subcarrier at the target station. In addition, as WLAN devices specified by IEEE 802.11ac are
able to select a channel bandwidth such as 20, 40, 80, 80 + 80, and 160 MHz, the VHT NDP frame
corresponding to each bandwidth can be transmitted.

2.2. VHT Compressed Beamforming Frame

Figure 2 shows a configuration of the VHT compressed beamforming frame as one of the
management frames in IEEE 802.11ac. Figure 2a indicates a frame structure of the VHT compressed
beamforming frame on the medium access control (MAC) layer. In the frame, the legacy field is from
the beginning to the HT (high throughput) Control and the VHT field is from Category to the FCS
(frame check sequence) as related to the CSI feedback in IEEE 802.11ac. In the VHT sounding protocol,
the Category, VHT Action, and VHT MIMO Control fields are specified respectively as VHT, VHT
compressed beamforming, and information for receiving CSI feedback. Note that detailed parameters
were reported by Reference [18].
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Figure 2. Configuration of the VHT compressed beamforming frame. (a) Frame structure on MAC
layer; (b) VHT MIMO Control field; (c) CSI field.
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To decompress the compressed CSI to the channel responses per subcarrier in MIMO-OFDM
transmission, the VHT MIMO Control field shown in Figure 2b includes the number of rows, Nr,
and the number of columns, Nc, of the channel responses, the bandwidth (20, 40, 80, 80 + 80, 160 MHz),
the grouping method (which is either all subcarriers or has 1–4 skipped subcarriers), the bit numbers
(φ, ψ) of angle information of the compressed channel responses, and the feedback type (SU, MU).
The compressed channel response is stored in the CSI field shown in Figure 2c. In the CSI field,
the average signal-to-noise power ratio (SNR) values corresponding to each stream are sequentially
stored in accordance with the SNR list in Table 1. Subsequently, angle information as shown in Table 2
of the channel response in each subcarrier is stored. Here, Na is the number of angle parameters and φ

and ψ are angle information after compression.

Table 1. SNR list.

Value Average SNR

−128 ≤−10 dB
−127 −9.75 dB
−126 −9.5 dB

. . . . . .
+126 53.5 dB
+127 ≥53.75 dB

Table 2. List of φ and ψ.

Size of Matrix
(Nr × Nc)

Number of Angles
(Na) The Order of Angles

2 × 1 2 φ11, ψ21
2 × 2 2 φ11, ψ21
3 × 1 4 φ11, φ21, ψ21, ψ31
3 × 2 6 φ11, φ21, ψ21, ψ31, φ22, ψ32
3 × 3 6 φ11, φ21, ψ21, ψ31, φ22, ψ32
4 × 1 6 φ11, φ21, φ31, ψ21, ψ31, ψ41
4 × 2 10 φ11, φ21, φ31, ψ21, ψ31, ψ41, φ22, φ32, ψ32, ψ42

. . . . . . . . .
8 × 8 56 φ11, φ21, φ31, φ41, φ51, φ61, φ71, . . .

The compression method specified by IEEE 802.11ac was explained in Reference [18]. Although
a number of CSI compression techniques were researched, the feature of the compression method
assumed in this paper is that the number of each element in the channel response matrix is reduced by
applying the Givens rotation. In other words, this feature is a compression technique in the spatial axis
rather than in the time and frequency axes. In addition, since the channel response to be compressed is
aimed at the transmission beamforming on the transmission side, instead of feeding back, the V matrix
is fed back assuming that the eigenbeam weight is used. The V matrix is a right singular matrix after
singular value decomposition of the channel response as shown in Equation (1):

H = UΣVH (1)

where H is the channel response as the CSI, U is a left singular matrix, and Σ is a diagonal matrix with
singular values of H. Then, V is calculated as shown in Equation (2) by using the Givens rotation.

V =
[
∏min(Nc,Nr−1)

i=1

[
Di

(
1i−1 ejφi,i · · · ejφNr−1,i 1

)
∏Nr

l=i+1 GT
l,i(ψi,i)

]]̃
INr×Nc. (2)
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Di is Nr × Nr diagonal matrix as shown in Equation (3):

Di

(
1i−1 ejφi,i · · · ejφNr−1,i 1

)
=



Ii−1 0 · · · · · · 0
0 ejφi,i 0 · · · 0
... 0 0 0 0
...

... 0 ejφNr−1,i 0
0 0 0 0 1


. (3)

Gl,i(ψ) is the Givens rotation matrix as shown in Equation (4):

Gl,i(ψ) =


Ii−1 0 0 0 0

0 cos(ψ) 0 sin(ψ) 0
0 0 Il−i−1 0 0
0 −sin(ψ) 0 cos(ψ) 0
0 0 0 0 INr−1

, (4)

where I is the identity matrix, Ĩ is the identity matrix in which zero is inserted in the missing element
in the case of Nr 6= Nc. The φ and ψ parameters are calculated by Equation (2) and quantized by
Equation (5): {

φ = kπ

2bφ−1 +
π

2bφ
,

ψ = kπ

2bψ+1 +
π

2bψ+2 .
(5)

The V matrix is decompressed from the notified angle information. Additionally, the number of
quantization bits of φ and ψ differs between the SU and MU feedback types. For SU it is (bφ and bψ) =
(4, 2) or (6, 4) and for MU it is (bφ and bψ) = (7, 5) or (9, 7).

