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Abstract: Image processing systems are widely used in space applications, so different
radiation-induced malfunctions may occur in the system depending on the device that is
implementing the algorithm. SRAM-based FPGAs are commonly used to speed up the image
processing algorithm, but then the system could be vulnerable to configuration memory errors
caused by single event upsets (SEUs). In those systems, the captured image is streamed pixel by
pixel from the camera to the FPGA. Certain local operations such as median or rank filters need to
process the image locally instead of pixel by pixel, so some particular pixel caching structures such as
line-buffer-based pipelines can be used to accelerate the filtering process. However, an SRAM-based
FPGA implementation of these pipelines may have malfunctions due to the mentioned configuration
memory errors, so an error mitigation technique is required. In this paper, a novel method to protect
line-buffer-based pipelines against SRAM-based FPGA configuration memory errors is presented.
Experimental results show that, using our protection technique, considerable savings in terms of
FPGA resources can be achieved while maintaining the SEU protection coverage provided by other
classic pipeline protection schemes.

Keywords: Image processing; line buffer; SRAM-based FPGA; single event upset (SEU); configuration
memory; soft error

1. Introduction

Image processing has an important role in space applications enhancing the images captured by
spacecrafts and robotic vehicles [1]. However, space radiation can affect electronic devices and image
sensors causing different malfunctions in the image processing system. These malfunctions can be
produced by energetic particles that collide with vulnerable parts in the device leading to, for example,
single event upsets (SEUs), a type of soft error that changes the value of a flip-flop or memory cell [2].

The effects of the soft errors depend, amongst other things, on the device that is implementing the
image processing algorithm. Microprocessors, for example, are widely used in the image processing
field, so soft errors in some critical parts of the processor such as the program counter register can cause
unexpected crashes or hangs [3]. Likewise, field-programmable gate arrays (FPGAs) are also used to
accelerate image processing algorithms since their logic blocks can be configured to exploit parallelism
or specific data features [4]. Depending on the technology used to manufacture the FPGA, they can be
more or less susceptible to the mentioned radiation effects. In particular, SRAM-based FPGAs consist
of two-dimensional arrays of logic cells and programmable blocks that can be configured by loading
a bitstream into the SRAM cells of their configuration memory. Consequently, if an energetic particle
strikes an SRAM cell, the loaded design functionalities can change permanently until the device is
partial or completely reconfigured [5].
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Certain image processing operations based on local filters such as median or rank filters, need to
process the image locally instead of pixel by pixel, so the entire image has to be stored in memory for
further pixel reading/writing operations. As an alternative, some particular pixel caching pipelines
composed of registers and first-in first-out (FIFO) line buffers can be used to process the pixel stream
as it arrives from the camera. These line-buffer-based pipelines allow the local filter to process several
image rows in parallel. However, local filters and pixel caching designs implemented in SRAM-based
FPGAs may have malfunctions due to the mentioned configuration memory errors [6], so an error
detection or correction technique is required depending on the criticality of the application.

In this paper, a novel method to protect line-buffer-based image processing pipelines against
SRAM-based FPGA configuration memory errors is presented. The technique uses two additional
8-bit registers to store pixels temporarily for later output comparisons. There are other techniques
used to protect pipelines or shift registers based on modular redundancy [7], cyclic redundancy
check (CRC) [8], or duplication and encoding [9], but an XOR-signature scheme has been chosen
for comparison with our proposed scheme due to its overhead-detection tradeoff, and its similar
store-and-compare procedure with the proposed technique [10]. The proposed and the XOR-based
techniques have been compared in terms of FPGA resource usage and error detection capabilities
through exhaustive fault-injection campaigns. Experimental results show that the error detection
capabilities of the proposed technique are similar to the XOR-based technique, but our design uses
considerably less FPGA resources. In addition to this, the proposed technique is designed in a manner
that the identification of the damaged part of the pipeline can be easily inferred, so once the error is
detected, a partial reconfiguration can be performed to remove the error.

