i\;lg electronics m\py

Article
A New Dataset and Performance Evaluation of a
Region-Based CNN for Urban Object Detection

Alex Dominguez-Sanchez, Miguel Cazorla ** and Sergio Orts-Escolano

RoViT, University of Alicante, Carretera San Vicente del Raspeig s/n 03690, San Vicente del Raspeig,
Alicante 03690, Spain; alexdominguez09@yahoo.co.uk (A.D.-S.); sorts@ua.es (S.0.-E.)
* Correspondence: miguel.cazorla@ua.es

check for
Received: 13 September 2018; Accepted: 31 October 2018; Published: 6 November 2018 updates

Abstract: In recent years, we have seen a large growth in the number of applications which use
deep learning-based object detectors. Autonomous driving assistance systems (ADAS) are one
of the areas where they have the most impact. This work presents a novel study evaluating a
state-of-the-art technique for urban object detection and localization. In particular, we investigated
the performance of the Faster R-CNN method to detect and localize urban objects in a variety of
outdoor urban videos involving pedestrians, cars, bicycles and other objects moving in the scene
(urban driving). We propose a new dataset that is used for benchmarking the accuracy of a real-time
object detector (Faster R-CNN). Part of the data was collected using an HD camera mounted on a
vehicle. Furthermore, some of the data is weakly annotated so it can be used for testing weakly
supervised learning techniques. There already exist urban object datasets, but none of them include
all the essential urban objects. We carried out extensive experiments demonstrating the effectiveness
of the baseline approach. Additionally, we propose an R-CNN plus tracking technique to accelerate
the process of real-time urban object detection.

Keywords: real-time object detection; autonomous driving assistance system; urban object detector;
convolutional neural networks

1. Introduction

Recent advances in computer vision algorithms are paving the way for the development of
future intelligent transportation systems: automatic traffic analysis, autonomous driving assistance
systems (ADAS), autonomous navigation for unmanned aerial vehicles (UAV), etc. In recent years,
convolutional neural networks (CNN) and other deep learning techniques have demonstrated
impressive performance in many computer vision problems. Therefore, we believe they can be
the perfect approach to these problems. A contributing factor to their success is the availability of
differently scaled synthetic and real datasets (CamVid [1], CityScapes [2], Kitti [3], etc.).

Before the deep learning period, the detection and recognition of 2D objects were conducted using
local features within the actual image to be analyzed. A classic method for detecting these images was
based on Haar-like features, first used in [4].

Another common hand-crafted feature used for pedestrian detection is the histogram of oriented
gradients (HOG) [5]. The idea behind this descriptor is that local object appearance and shape within
an image can be described by the intensity distribution of gradients or edge directions. The image is
divided into small, connected areas, and a histogram of gradient directions is generated for the pixels
within each area. Finally, the descriptor is the concatenation of these histograms.

SIFT (scale-invariant feature transform) [6] is an algorithm used to extract local features within
an image, which is also used for object detection. The ability to find distinctive key points

Electronics 2018, 7, 301; d0i:10.3390/ electronics7110301 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0001-6805-3633
http://www.mdpi.com/2079-9292/7/11/301?type=check_update&version=1
http://dx.doi.org/10.3390/electronics7110301
http://www.mdpi.com/journal/electronics

Electronics 2018, 7, 301 2 of 19

that are invariant to location, scale and rotation made this method a good candidate for object
detection approaches.

Another popular algorithm is SURF (speeded up robust features), presented in [7], which reduced
the computation cost of SIFT by approximating Laplacian of Gaussian with kernels. One of the key
advantages of this approximation is that performing convolutions with these kernels can be easily
computed and can be done in parallel for different scales. It is worth mentioning that it is also possible
to design ad hoc kernels for this application, and many works have studied how to design such
kernels [8]. However, since the advent of deep learning networks, most traditional techniques have
been surpassed by more accurate and efficient object detectors based on CNNs. We later present and
evaluate some of the state-of-the-art techniques which use CNNs.

In this work, we present a novel study that evaluates a state-of-the-art technique for urban
object localization. Furthermore, we propose a new dataset which has been created using existing
data from other works and also new acquired data. The new acquired data is labeled using previously
trained models, and we demonstrate that using this technique, which we name “auto updated
learning”, we obtain better results, improving the rate of false negative detections.

More specifically, our contribution is as follows:

* A novel study that evaluates the proposed dataset and provides a baseline method for
benchmarking urban object detection. Moreover, we evaluated additional state-of-the-art
techniques, such as Faster R-CNN with ResNet101 and YOLOv2.

* A new, real, large-scale dataset for outdoor urban object detection and localization, which
provides more than 200 k images with more than 600 k annotations. The dataset provides
bounding-box-level annotations for the following classes: pedestrian, bus, bike, bicycle, car,
traffic light and traffic sign. Currently, no dataset includes all these key urban objects, and
more importantly, none of them additionally include 43 different types of traffic signals that
we can find in most urban driving scenarios. The full dataset is available for download at
http:/ /www.rovit.ua.es/dataset/traffic/.

* Anovel method to accelerate the object detection process and to enable the implementation of
such a system in low-level GPU platforms. We achieve this by merging tracking techniques into
the R-CNN detection algorithm.

The rest of the paper is organized as follows: Section 2 reviews related works on object detection
and existing datasets (outdoor urban object detection). Section 3 describes the proposed dataset.
In Sections 4 and 5, we present a baseline method and the results of its evaluation. Section 6 implements
a mixed method using detection and tracking. Finally, Section 7 draws conclusions and presents
future work.

2. Related Works

In 2012, the ImageNet competition started to change the methodologies used to recognize
and detect 2D objects. Convolutional neural networks (CNNs) were implemented on GPUs,
deploying deeper neural network models with increasing numbers of layers. Deep learning and
CNN-based methods have become the state of the art in 2D-object detection in computer vision.
They create a hierarchical representation with a larger order of abstraction from lower to higher layers
of neurons. One of the first deep networks, created in [9], was a seven multi-layer net (AlexNet). This
network has been shown to work well for image classification.