2.3. Beamforming Report Poll Frame

The beamforming report poll frame offers to call a WLAN station that notifies CSI. The station
receiving this frame and indicated via the Feedback Segment Retransmission Bitmap transmits CSI
using the VHT compressed beamforming frame.

3. WLAN-Based CSI Monitoring System

3.1. System Configuration and System Flow

Figure 3 shows a concept of our proposed WLAN-based CSI monitoring system for detecting
objects (humans or animals) in a target area. The system flow includes four steps: initialization,
monitoring, transfer, and analysis.

At the initialization step, CSI measuring stations specified by IEEE 802.11ac are distributed in
the target area. The system manages multiple CSI measuring stations, which are general devices
without special specifications, and adjusts their locations in accordance with the movements and
heights of the objects. Other parameters are also set in the CSI measuring stations, including the link
connection, channel band, bandwidth, and transmit duration of the sounding frame. At the monitoring
step, each CSI measuring station periodically exchanges the sounding frame via the VHT sounding
protocol in accordance with the set parameters. At the same time, the CSI monitoring station located
in the target area captures the wireless packets exchanged between the CSI measuring stations. It then
extracts CSI by analyzing the sounding frame in the captured packets and decompressing the CSI to
the channel responses per subcarrier in MIMO-OFDM transmission from acquired angle information
as shown in Section 2. At the transfer step, the CSI monitoring station transfers the decompressed
channel responses to a cloud server via backbone communication systems. However, when the transfer
amount of CSI becomes huge, problems of backbone system load and detection delay occur. Therefore,
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for a practical system, the transfer amount must be suppressed by applying CSI coupling, other
compression, and screening. Furthermore, when using a wireless communication system for the
backbone system, it is important to transfer CSI in a short time by expanding the number of streams
and bandwidth. At the analysis step, the cloud server analyzes the instantaneous channel responses
stored in chronological order and outputs the detection results using machine learning techniques that
create a learning model from statistical information of the pre-acquired CSI. Finally, the results are
provided to companies and individuals.
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3.2. Features of the Proposed System

This subsection describes features of the proposed system in terms of detection accuracy, total
cost, and backbone load by comparing them with a conventional system that manages multiple
CSI measuring stations without a CSI monitoring station. First, we consider that the proposed and
conventional systems have equal detection accuracies because both systems manage multiple CSI
measuring stations in the target area. On the other hand, the proposed system improves the total
cost and backbone load more than the conventional system. In the latter system, each CSI measuring
station requires a wireless or wired communication function to transfer the measured CSI from
the CSI measuring station to the network cloud server. Therefore, costs due to the communication
function increase at the CSI measuring station. Moreover, when the measured CSI is transferred to the
cloud server, the transfer load of the backbone system becomes large. In particular, transmission
efficiency may be lower for wireless communication than for wired communication, so further
deterioration occurs.

However, in the proposed system the CSI measuring station does not require a communication
function because the CSI monitoring station transfers the acquired CSI to the cloud server. Therefore,
the CSI measuring station is simply based on the WLAN device. However, although a CSI monitoring
station requires functions of communication, capture, memory, etc., the impact on total cost is small
because there is only a single CSI monitoring station. In addition, CSI can be transferred efficiently
since it is possible to apply SU-MIMO and MU-MIMO transmissions and use CSI acquisition stations
with multiple antennas to achieve high transmission speed.

4. Performance and Feasibility Evaluations

4.1. Performance Evaluation

In this subsection, we describe the CSI measuring duration obtained in simulations for measuring
CSI in the conventional and proposed systems. Note that CSI measuring duration is the time required
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for all stations to transfer CSI. The simulation parameters we used are listed in Table 3. The AP receives
the signals from the CSI measuring station and the CSI monitoring station via wireless transmission.
The bandwidth is 20 MHz and the AP, CSI monitoring station, and CSI measuring station have
respectively four, four, and two antennas. In the conventional system, we assumed that in order to
communicate with the stations of the cell edge, the transfer scheme between the AP and CSI measuring
station is QPSK (Quadrature Phase Shift Keying), 1/2 convolutional rate, and two streams on MIMO
transmission. In the proposed system, it is QPSK or 16QAM (Quadrature Amplitude Modulation),
1/2 convolutional rate, and two or four streams in MIMO transmission. The bit numbers, bφ and
bψ, for the CSI compression are respectively six and four. Figure 4 shows the duration results for
measuring CSI when the pair number of CSI measuring stations increases from 1 to 100. As can be seen,
for both systems the CSI measuring duration increases in proportion to the increased pair number of
CSI measuring stations, but the proposed system has lower duration than the conventional system.
This is because it is possible to notify the CSI collectively and the transmission rate can be set high.
Even in the conventional system, it is possible to improve the transmission rate by increasing the
number of antennas in the CSI measuring stations, but an increase in the total cost is disadvantageous.
From this it can be expected that using the proposed system will not only enable CSI measuring
duration time to be largely reduced, but will also enable the CSI measuring station cost to be decreased
as described in Section 3. Moreover, since analysis of monitoring using CSI can be executed promptly
by reducing these durations, real-time performance can be improved.