The rest of the paper is organized as follows. In Section 2, a brief introduction to local filtering
and pixel caching is presented. Section 3 explains the proposed error detection techniques for
line-buffer-based image processing pipelines. These techniques are evaluated in Section 4. Finally,
Section 5 concludes the paper.

2. Pixel Caching

In digital images, local filters are defined as operations in which the output pixel value is a function
of the pixel values within a window centred on the currently analyzed input pixel [11,12]. In Figure 1,
the local filtering procedure is illustrated for a 3 × 3 square window.

Figure 1. Local filtering process. Grey-shaded pixels on the input image represent the square
window that feeds the local filter. The resulting filtered pixel replaces the center pixel of the window.
The window is moved along the image to generate all the output pixel values.

As mentioned before, the two-dimensional window is applied to an image region and replaces its
original center pixel value with the resulting filtered value of the pixels contained within the window.
In order to generate the output filtered image, the window must be moved along the entire image to
process each input pixel. In FPGAs, moving the window along the image means storing the whole
image frame in memory for subsequent pixel readings. However, the sliding window procedure can
also be achieved using a N-by-N pixel stream that sequentially passes through the local filter. In other
words, moving the window along the image is equivalent to streaming the image through the window.
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This procedure is commonly known as pixel caching, and it is based on the fact that each pixel is reused
in multiple window positions. There are several pixel caching structures [13], but they all consist of
line buffers and registers. The main difference between those structures is how the connections of the
mentioned line buffers are performed. FIFO line buffers can be connected in series or in parallel with
the window as shown in Figures 2 and 3.

Figure 2. Line buffer pipeline in series with window.

Figure 3. Line buffer pipeline in parallel with window.

The structures presented in Figures 2 and 3 are functionally equivalent. They temporarily store the
pixel stream in order to enable a 3× 3 local filter operation. As can be noticed, these structures does not
deal with the image borders. For instance, those pixels at the end of a row are followed by the pixels at
the beginning of the next row. Therefore, the border pixels will usually be invalid. There are several
approaches to deal with border pixels such as duplication, mirroring with duplication, or mirroring
without duplication [13]. However, the original structures presented in Figures 2 and 3 have been
studied since, in most applications, the useful information in the image is typically located in the center
of the image.

In order to test both line-buffer-based pipelines, a standard 8-bit 128 × 128 pixels grayscale image
has been chosen (see Figure 4). As will be explained later, the presented protection techniques are
independent of the image size, so the relative resource overhead added to protect the original design
decreases as the image size increases. Therefore, a reasonably small image size has been chosen to
evaluate the pipelines in a realistic but unfavourable case scenario.

The standard Lena image in Figure 4 has been selected to test the pipelines because its grayscale
properties make it widely used in the image processing field [14]. The size of the line buffers and
registers is dependent on the image color depth, so for an 8-bit grayscale image, the size of both
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line buffers and registers must be 8-bits. If, for example, a three-channel RGB color image was used,
the pipelines would have to be replicated in parallel for each channel. Then, the proposed error
detection scheme can be used to individually protect each of them. This protection technique is
presented below.

Figure 4. Standard 8-bit grayscale Lena image.

3. Proposed Techniques

As mentioned in the Introduction, configuration memory errors in SRAM-based FPGAs modify
the design functionalities permanently until the original bitstream is reloaded. For this reason, it is more
practical to detect the error and then perform a partial or complete reconfiguration of the device to
rewrite the affected configuration bits. In contrast to complete reconfiguration, partial reconfiguration
avoids reloading the whole bitstream on the device by changing parts of the configuration memory
frames while the FPGA is working, so the application does not have to be stopped [15]. Therefore,
protection techniques that provide enough information about the damaged part of the design are
helpful in facilitating the partial reconfiguration of the device.