Subsequently, in 2014, an improved architecture was created [10]. The improvement of AlexNet
replaced large kernel filters (11 and 5 in the first and second convolutional layers, respectively) with
multiple 3 x 3 kernels. It proved that multiple stacked smaller kernels work better than larger sized
kernels because multiple nonlinear layers increase the depth of the network. This enables the learning
of more complex features and reduces the computational cost.

http://www.rovit.ua.es/dataset/traffic/

Electronics 2018, 7, 301 3 of 19

In 2014, it was proposed a module for CNNs called inception [11], which was introduced in the
GoogLeNet architecture. The idea behind this is that most of the activations in deep networks are
unnecessary (value of zero) or redundant because they correlate with each other. Thus, most efficient
deep CNN architectures will have a sparse connection between the activations, which means that none
of the 512 output channels will have a connection with any of the 512 input channels. Since only a
small number of neurons within layers are effective, the width/number of the convolutional filters of
a particular kernel size is kept small. It also uses convolutions of different sizes to capture details at
multiple scales (5 X 5,3 x 3,1 x 1).

In 2015, it was developed an even deeper, simplistic and effective network based on the concept
of residual networks (ResNet) [12]. The residual network creates a direct path between the input and
output to this residual block entailing an identity mapping: The added layer just needs to learn the
features on top of the already available input.

There are many publications related to object detection, but, in recent years, the topic has
dramatically benefited from machine learning-based approaches. A novel method for locating
2D objects was described in [13]. It consisted of segmenting an image and then making a search
strategy of the different segmented regions. The study generated all possible object locations in an
exhaustive search based on groupings by color spaces and groupings based on the features of the
object, such as texture, size and shape (selective search).

Another work, presented in [14], developed an object detection system based on mixtures of
multi-scale deformable part models. Their system was able to represent variable object classes with
good results as early as 2009. It was based on deformable part models and methods to discriminate
training with partially labeled data. It was combined with an approach using a fine-tuned support
vector machine (SVM).

In 2012, a work was presented measuring the objectness of an image [15]; in other words,
the probability of an image region enclosing a defined object of any class. These authors trained their
system to differentiate objects based on defined boundaries, differentiating, for example, cows from a
background such as grass. In a Bayesian framework, the measure combines several image cues
measuring characteristics of objects, such as appearing different from their surroundings and having a
closed boundary, the density of edges, color contrast and what they call multi-scale saliency based on
a spectral residual of the fast Fourier transform (FFT), which favors areas with a unique appearance
within the entire image.

After the CNN revolution in 2012, another paper was presented with an integrated method for
using CNN:Ss for classification, localization and detection [16]. This study proved how a multi-scale
and sliding window approach can be implemented within the same ConvNet. The authors used the
same structure as in [9], but for the three tasks simultaneously. They also introduced a deep learning
approach to localization by learning to predict bounding boxes, which are then accumulated in order
to increase detection scores.

R-CNNs have been used in recent years as the best object localization CNNs [17]. Fast R-CNN
proposed a single-stage training method that learns to detect and classify object proposals, providing
their bounding boxes [18]. The latter improves speed and accuracy compared to the former by sharing
the computation of the convolutional layers between different proposals, and swapping the order
for generating region proposals. Subsequently, Faster R-CNN was presented to combat the complex
training pipeline of both R-CNN and Fast R-CNN [19]. This system added a region proposal network
(RPN) for learning to predict regions that contain objects. It decreased the complexity of the training
process compared to Fast R-CNN.

In 2016, a novel approach for object detection was presented [20]. The authors addressed object
detection as a regression problem. One neural network predicts bounding boxes and class probabilities
directly from color images in just a single inference. YOLO divides the input image into SxS blocks,
and then predicts the score for each box for every object class in training. As the whole detection
process uses a single network, it can be optimized end-to-end, improving training /inference speed.

Electronics 2018, 7, 301 4 0f 19

Another state-of-the-art method is single shot detector (SSD) [21], which presents a good balance
between speed and accuracy. SSD runs a CNN on an input image only once and works out a feature
map. SSD also uses bounding boxes at various aspect ratios (scales), similar to Faster R-CNN, and
learns the offset rather than learning the bounding box. In order to handle the scale, SSD predicts
bounding boxes after multiple convolutional layers. Since each convolutional layer operates at a
different scale, it is able to detect objects of various scales.

Currently, there are various datasets related to traffic environments. For instance, SYNTHIA —a
SYNTHetic collection of Imagery and Annotations- is a traffic dataset rendered in 3D to add semantic
segmentation and different environments to understand problems in the context of several driving
scenarios [22]. It is composed of more than 200,000 high-resolution images and also simulates a 360°
view with eight simulated cameras. People, cars and bicycles are moving objects in the scene.

Another traffic simulator is CARLA [23]. It is an open-source simulator for autonomous driving
research and can be used to extract rendered images for training and building a traffic-oriented dataset.

KITTI [3] is a real-image dataset that includes objects, such as cars, vans, trucks, pedestrians
and cyclists, captured using a variety of sensor modalities, including GPS. The KITTI dataset has
been used in many challenges, such as depth from stereo, object tracking, 3D object localization and
flow estimation. There exist two different versions, one released in 2012 and an extension of some of
its challenges (new data), which was released in 2015.

Mighty Al is another example of a real traffic-based dataset, acquired from a car. In this case, the
segmentation of objects (pixel-level), such as cars, buses, trucks and lane marks, is provided.

A similar dataset to KITTI is the Oxford Robotcar [24], which includes LIDAR, GPS and inertia
data for over 20 million images captured in an urban environment.

Many datasets have been created, offering pixel-level annotations for roughly the same objects.
Another example is the CityScapes dataset [2], which has 25,000 semantic annotated images of the
most common objects found in an urban scene, including buildings, roads, trees and even sky.

It is interesting that most of these datasets do not provide traffic sign data. Traffic signs are
one of the main objects in autonomous driving and the need to identify them is as important as the
localization of other cars or traffic objects in the immediate area. However, a number of isolated traffic
sign datasets have been created to fill this gap.

Examples of existing traffic sign datasets include the German Traffic Sign Recognition
Benchmark [25] (GTSRB), which includes 43 classes and around 40,000 images. There is also the
Traffic dataset from Linkoping University [26] (Sweden), which has around 4000 annotated signs and
22 classes. LISA [27] (USA) is a further traffic sign dataset with 47 classes and about 8000 images.
There is also a traffic sign dataset from the University of Alcala de Henares [28] (Spain), which has
subdivided images according to their shape and color information.

3. Dataset Description

In this work, we created a novel dataset that gathers images from existing real traffic datasets
and new acquired data (with an auto-updated annotation). It has been divided into two groups:
traffic objects and traffic signs. The first is a group of images and annotations of traffic objects
(2D bounding boxes), specifically, seven classes: car, motorbike, person, traffic light, bus, bicycle and
traffic sign (see Figure 1).