Table 3. Simulation parameters.

WLAN Standardization IEEE 802.11ac

Pair number of the CSI measuring stations 1~100
Transfer scheme (conventional) QPSK, 1/2 (convolutional rate), 2 streams
Transfer scheme (proposal) QPSK or 16QAM, 1/2 (convolutional rate), 2 or 4 streams
Number of antennas:
AP 4
CSI monitoring station 4
CSI measuring station 2
Bandwidth 20 MHz
bφ, bψ 6, 4
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4.2. Feasibility Evaluation

In this subsection, we show the indoor experimental results obtained using our WLAN base CSI
monitoring system to clarify the proposed system’s feasibility. Figure 5 shows the system configuration
(the indoor experimental environment and equipment) where one WLAN AP (supported IEEE 802.11ac
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wave2) and two smartphones including WLAN chip (supported IEEE 802.11ac wave2) were deployed
as the CSI measuring station. The number of AP and smartphone WLAN antennas were four and
one respectively. The bandwidth and channel number were 20 MHz and 36ch (5 GHz) respectively.
The CSI monitoring station, configured with a stick PC (Intel Compute Stick STK2m3W64CC, two
antennas) and placed in the vicinity of the WLAN AP, captured wireless packets sent within the target
area and extracted CSI by analyzing the packets on the VHT sounding protocol specified by IEEE
802.11ac. The experimental parameters used are outlined in Table 3. We conducted two types of
experiments between the AP and smartphones, one with a person and one without a person.
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First, to judge whether CSI was accurately acquired, an attenuator was connected directly under
the AP antenna. Then, the SNR of the acquired CSI feedback frames was evaluated in accordance with
the attenuation value. The measurement results (Figure 6; solid line) showed that the average SNR
varied in proportion to the magnitude of the attenuation. Note that average SNR was stored in the
CSI field described by Figure 2c. The result (ideal; dotted line) for ideal attenuation is also shown in
Figure 6. As can be seen, when the attenuation value was from 10 to 30, we found that the average SNR
decreased in proportion to the attenuation value. It can be seen from this result that SNR information
could be accurately obtained from the captured packet. When the attenuation value was from 0 to
10 (high SNR), the measured SNR slightly shifted from ideal due to the effects of the dynamic range of
the smartphone. However, since it communicates with a station that is relatively far away in a usual
usage environment, it is possible to use it.
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Second, Figure 7a–d show the results obtained in plotting each element of the channel matrix
on the IQ plane when acquiring CSI with a human (Figure 7a,c) and without a human (Figure 7b,d).
Figure 7a,b show the results obtained at different times (about 1 s) for smartphone 1, and Figure 7c,d
show those for smartphone 2. Additionally, since the phase rotation occurs depending on the
acquisition time, the results based on the fourth AP antenna are shown. From the results without a
human in Figure 7a,c, it is considered that the channel matrix was successfully acquired because there
was no temporal fluctuation of the propagation channel calculated from the captured packet. Then,
from the results with and without a human in Figure 7a,b, it can be seen that the existence of a person
changed each channel matrix element and also greatly changed its variation. On the other hand, it can
be seen from the results of Figure 7c,d that while each channel matrix element changed somewhat
due to the presence of a person, the changes were not significant from the viewpoint of fluctuation
because there was no person in the path between AP and smartphone 2. These results confirmed the
possibility of using CSI for monitoring based on general devices. Furthermore, it is possible to realize
a monitoring system simply by applying machine learning to CSI acquired by the proposed system.
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Figure 7. Channel matrix characteristic. (a) without human for Smartphone 1; (b) with human for
Smartphone 1; (c) without human for Smartphone 2; (d) with human for Smartphone 2.

5. Conclusions

In this paper, we described the proposed wireless local area network-based channel state
information (CSI) monitoring system that efficiently acquires CSI between IEEE 802.11ac devices
in a target area. In the proposed system, a CSI acquisition station located in the target area acquires
CSI in bulk by performing packet capturing and analyzing CSI feedback frames that are regularly
exchanged between devices. We indicated the practicality of the proposed system by introducing a
system configuration, including general devices and software. Moreover, we confirmed the system’s
effectiveness from indoor experimental results using the proposed system.
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In future works, we will apply machine leaning techniques to the proposed system and consider
compression methods of CSI at monitoring stations for further high-efficiency transmission.
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