Figure 5 illustrates the proposed protection technique for the series structure shown in Figure 2,
while the protected parallel structure is presented in Figure 6 (output register connections to
“Local Filter” block have been omitted for a better visualization). As can be observed, both techniques
are based on including a couple of 8-bit detection registers (DR1 and DR2), a counter, and a three-input
comparator to the original unprotected design.

Figure 5. Protected series pipeline.

Figure 6. Protected parallel pipeline.
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It should be noticed that both error detection registers are different from the window registers.
Every register in Figures 5 and 6 is a synchronous 8-bit register, but DR1 and DR2 are also controlled by
a pixel counter that enables the reading/writing operations. This mechanism is needed to perform the
comparison of the three output signals (E1, E2, and E3) at some particular time periods. For example,
in the protected parallel pipeline, the pixel at time t is stored in R0 and LB1, then, at time (t + 3) this
pixel is stored in DR1. The same pixel will be stored in DR2 at (t + 3 + line buffer length), and will be
outputted by R8 (t + 3 + 2·line buffer length) clock cycles later. At this precise moment, the error signals
comparison has to be performed to detect if a configuration memory error has modified the pixel value
during its travel through the pipeline. Therefore, for the selected 128 × 128 pixels grayscale image,
one pixel every 128 + 128 + 3 = 259 clock cycles is checked. The proposed error detection technique
is based on the fact that a configuration memory error modifies permanently the configuration of
the design, so once the error has damaged the pipeline, most of the subsequent pixel values will be
corrupted.

As can be observed in Figures 5 and 6, the error detection registers have been connected to
different parts of the pipelines. The series structure is a long unique delay line, so the connections
are at the beginning, the middle, and the end of the pipeline in order to check if the pixel has been
corrupted during its trip through the pipeline. In the parallel structure, the connections have been
made at the end of the branches to detect errors in each of them. These connections also enable the
identification of the damaged part of the pipeline. Using the three error detection output signals E1,
E2, and E3, a table can be created to evaluate the different possible scenarios and the part of the design
that has to be reconfigured to remove the configuration memory error. These errors affect equally
both logic elements and routing, so the partial reconfiguration has to be performed in the damaged
components shown in Table 1 and their route-related configuration bits. Moreover, the counter always
has to be reconfigured along with the possible damaged parts of the pipeline since all the erroneous
output scenarios can be caused by an error on it.

Table 1. Possible Damaged Part of the Pipeline.

Output Scenario Series Parallel
E1 = E2 = E3 None None
(E1 = E2) but 6= E3 R4 to R8/LB2 R6 to R8/LB2
(E1 = E3) but 6= E2 DR2 R3 to R5/DR2
(E2 = E3) but 6= E1 R0 to R3/LB1/DR1 R0 to R2/LB1/DR1
E1 6= E2 6= E3 Comparator Comparator

Table 1 summarizes the possible damaged parts of the studied pipelines depending on the values
of the output error detection signals. For example, in the series pipeline, if a configuration memory
error affects the window register R4, then the pixels stored in DR1 and DR2 will be equal, but the pixel
could be corrupted as it passes through R4, so the pixel that outcomes from R8 may not be equal to
them. This means that E1 and E2 would have the same values but E3 would be different from them.
Conversely, the same scenario in the parallel pipeline means that only DR2 would store a different
value since the output of R5 is not connected to the rest of the pipeline, so E2 would have a different
value from E1 and E3. The rest of the scenarios presented in Table 1 can be similarly deduced. With the
information provided in Table 1, a partial reconfiguration of the damaged part of the pipeline can be
performed to remove the error, instead of reconfiguring the entire FPGA. The quantitative benefits of
partial reconfiguration against complete reconfiguration are not discussed in this paper, but they are
considered as future work.