The second group contains 43 different traffic signs (classes) which are most commonly found on
European roads. The annotation data includes the class of the object and the bounding box coordinates.

The dataset is a compendium of different publicly available datasets, such as PASCAL VOC [29]
and UDacity [30], and the remaining data was acquired and annotated from real-life images.
From PASCAL VOC, we took only the classes of bicycle, bus, car, motorbike and person, which
encompassed 22% of the total dataset. Udacity provided 65% with the classes of bicycle, car, person
and traffic light. Then, as we needed to complete the dataset with more objects, we added more
images using buses and motorbikes from Internet videos, and bicycles from videos recorded in

Electronics 2018, 7, 301 50f 19

urban environments and on roads in Alicante (Spain). Finally, we added a small set of traffic lights
from our own capture video that accounts for no more than 1%. See Figure 2 for the distribution of
images from the different datasets, and refer to Table 1 for a later dataset distribution used during the
experimentation phase. See Figure 3 for the initial class distribution.

1000000
100000
10000
1000
100
10
1
bicycle motorbike person trafficsignal trafficlight
Figure 1. Number of annotations per class.
:;m‘,:oc Baseline dataset
Udacity
B Own
6%
Figure 2. Percentage distribution of the baseline dataset.
Table 1. All mAPs per individual class across all experiments.
AP Initial AutoUpdated YOLOv2 Faster R-CNN ResNet101
Original Datasets ~ 99% 34% 34% 34%
AP bicycle 0.419 0.618 0.466 0.613
AP bus 0.890 0.980 0.904 0.962
AP car 0.670 0.724 0.636 0.703
AP motorbike 0.592 0.730 0.665 0.715
AP person 0.649 0.760 0.603 0.707
AP traffic light 0.536 0.472 0.346 0.481
AP traffic sign 0.819 0.774 0.719 0.692

Mean AP 0.713 0.742 0.620 0.696

Electronics 2018, 7, 301 6 of 19

Figure 3. Image samples from the proposed dataset (seven classes).

All the traffic signs found in the dataset (more than 12,000 labeled objects) were annotated within
one single class: traffic signal. As explained later, a second dataset containing only traffic signs
was created using two publicly available datasets: the GTSRB from the Institut fur Neuroinformatik
(Germany) [31] and another from Linkoping University (Sweden) [26]. The German dataset contains
around 40,000 traffic signs divided unevenly into 43 classes, while the Swedish one has 22 classes and
around 6000 traffic signs, all annotated.

The dataset is imbalanced. For the experimentation, we balanced the different classes using data
augmentation (rotations, zoom, affine transformation, blurring, etc.) and reduced the three classes
with the most elements (car, bus and person).

4. 2D Object Detection and Recognition

4.1. Baseline Method

The main goal of this work was to design a reliable system able to detect the main objects found
in a driving situation in any urban or motorway environment. For this purpose, we chose to use a
state-of-the-art CNN network to detect the main seven objects within driving environments: cars,
motorbikes, people, traffic lights, buses, bicycles and traffic signs.

In order to achieve this, we needed to rely on a robust detection and classification system. It is
necessary not just to be able to classify the objects but also to locate them within the scene. A region
proposal method was used for this task. Specifically, we built a dataset based on [19] and their Faster
R-CNN work, previously described in Section 2.

We fine-tuned Faster R-CNN with VGG16 convolutional blocks for this purpose, modifying it to
detect eight classes: seven common traffic objects and the background of the scene. Once all the 2D
objects were located and identified, it was still necessary to classify all the traffic signs in order for the
system to have a robust knowledge of the traffic scene at any given time. Since we grouped all the
traffic signs together in a single class, we performed a second step using a fine-tuned CNN to classify
the detected traffic signs (43 subclasses). We could have included every single traffic sign as a new class
across the rest of the objects, but, as a traffic sign is a class per se, and there are many different types of
signs to classify, it seemed obvious and semantically organized to separate them into a different dataset.
In practical terms, if we needed to include more types of traffic signs, it would not be necessary to
retrain the whole model, but only the traffic sign model with the new traffic sign dataset. The same
would apply if we needed to classify different types of cars, brands or models, types of motorbikes, etc.

4.2. Training

The Faster R-CNN was trained using an existing model (PASCAL VOC) based on [19]. This
provided several advantages in certain classes. For instance, the person class, including PASCAL
VOC, offered generalization capabilities provided by this general-purpose dataset. The PASCAL VOC
dataset includes many people from a variety of angles and sizes, and in different light conditions

Electronics 2018, 7, 301 7 of 19

and poses. In a traffic scene, 99% of persons are normally riding a bicycle or a motorbike or walking
alongside a road. Hence, we added this type of object from our recordings to the dataset. The same
applies to bicycles and motorbikes. Thus, we also added those objects from our recordings and from
the Internet.

The UDacity dataset provided even greater robustness when detecting cars, as all the recordings
were acquired from a car’s perspective. UDacity also provides the kind of images and objects one
would find in a driving situation: cars and other vehicles from the driving vehicle perspective and angle.
This increased the accuracy when detecting cars in our model.

Subsequently, around 375,000 annotated objects from 106,920 images were used for training.
The train/validation/test split sizes were 40% for training, 40% for validation and 20% for
testing purposes. However, we also evaluated other configurations, such as 60%, 20%, 20% and
50%, 25%, 25%, but the most accurate and robust results were obtained using 40%, 40%, 20%.

We trained the approach for 80, 000 iterations, using a learning rate starting at 0.001 and decreasing
it 10 times, after every third of the training process. Momentum was set to 0.9 and weight decay
to 0.0005.

4.3. Auto-Updated Learning

Once we had a stable and accurate system—Ilet us call it the baseline model—we wanted to test
how adding new images increases the accuracy. We call this method the auto-updated learning process.
In order to test the auto-updated learning, we composed two automatically annotated datasets with
two high-speed cameras: one at high resolution and one at low resolution.

We recorded 7 h 13 m 40 s of 1280 x 720 video at 60 fps in 23 different situations (urban,
countryside and motorways). We then converted the video to a lower frame rate. In this case, 10 fps
proved to be a good balance between a reasonable number of frames to train without causing many
repetitions due to the similarity of sequentially recorded frames.

Recorded sequences were automatically annotated using the baseline model. Once we had this
new automatic annotated dataset (see Figure 4), we added it to the baseline dataset and trained the
same architecture used for the baseline model (Faster R-CNN with VGG16 model) again to see how
the new model could improve. The baseline model with the new dataset showed an improvement
in detecting some of the objects for which it was trained. In a way, the baseline model was learning
new features by being trained with new images annotated using the baseline model (see Table 1).
This process was repeated using a different set of images (see Figure 5) captured with the low-resolution
camera, which was able to record at 60 fps but at VGA resolution.

1000000
100000

10000

1000
| I I
1

bicycle ar motorbike person trafficsignal trafficlight

(=]
(=]

[y
(=]

Figure 4. Number of annotations per class from the first set of automatic annotated images. There
were 157,406 annotated objects captured with an HD sport camera with a 1280 x 720 resolution.

Electronics 2018, 7, 301 8 of 19

10000

1000
100
10 I
1
bus car

bicycle motorbike person trafficsignal trafficlight

Figure 5. Number of annotations per class from the second set of automatic annotated images. There
were 10,167 annotated objects captured with a low-resolution SONY camera with a 640 x 480 resolution.
Note there is only 1 annotation for the bicycle class.

4.4. Traffic Sign Recognition

As previously mentioned, one of the output classes of our trained network is “traffic sign’.
The CNN network was trained using thousands of images. In order not to just detect but also to
classify (traffic sign type) them, we fine-tuned (ImageNet weights) a ResNet50 architecture but now
added 43 classes, with these being the most commonly used traffic signs in the European Union.
ResNet50 was chosen as one of the latest architectures in the state of the art. To test the model, we used
the GTSRB dataset [31], which also has 43 object classes.

Figure 6 shows the number of images for each traffic sign type (GTSRB dataset). We trained
a ResNet50 network using this dataset. The images are square, with sizes that range from 40 to
170 pixels. Figure 7 shows some traffic sign bounding boxes extracted from the Traffic Signs Dataset [26].
For training purposes, we implemented data augmentation to compensate categories with a lower
number of elements.

1200
1100
1000
200
800
00
600

Image Count

500
400
300
200
100

0

Category

Figure 6. Number of images per traffic sign in the GTSRB dataset.

Electronics 2018, 7, 301 9 of 19

Figure 7. Image samples from the Traffic Signs Dataset [26].

5. Experiments

5.1. Setup

We primarily used GPUs from NVIDIA (Titan Xp, GTX 1070 and Quadro P6000) for training the
proposed system. At inference time, we also used an NVIDIA GTX 1060.

One of the recording devices we used for acquiring new data was an HD (1280 x 720 resolution)
sport camera (H5 Midland) mounted on the front of a vehicle. This camera is able to record
video at 60 fps and has a CMOS of 5M pixels and a wide-angle lens of 170°. Moreover, we used a second
camera model, the SONY Playstation Eye, which is able to record video at 60 fps (640 x 480 resolution).
It uses a VGA CMOS and a wide angle lens of 75°.

A Linux-based system was used along with the Python implementation of the Faster R-CNN [19],
which uses the Caffe Deep Learning framework. Many scripts were modified for our experiments.
We fine-tuned the model according to the classes used for the experimentation phase.

We also used the NVIDIA DIGITS 5.1, running the Caffe fork. Finally, for the classification
experiments (second step: traffic sign classification), we used the Caffe version of the
ResNet50 architecture.

5.2. Performance Evaluation: Urban Object Detection

In this section, we describe all the experiments performed in this work. As a measure of accuracy,
we use the mean average precision (mAP), as used in [19]. We split the dataset into 40% for training,
40% for validation and 20% for testing. Figure 8 shows an overview of the steps we followed to
perform the evaluation of the baseline object detector. It also describes how we trained the ‘Initial” and
"AutoUpdated’ versions of the urban object detector model. In step 1, we compiled an initial dataset
for urban object detection by filtering particular classes of existing datasets. In step 2, we trained a
Faster R-CNN network (VGG16) using the initial version of the dataset. For step 3, using the trained
model and new acquired data on real driving scenarios, we automatically annotated new images by
using the initial model. In step 4, finally, we retrained the baseline network and other state-of-the-art
CNN-based networks (ResNet101 & YOLOV2) using the final version of the dataset (compilation of
existing datasets and new recorded data that was automatically annotated).

We ended up with a total of 166, 139 objects (Figure 9). For this experiment and the subsequent ones,
we used the Faster R-CNN architecture, using VGG16 convolutional blocks [18], which is more
computationally costly (slower training/inference than YOLOv2) but provides greater accuracy.

Electronics 2018, 7, 301 10 of 19

Initial training data Object detectors

U

% PASCALZ
‘-hgnugg'- Region CNN New acquired data
.-‘ﬂ-“mu- object detectors ﬂ
W s e B \
o o 0l Y s IO @

l l |:> “Initial model
Faster R-CNN Faster R-CNN
(VGG16) (ResNet101) e

® |

Generated annotations

Figure 8. Overview of the process for the training of the 'Initial’ and "AutoUpdated’ versions of the
object detector model.

We noticed that the mAP for the traffic light class was not as accurate as with the other classes,
even using 10% of the total dataset (16,564 traffic lights, see Figure 9). Many of the bounding boxes
for traffic lights were very small (fewer than 240 squared pixels), so we decided to filter out the very
small ones, as they would provide no practical information in a driving situation because, with the
bounding box being so small, the traffic lights would be extremely far away from the vehicle.

100000

10000
100
10
1

bicycle motorbike person trafficsignal trafficlight

=]

=]

o]

=

Figure 9. Final number of annotations per class included in the proposed dataset.

In [19], the author used a non-maximum suppression (NMS) threshold for the removal of
candidate regions, setting a fixed threshold of 0.713. We tried several thresholds to select the correct one.
The best NMS threshold was 0.8 (see Figure 10). We trained the baseline model for 70,000 iterations,
starting with a learning rate of 0.001. The results are shown in Table 1, Baseline method.

We observed that the detection accuracy for bicycles and motorbikes was not as high as for other
classes, such as cars or people. Furthermore, the distribution of bicycle and motorbike objects in the
dataset was also too low in comparison with the other classes. Buses were also too low, and many

Electronics 2018, 7, 301 11 of 19

buses in real-life tests were not detected. So, we decided to add more of these objects (buses, bicycles
and motorbikes) to the dataset, again using an auto-updated technique. We annotated 7 h of recordings
(10 fps 1280 x 720 videos, recorded with the H5 camera). From those labeled images, we increased the
number of buses, bicycles and motorbikes (and the other classes such as cars, people, traffic signs were
also shown in the new images).

0.725
0.72
0.715
0.71
0.705

0.7

mAP

0.695
0.69
0.685
0.68

0.675
0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

NMS Threshold

Figure 10. = Mean average precision (mAP) values for different non-maximum suppression
(NMS) thresholds.