4. Technique Evaluation

In order to compare performance in terms of resource utilization and error detection rate,
an XOR-based signature technique has been chosen. This technique creates a signature of the input
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image using an XOR gate and a couple of 8-bit registers. The input image pixels are XORed and the
result is stored for a later comparison to the similarly calculated output pixels signature. If an error
alters the pixel values that pass through the pipeline, a signature mismatch occurs and the error
is detected. The described XOR-based signature calculation module is shown in Figure 7. In this
figure, Reg 1 is a simple 8-bit synchronous register, however, Reg 2 also uses a read/write enable
signal controlled by a counter to temporarily store the signature, as happened with the error detection
registers DR1 and DR2 from the proposed techniques.

Figure 7. XOR-based signature generation module.

This module (named “XOR” in Figures 8 and 9) has to be placed before and after the series
pipeline to calculate the input and the output image signatures for later comparison. However, in the
parallel pipeline, three XOR modules have to be used to be able to detect errors in the three pipeline
branches. This connection is similar to the one performed in Figure 6 for the proposed technique.

Figure 8. XOR-based protected series pipeline.

Figure 9. XOR-based protected parallel pipeline.

The proposed error detection structures presented in Section 3 and the XOR-signature technique
have been implemented in the SRAM-based FPGA part of a Xilinx Zynq-7000 All Programmable
System on a Chip (SoC) obtaining the utilization reports presented in Tables 2 and 3.
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Table 2. Utilization Report (Series).

Unprotected XOR Signature Proposed
LUTs 91 (0%) 112 (23.1%) 114 (25.3%)
FFs 99 (0%) 149 (50.5%) 127 (28.3%)

Table 3. Utilization Report (Parallel).

Unprotected XOR Signature Proposed
LUTs 73 (0%) 119 (63%) 92 (26%)
FFs 107 (0%) 183 (71%) 117 (9.3%)

In Table 2, the number of look-up tables (LUTs) and flip-flops (FFs) used by each series structure
is presented, while the parallel pipeline resources are shown in Table 3. The percentages in these tables
show the overhead of LUTs or FFs added to the unprotected design to implement each protection
technique. In the parallel structure, the XOR-based scheme needs three XOR signature generation
modules so, as can be observed in Table 3, significantly more resources are required. In the series
pipeline, the number of LUTs is slightly higher in the proposed technique. This is due to the use of
a two-input comparator in the XOR-based scheme instead of a three-input comparator but, in general,
the total FPGA resource usage of the proposed technique is lower.

The error detection rate of the techniques has been measured through fault-injection. First,
the techniques are validated against the standard 8-bit grayscale Lena image presented in Figure 4 to
obtain the “golden” output pixel values that should outcome from the pipeline if no error is injected.
These golden outputs are then stored for later golden comparisons. Once the golden outputs are
obtained, an exhaustive fault-injection campaign is executed using the Xilinx Soft Error Mitigation
(SEM) IP Controller [16]. The SEM IP is an independent circuit that has to be loaded along with the
design under test (DUT) in order to perform read/write operations in the DUT-related configuration
bits through the internal configuration access port (ICAP). The fault-injection campaign is sequentially
performed in an injection-correction loop. In each iteration, a configuration bit is flipped, the test
image is processed, and the golden comparison results are stored. Finally, the bit flip is corrected by
the SEM IP and the loop is repeated until all the DUT-related configuration bits are covered. It is worth
mentioning that SEUs have been injected since they are the worst case scenario for the error detection
techniques considered in this paper. This is because more errors imply more opportunities to detect
a malfunction in the pipeline.

For a better understanding of the experimental set-up, the fault-injection framework is presented
in Figure 10. This figure illustrates the different modules that are loaded in the SRAM-based FPGA.
Those modules that are grouped together inside the grey-shaded “Testbench” box are not affected by
the fault injector.

Figure 10. Soft Error Mitigation (SEM) IP-based fault-injection framework.

The fault-injection campaign has been performed for the unprotected original design,
the XOR-based protection scheme, and the proposed protection technique, obtaining the results
summarized in Tables 4 and 5. Table 4 presents the error detection capabilities for the series structure
of the line-buffer-based pipeline, while Table 5 shows the results for the parallel pipeline.
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Table 4. Error Detection Report (Series).