We then trained for 80, 000 iterations. We implemented data augmentation as explained before,
thus ensuring all the classes were evenly included in the training and validation set, achieving a mAP
of 0.7420. Table 1 shows the results for the different R-CNN architectures that we evaluated. The first
column shows the mean AP score for the baseline method (Faster R-CNN with VGG) using the “initial’
dataset (compilation of images from existing datasets). The second column, "AutoUpdated’, shows the
mean AP score of the baseline method trained using the final version of the dataset (compilation of
initial images and new recorded sequences). The new recorded sequences were annotated by using
the initial model. Finally, Table 1 shows the mean AP score for the YOLOv2 and Faster R-CNN with
ResNet101 architectures. Both of these networks were trained using the final version of the proposed
dataset (AutoUpdated). As we can see, using ResNet101 convolutional blocks for object detection
produces slightly worse results compared to using VGG blocks. Moreover, we show how YOLOv2
produces a lower mean AP score compared to the Faster R-CNN methods; however, YOLOv2 has also
a lower runtime, which makes it suitable for real-time systems.

As the goal of this work is to deploy the developed system in an embedded system (like a
Jetson card or FPGA), we need a fast implementation of the object detection component. Therefore,
we evaluated the Darknet version of YOLOvV2 [20] in our seven-class dataset. We applied a learning
rate of 0.0001 and trained for 45,000 iterations, with a momentum of 0.9 and decay of 0.0005. We also
achieved good results with our dataset, achieving a mAP of 0.62 in the test set. After approximately the
27,000th iteration, the mAP stabilized, achieving no further increase in accuracy (see mAP evolution in
Figure 11). See Table 1, YOLOV2, for results.

Electronics 2018, 7, 301 12 of 19

70

10

o 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

e [TIAP TEST s MAP WAL
Figure 11. mAP for test and validation sets in YOLOV2 for 45,000 iterations.

5.3. Additional Test, Processing a Mix of Real-Life Clips Acquired in Various Urban Environments

After observing the mAP results within the previous experiments, we wanted to test whether our
latest model could improve in terms of detection accuracy even though the mAP slightly decreased
due to the lack of balance in terms of the number of annotations per class.

We recorded real-life videos of scenes containing many of the urban objects defined in the classes
of the proposed dataset. The actual video has 8992 frames, and was mainly recorded in very busy
urban environments (see Figure 12). The video does not represent a ground truth of detected objects,
but it gave us information on how much better (in terms of number of detected objects) one CNN
model is with respect to the others. It also provides a visual confirmation of the mAP coefficients
measured earlier. After detecting all the objects in the scenes and computing various statistics for
the processed video, we concluded that the auto-updated training strategy improved the accuracy
when detecting objects (see Table 2). The accuracy was not greater in terms of mAP, but the number of
correct bounding boxes that were predicted increased compared to previous experiments. Moreover,
in some cases, the improved model was able to detect bounding boxes that were not previously
detected (decreased the number of false negative detections).

Figure 12. Image samples from the real-life video (test split).

Electronics 2018, 7, 301 13 of 19

Table 2. Number of objects detected in real-life video across all experiments.

Model Cars Motorbikes Person Traffic Lights Buses Bicycles Traffic Signs mAP
Initial 8907 1044 19,684 1628 465 346 562 0.713
AutoUpdated 10,485 4013 21,739 1280 1260 1406 1030 0.74

ResNet101 10,188 4231 20,711 1178 1319 1301 1479 0.696
YOLOV2 10,652 3937 22,357 1006 1708 843 1250 0.620

5.4. Traffic Sign Classification

In the last years, CNNs have surpassed most traditional methods, achieving a 99% classification
accuracy on publicly available datasets for traffic sign recognition [32]. In order to complete
the creation of a more complete urban object localization system, we focused on the traffic sign
classification task. We needed to be able not just to detect a traffic sign, but also to classify it. We
chose a ResNet50 architecture for this task due to its proven speed and accuracy for classification
tasks [16,33]. In this work, we fine-tuned the original model, which was trained using the ImageNet
dataset, using the German traffic dataset (GTSRB) for evaluation purposes. The GTSRB dataset contains
39,495 images of 43 different traffic signs (see Figures 6 and 7). Additionally, we created a new Spanish
traffic sign dataset with 3300 images divided into 45 traffic signs. This was acquired from the previously
presented dataset (Section 3) by automatically cropping the resulting detected traffic signs using our
previous Faster R-CNN baseline model.

We trained for 16,000 iterations, using a learning rate starting at 0.005 with a polynomial decay
gamma value of 0.1 and weight decay of 0.0005. The dataset was split as follows: 50% for training,
25% for validation and 25% for testing. It obtained 98.09% accuracy on the test set (choosing the class
with the greatest probability) and 99.76% accuracy when performing a vote using the top five predicted
classes. As a final test, we added 100% of the Spanish dataset to the GTSRB and applied the same
distribution. Testing against the ground truth resulted in 99.7% accuracy on Top1 and 99.9% on Top5
(see accuracy and loss in Figure 13).

a ~ 1

0.9
3.5

0.8
3

0.7
2.5 [0.6
2 J \ 0.5

0.4
15

0.3
1

0.2
0.5 o1
0 0

Loss Accuracy
Figure 13. ResNet50 training accuracy and loss for the traffic sign classification task.

5.5. Discussion

While creating this dataset, we discovered that the amount and variety of data used for training
a CNN are crucial for the accuracy of our application to unseen data. As we added more data from
different sources and domains, with different scenarios and backgrounds, we saw that we were able to
decrease the generalization error (unseen data). However, in some of the experiments, we also realized
that, due to the increase in the diversity of our training data sources, the system was performing
worse on certain classes due to imbalanced data. To address this problem, we had to capture new data
focusing on creating new annotations for imbalanced classes. After training a new model considering

Electronics 2018, 7, 301 14 of 19

these two factors, we were able to increase the accuracy of the trained model and also reduce its
generalization error.

6. Detection and Tracking

In this section, we explain how tracking objects in a video feed can benefit from the detection
process of a region CNN.

6.1. Motivation

The main goal of an urban R-CNN model would be to implement such a system in a
real-life vehicle, in a real traffic environment. As we know, such systems require great GPU
performance; most (probably small) embedded systems would be more realistic final hardware
to implement such a network, so a good way to accelerate the detection process using software is
needed. Consequently, we tracked the detected object in certain ways in order to alleviate the GPU for
such work.

6.2. Strategy

The strategy to follow in the detection-tracking mix would be to first detect the objects with an
R-CNN, which should occur quickly enough to work in small hardware, then track the objects either
until they are lost or until the reliability of the tracker is found to be diminished and there is insufficient
confidence in the localization of the object detected in the first place.

We analyzed several tracking algorithms: Correlation tracker [34], Deep sort [35], Boosting [36],
Mil [37], KCEF [38], TLD [39], MedianFlow [40] and Mosse [41].

All those algorithms were evaluated in three different GPUs from an NVIDIA 940M, a 1050 Ti
and a 1080. We tested them for speed, accuracy and robustness. Moreover, we studied the point at
which it is best to relaunch our R-CNN detector to detect the objects again. In some cases, launching
the R-CNN every n frames was a good solution; in others, launching as soon as the tracker lost the
object also achieved good results. Hence, a balance of these two strategies proved to be the best option
for real-time processing given a limited computing budget.

Some algorithms are good for relocating the tracked object after a partial occlusion, but, as this is
not strictly relevant to our purpose, we did not focus on this feature.

Additionally, the goal of the detection-tracking bundle is to prove that hungry GPU processes,
such as R-CNNs, can benefit from tracking techniques, not to present an exhaustive study about
tracking algorithms.

We chose three of the nine algorithms tested: KCF, MedianFlow and Mosse. These were found to
be quite fast with reasonably good accuracy in urban environments.

Tracking objects in a traffic environment from a moving car has a particular drawback related to
tracking objects in the outside edges of the camera view, such as parked cars, pedestrians or overtaken
vehicles such as cars or buses. These objects can very rapidly increment their size and location in
the scene, and most trackers do not perform well with such large and fast variations. However,
objects moving beside or in front of the car can be tracked for a long time. An example of this can be
seen in Figure 14.

Figure 14. Objects changing size rapidly after a few frames. Red bus vs. blue bus.

Electronics 2018, 7, 301 15 of 19

6.3. Experiment: Detecting with YOLOv2 Every n Frames.

Although Faster R-CNN provided better mAP than YOLOv2, we chose the latter for our
experiments. This is due to YOLOvV2 having a shorter execution time, and this system is intended to be
embedded in devices such as the Jetson TX2 from NVIDIA.

The first experiment was based on detecting objects in an urban environment video with
1280 x 738 pixels in RGB format at 30 fps. With our seven-class urban dataset, we used YOLOvV2 to
detect objects (cars, buses, pedestrians, etc.) and let the Mosse tracker follow them for 7 frames. As can
be seen in Table 3, the longer the period to relaunch YOLOV2, the faster the algorithm. The goal of
this experiment was to prove that YOLOv2 detection would benefit from intermediate tracking and to
determine how long a tracker was a beneficial option (Figure 15).

Table 3. YOLOV2 + Mosse tracker performance every n frames in an urban environment video. YOLO
detection is performed every n frames, starting with n = 30 and ending with n = 1 (tracking disabled).
We can see how, as we perform tracking for a larger number of frames, for example n = 25, the overall
performance increases, with it being able to process video at 27.8 fps.

MOSSE Urban 30 Frames 25 Frames 20 Frames 15 Frames 10 Frames 5 Frames 1 Frame
(8117 Frames)

GPU 1080 29.0 fps/2381 27.8fps/2599 27.1fps/2810 25.0 fps/3235 22.6 fps/3734 18.6 fps/4900 17.4 fps/8117
GPU YOLOv2 usage 29.3% 32.0% 34.4% 39.9% 46.0% 60.4% 100%

B KCF ® Medianflow © Mosse

0.800

0.700

0.600

0.500

0.400

mAP

0.300

0.200

0.100

0.000

11 frames 9 frames 7 frames 5 frames 3 frames

Figure 15. mAP for KCF, Median flow and Mosse tracking algorithms every n frames.

6.4. Experiment: Urban and Motorway Environments

For these tracking algorithms, we needed to know how much the tracker would help the YOLOv2
R-CNN detection.

We set two traffic videos of roughly the same length, about 4 min 20 s: one in a busy urban
environment and the other in a motorway environment. Videos were 1280 x 738 at 30 fps. We
launched YOLOV2 just every 30 frames, and in the rest of the frames, the tracker was in charge of
locating the objects. We measured the average frames per second, comparing the video using just
YOLOV2 with the same video using no tracking help at all. We also measured the percentage (based
on number of frames) where YOLOv2 was used. We tested the three tracking algorithms, the results
of which are presented in Table 4. Note that frames with no objects in the scene were not taken into
account for the percentage results.

It can be seen that the use of GPU (YOLOV2 usage) can be dramatically reduced by between
10% and 14% when using a tracking algorithm, accelerating the calculation process as a whole.
Consequently, the average speed (in fps) can be increased.

Electronics 2018, 7, 301 16 of 19

Table 4. Comparison between traffic environments: YOLOv2 and YOLOvV2 + Tracking algorithms.

GPU Just KCF KCF MEDIANFLOW MEDIANFLOW MOSSE MOSSE
YOLOv2 Urban Motorway Urban Motorway Urban Motorway
940M 2 fps 4.9 fps 2.3 fps 5.8 fps 2.3 fps 5.9 fps 2.3 fps
1050 Ti 94fps 135fps 10.4 fps 21.2 fps 11.2 fps 21.1 fps 11.4 fps
1080 174 fps 18.6 fps 17.3 fps 29.2 fps 19.7 fps 29.0 fps 20.3 fps
GPU YOLOV2 ussage 100% 10.8% 13.7% 10.3% 12.7% 12.0% 13.3%

6.5. Experiment: mAP Accuracy in Trackers

Finally, we tested how accurate these tracking algorithms were and for how long the tracking
algorithm could keep track of the detected object, with the tracked object being sufficiently reliable or
as reliable as the YOLOvV2 detection.

We set the ground truth of all bounding boxes detected by YOLOvV2 in every single frame
(8117 frames). We then let the tracking algorithm locate these objects for n frames and compared
the bounding boxes produced by the tracking algorithm with the YOLOv2 ground truth in order to
have a mAP. As can be seen in Figure 15, the tracking location is reasonably accurate until the 10th
frame but, after that, the mAP is less than 0.5. It is also noticeable that KCF is slightly more accurate
than the other two trackers. Figure 16 shows examples of how accurate the trackers are in relation to
the number of frames between YOLOv2 detections.

Figure 17 shows that the tracking of detected bounding boxes differed between YOLOv2 detection
and that, after the 11th, this can be noted visually.