Unprotected XOR Signature Proposed
Corrupted images 4393 (100%) 4810 (100%) 4559 (100%)

- Detected N/A 4430 (92.1%) 4202 (92.2%)
- Undetected 4393 (100%) 380 (7.9%) 357 (7.8%)

Uncorrupted images 20,588 (100%) 25,825 (100%) 23,943 (100%)

- Normal operation 20,588 (100%) 24,345 (94.3%) 22,775 (95.1%)

- False positives N/A 1480 (5.7%) 1168 (4.9%)

MSE of Undetected 310 28 26

Table 5. Error Detection Report (Parallel).

Unprotected XOR Signature Proposed
Corrupted images 3972 (100%) 4768 (100%) 4533 (100%)

- Detected N/A 4404 (92.4%) 4186 (92.3%)
- Undetected 3972 (100%) 364 (7.6%) 347 (7.7%)

Uncorrupted images 21,269 (100%) 24,590 (100%) 28,634 (100%)

- Normal operation 21,269 (100%) 22,461 (91.3%) 27,290 (95.9%)

- False positives N/A 2129 (8.7%) 1344 (4.1%)

MSE of Undetected 287 27 26

It can be observed in these tables that the detection rate is approximately the same in both
pipelines and between both studied techniques. However, the proposed technique seems to be more
effective than the XOR-based scheme due to its fewer false positives. This is particularly noticeable
in the parallel pipeline, in which the percentage of false positive detections is more than twice the
proposed technique. False positives are strongly related to the number of FPGA resources used for
the error detection part, so an error affecting these configuration bits can trigger the “error detected”
signal while the pipeline outputs are still correct. By comparing Tables 2 and 3, it can be noticed
that the XOR-based scheme requires more LUTs and FFs for the parallel pipeline than for the series
pipeline since it needs a third XOR module to perform the error detection. As can be observed in
Table 5, these additional resources imply more false positive detections that will lead to more FPGA
reconfigurations. Consequently, the availability of the FPGA will be increased when our proposed
technique is implemented.

In order to measure the quality of the outputted image when the error is not detected, the averaged
Mean Square Error (MSE) of the undetected corrupted images has also been calculated for each pipeline
scheme and included in Tables 4 and 5. It can be observed that there is a significant reduction of
the MSE in both protection schemes compared to the unprotected pipelines and that the averaged
MSE obtained for the proposed protection schemes is slightly lower than the XOR-based technique.
This means that, when an error is not detected by our proposed technique, the outputted corrupted
image will still have (on average) better quality than the image outputted by the XOR-based scheme
and, therefore, it should have a lower impact on subsequent image processing algorithms.

5. Conclusions and Future Work

In this paper, a novel method to protect line-buffer-based image processing pipelines against
SRAM-based FPGA configuration memory errors is presented. Our proposed method is used to protect
two types of line-buffer pipelines (series and parallel). They store the image pixels temporarily using
two additional 8-bit registers. These pixels are later compared and, if a pixel mismatch is found,
the error is detected and then a partial or complete reconfiguration can be performed.
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The proposed technique has been compared in terms of FPGA resource usage and error detection
rate with an XOR-based signature scheme commonly used to protect pipelines. Both detection
techniques have been implemented in a Xilinx SRAM-based FPGA and fault-injection campaigns have
been performed using a Xilinx injection IP core.

Experimental results show that the proposed technique presents lower FPGA resource usage,
similar error detection rate, and fewer false positive detections in comparison with the XOR-based
scheme. In addition to this, the proposed technique has also been designed in a manner that the
identification of the damaged part of the pipeline can be easily inferred, so the partial reconfiguration
of the damaged module is facilitated. This means that, using our proposed error detection method, the
image processing system does not have to be stopped and rebooted, as usually happens when a classic
complete reconfiguration is performed. Implementing and measuring the effectiveness of the partial
reconfiguration in terms of time and power consumption is considered as future work.
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