U ,,,‘w YR

L A Frame 9 - “Frame 11 -

Figure 17. Example of tracking using KCF compared with YOLOv2 detection. Sequence of 11 frames.
YOLOV2 in red, KCF in blue. At the front of the car, it can be seen that the longer the tracking period,
the less accurate the result, with the KCF bounding box increasingly differing from the YOLOv2
bounding box.

We can conclude that tracking definitely accelerates the detection process as a whole. In Table 4,
the increase in speed obtained in this experiment by applying any tracking algorithm can be seen.

Electronics 2018, 7, 301 17 of 19

For instance, in an urban environment, using a reasonably low GPU, such as an NVIDIA 1050 TI,
we go from 9.4 fps using only YOLOV2 to 21.2 fps by adding a MedianFlow tracker, which represents
an increase of over 100% in calculation speed.

7. Conclusions

In this work, we present a new dataset for urban object localization, which is a compilation of
new and existing data. It includes annotations not just for common moving objects, such as cars,
pedestrians, bicycles, etc., but also for static traffic signs and traffic lights.

We trained a state-of-the-art Region-based CNN, Faster R-CNN architecture, and proved how well
this dataset can be used for real-life traffic situations, such as urban and motorway scenarios, achieving
a mean average precision accuracy of 0.74. Moreover, by retraining the proposed architecture following
an auto-updated strategy, we demonstrated how the proposed R-CNN network improved its accuracy
(fewer number of false negatives) in real-life driving situations. Additionally, we evaluated other
state-of-the-art detectors, such as Faster R-CNN with ResNet101 convolutional blocks and YOLOv2.
From these experiments, we concluded that Faster R-CNN with ResNet101 performed very similar to
the proposed baseline, and YOLOv2 achieved lower mean AP scores but it considerably improved
overall performance (runtime).

We also proved that tracking techniques can noticeably improve R-CNN object detection (YOLOv2)
and its efficiency by balancing the use of both, detection and tracking, without losing accuracy.

As a future work, we plan to merge the existing traffic sign datasets used in this project. We plan to
repeat the same process followed in this study and extend these datasets using an auto-updated strategy.

Author Contributions: Conceptualization, A.D.-S.; Methodology, A.D.-S., M.C. and S.O.-E.; Validation,
A.D.-S.; Investigation, A.D.-S., M.C. and S.0O.-E.; Writing-Original Draft Preparation, A.D.-S., M.C. and S.O.-E,;
Writing-Review & Editing, M.C. and S.O.-E.

Funding: This work has been partially funded by the Spanish Government TIN2016-76515-R grant for the
COMBAHO project, supported with Feder funds. It has also been supported by the University of Alicante project
GRE16-19. Experiments were made possible by a generous hardware donation from NVIDIA.

Conflicts of Interest: The authors declare no conflict of interest. The funding sponsors had no role in the design of
the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision
to publish the results.

References

1. Brostow, G.J.; Fauqueur, J.; Cipolla, R. Semantic object classes in video: A high-definition ground truth
database. Pattern Recogn. Lett. 2009, 30, 88-97. [CrossRef]

2. Cordts, M.; Omran, M.; Ramos, S.; Enzweiler, M.; Benenson, R.; Scharwichter, T.; Franke, U.; Roth, S.;
Schiele, B. The Cityscapes Dataset. 2015. Available online: https://www.visinf.tu-darmstadt.de/media/
visinf/vi_papers/2015/cordts-cvprws.pdf (accessed on 5 November 2018).

3. Geiger, A,; Lenz, P; Stiller, C.; Urtasun, R. Vision meets robotics: The KITTI dataset. Int. |. Robot. Res. 2013,
32, 1231-1237. [CrossRef]

4. Viola, PA,; Jones, M.J. Robust Real-Time Face Detection. Int. |. Comput. Vis. 2004, 57, 137-154. [CrossRef]

5. Dalal, B.T.N. Histograms of Oriented Gradients for Human Detection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA, 21-23 September 2005.

6. Lowe, D. Distinctive image features from scale-invariant keypoints. Int.]. Comput. Vis. 2004, 60, 91-110.
[CrossRef]

7. Bay, H.; Tuytelaars, T.; Van Gool, L. SURF: Speeded up Robust Features; Springer: Berlin/Heidelberg, Germany,
2006; pp. 404-417.

8. Zorzi, M.; Chiuso, A. The Harmonic Analysis of Kernel Functions. Automatica 2018, 94, 125-137. [CrossRef]

9. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural
Networks. In Advances in Neural Information Processing Systems 25; Pereira, F., Burges, C.J.C., Bottou, L.,
Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2012; pp. 1097-1105.

http://dx.doi.org/10.1016/j.patrec.2008.04.005
https://www.visinf.tu-darmstadt.de/media/visinf/vi_papers/2015/cordts-cvprws.pdf
https://www.visinf.tu-darmstadt.de/media/visinf/vi_papers/2015/cordts-cvprws.pdf
http://dx.doi.org/10.1177/0278364913491297
http://dx.doi.org/10.1023/B:VISI.0000013087.49260.fb
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1016/j.automatica.2018.04.015

Electronics 2018, 7, 301 18 of 19

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv
2014, arXiv:1409.1556.

Szegedy, C.; Liu, W,; Jia, Y,; Sermanet, P; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going Deeper with Convolutions. arXiv 2014, arXiv:1409.4842v1.

He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June-
1 July 2016.

Uijlings,].R.R.; Van De Sande, K.E.A.; Gevers, T.; Smeulders, A.W.M. Selective search for object recognition.
Int. J. Comput. Vis. 2013, 104, 154-171. [CrossRef]

Felzenszwalb, PFE,; Girshick, R.B.; Mcallester, D.; Ramanan, D. Object Detection with Discriminatively
Trained Part Based Models. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 32, 1-20. [CrossRef] [PubMed]
Alexe, B.; Deselaers, T.; Ferrari, V. Measuring the objectness of image windows. IEEE Trans. Pattern Anal.
Mach. Intell. 2012, 34, 2189-2202. [CrossRef] [PubMed]

Sermanet, P.; Eigen, D.; Zhang, X.; Mathieu, M.; Fergus, R.; LeCun, Y. OverFeat: Integrated Recognition,
Localization and Detection using Convolutional Networks. arXiv 2013, arXiv:1312.6229.

Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and
semantic segmentation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, Columbus, OH, USA, 23-28 June 2014; pp. 580-587.

Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, Santiago,
Chile, 7-13 December 2015; pp. 1440-1448.

Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal
Networks. arXiv 2015, arXiv:1506.01497.

Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection.
Nuclear Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2015, 794, 185-192.

Liu, W.,; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector.
In ECCV 2016: Computer Vision—ECCV 2016; Lecture Notes in Computer Science; Cham, Switzerland, 2015;
pp- 21-37.

Ros, G.; Sellart, L.; Materzynska, J.; Vazquez, D.; Lopez, A.M. The SYNTHIA Dataset: A Large Collection of
Synthetic Images for Semantic Segmentation of Urban Scenes. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 26 June-1 July 2016; pp. 3234-3243.
Dosovitskiy, A.; Ros, G.; Codevilla, E; Lopez, A.; Koltun, V. CARLA: An Open Urban Driving Simulator.
arXiv 2017, arXiv:1711.03938.

Maddern, W.; Pascoe, G.; Linegar, C.; Newman, P. 1 year, 1000 km: The Oxford RobotCar dataset. Int. J.
Robot. Res. 2017, 36, 3-15. [CrossRef]

Stallkamp, J.; Schlipsing, M.; Salmen, J.; Igel, C. The German Traffic Sign Recognition Benchmark:
A multi-class classification competition. In Proceedings of the International Joint Conference on Neural
Networks, San Jose, CA, USA, 31 July-5 August 2011; pp. 1453-1460.

Larsson, F; Felsberg, M. Using Fourier Descriptors and Spatial Models for Traffic Sign Recognition; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 238-249.

Meogelmose, A.; Trivedi, M.M.; Moeslund, T.B. Vision-based traffic sign detection and analysis for intelligent
driver assistance systems: Perspectives and survey. IEEE Trans. Intell. Transp. Syst. 2012, 13, 1484-1497.
[CrossRef]

Maldonado-Bascon, S.; Lafuente-Arroyo, S.; Gil-Jimenez, P.; Gomez-Moreno, H.; Lopez-Ferreras, F. Road-sign
detection and recognition based on support vector machines. IEEE Trans. Intell. Transp. Syst. 2007, 8, 264-278.
[CrossRef]

Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results. Int. J. Comput. Vis. 2012, 2012, 1-45.

Udacity—21st Century University. Available online: https://github.com/udacity/self-driving-car (accessed
on 5 November 2018).

Stallkamp, J.; Schlipsing, M.; Salmen, J.; Igel, C. Man vs. computer: Benchmarking machine learning
algorithms for traffic sign recognition. Neural Netw. 2012, 32, 323-332. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s11263-013-0620-5
http://dx.doi.org/10.1109/TPAMI.2009.167
http://www.ncbi.nlm.nih.gov/pubmed/20634557
http://dx.doi.org/10.1109/TPAMI.2012.28
http://www.ncbi.nlm.nih.gov/pubmed/22248633
http://dx.doi.org/10.1177/0278364916679498
http://dx.doi.org/10.1109/TITS.2012.2209421
http://dx.doi.org/10.1109/TITS.2007.895311
https://github.com/udacity/self-driving-car
http://dx.doi.org/10.1016/j.neunet.2012.02.016
http://www.ncbi.nlm.nih.gov/pubmed/22394690

Electronics 2018, 7, 301 19 of 19

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Mao, X; Hijazi, S.; Casas, R.; Kaul, P.; Kumar, R.; Rowen, C. Hierarchical CNN for traffic sign recognition.
In Proceedings of the 2016 IEEE Intelligent Vehicles Symposium (IV), Gothenburg, Sweden, 19-22 June 2016;
pp- 130-135.

He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual
Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904-1916. [CrossRef] [PubMed]

Danelljan, M.; Hager, G.; Shahbaz Khan, F; Felsberg, M. Accurate Scale Estimation for Robust Visual
Tracking. In Proceedings of the British Machine Vision Conference, Nottingham, UK, 1-5 September 2014;
pp- 65.1-65.11.

Wojke, N.; Bewley, A.; Paulus, D. Simple Online and Realtime Tracking with a Deep Association Metric.
arXiv 2017, arXiv:1703.07402.

Grabner, H.; Grabner, M.; Bischof, H. Real-Time Tracking via On-line Boosting. In Proceedings of the British
Machine Vision Conference, Edinburgh, UK, 4-7 September 2006; pp. 1-10.

Babenko, B.; Yang, M.H.; Belongie, S. Visual Tracking with Online Multiple Instance Learning. 2009. Available
online: http:/ /faculty.ucmerced.edu/mhyang/papers/cvpr09a.pdf (accessed on 5 November 2018).
Henriques, J.F,; Caseiro, R.; Martins, P,; Batista,]. High-Speed Tracking with Kernelized Correlation Filters.
IEEE Comput. Soc. 2014, doi:10.1109/TPAMI.2014.2345390. [CrossRef]

Kalal, Z.; Mikolajczyk, K.; Matas, J. Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 2012,
34, 1409-1422. [CrossRef] [PubMed]

Kalal, Z.; Kalal, Z.; Mikolajczyk, K.; Matas,]. Forward-backward error: Automatic detection of tracking
failures. In Proceedings of the 20th International Conference on Pattern Recognition, Istanbul, Turkey,
23-26 August 2010; pp. 2756-2759.

Bolme, D.S.; Beveridge, J.R.; Draper, B.A.; Lui, Y M. Visual object tracking using adaptive correlation filters.
In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
San Francisco, CA, USA, 13-18 June 2010; pp. 2544-2550.

® © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TPAMI.2015.2389824
http://www.ncbi.nlm.nih.gov/pubmed/26353135
http://faculty.ucmerced.edu/mhyang/papers/cvpr09a.pdf
https://doi.org/10.1109/TPAMI.2014.2345390
http://dx.doi.org/10.1109/TPAMI.2014.2345390
http://dx.doi.org/10.1109/TPAMI.2011.239
http://www.ncbi.nlm.nih.gov/pubmed/22156098
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Dataset Description
	2D Object Detection and Recognition
	Baseline Method
	Training
	Auto-Updated Learning
	Traffic Sign Recognition

	Experiments
	Setup
	Performance Evaluation: Urban Object Detection
	Additional Test, Processing a Mix of Real-Life Clips Acquired in Various Urban Environments
	Traffic Sign Classification
	Discussion

	Detection and Tracking
	Motivation
	Strategy
	Experiment: Detecting with YOLOv2 Every n Frames.
	Experiment: Urban and Motorway Environments
	Experiment: mAP Accuracy in Trackers

	Conclusions
	References

