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Abstract: In the modern era, distributed generation is considered as an alternative source for
power generation. Especially, need of the time is to provide the three-phase loads with smooth
sinusoidal voltages having fixed frequency and amplitude. A common solution is the integration
of power electronics converters in the systems for connecting distributed generation systems to
the stand-alone loads. Thus, the presence of suitable control techniques, in the power electronic
converters, for robust stability, abrupt response, optimal tracking ability and error eradication are
inevitable. A comprehensive review based on design, analysis, validation of the most suitable
digital control techniques and the options available for the researchers for improving the power
quality is presented in this paper with their pros and cons. Comparisons based on the cost, schemes,
performance, modulation techniques and coordinates system are also presented. Finally, the paper
describes the performance evaluation of the control schemes on a voltage source inverter (VSI) and
proposes the different aspects to be considered for selecting a power electronics inverter topology,
reference frames, filters, as well as control strategy.

Keywords: voltage source inverters (VSI); voltage control; current control; digital control;
predictive controllers; advanced controllers; stability; response time

1. Introduction

Nowadays, energy demand is getting increased with the passage of time and distributed
generation (DG) power systems especially through wind, solar and fuel cells as well as their related
power conversion systems are conferred immensely. Many problems like grid instability, low power
factor and power outage etc. for power distribution have also been increased with increase in energy
demand [1]. However, DG power systems are found to be a sensible solution for such problems as they
have relatively robust stability and causes additional flexibility balance. Moreover, their utilization
can also improve the distribution networks management and carbon release is also reduced. VSIs are
extensively necessitated for the commercial purpose as well as for the industrial applications as they
play a key role in converting the DC voltage and current, usually produced by various DG applications,
into AC before being discharged into the grid or consumed by the load. Several control systems are
introduced, various schemes are proposed and numerous techniques are updated in order to facilitate
the control of three-phase VSI. The objectives of these control schemes are to constrain the high and
low-frequency electromagnetic pollution and to inject the active power with zero power factor into the
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grid [2]. The smooth and steady sinusoidal waveform can be a good input to a load for getting the
most suitable response, therefore, the output of the inverter, which normally enjoys special standards
and characteristics, should be controlled for providing an aforementioned waveform to load and grid.

Generally, it is observed that several problems are caused in linking the DG power system to a grid
or grid to load in bidirectional inverters, i.e., grid instability, distortion in the waveform, attenuation as
well as major and minor disturbances. Hence, in order to overcome these problems and to provide
high-quality power, appropriate controllers with rapid response, compatible algorithm, ability to
remove stable errors, less transit time, high tracking ability, less total harmonic distortion, THD value
and smooth sinusoidal output should be designed. Various controllers are designed for achieving
these qualities. The cascade technologies are introduced in the literature comprises of an inner current
loop and outer voltage loop [3–12]. As the inner-loop current controller plays a fundamental role in
closed-loop performance, various control approaches like PI [3–6], H∞ [7,8], deadbeat [9–11,13] and
µ-synthesis [11] are extensively applied. Outer voltage loop in the aforementioned cases refines the
tracking ability and decreases the tracking error. In case of no input limitations, aforesaid PI controllers
are the best choice for stabilizing the inner loop performance. However, input constraints restrict
their performance and no optimization is usually observed by using PI controllers. The deadbeat
control method is proposed in [9] to enhance the closed-loop performance but unfortunately, it was
found highly sensitive to the disturbances, parameters mismatches and measurement noise. Later on,
some observed based deadbeat controllers are introduced in order to provide compensation for
these discrepancies, however, a trade-off was observed between phase margin and closed-loop
performance [9,10]. Afterwards, H∞ controllers in [7,8] are offering robust output response instead of
input constraints, however, guaranteeing only the local stability like the µ-synthesis controller in [12].

Several other manuscripts are also amalgamated with literature for fulfilling the demand of
electric power regarding fulfilling the environmental principles concerning green-house effects [14–18].
Various structures and topologies for interconnecting DGs are presented in [19–21] for parallel
operation and in [22–24] for independent operation. For this reason, various control strategies are
anticipated for stabilizing the system to control the voltage and frequency in case of unbalanced load
and nonlinear loads. Many researchers have proposed several schemes for designing the controller in
order to refine the quality of output voltage of DC to AC inverter. In [25], a control scheme is presented
for a DG unit in islanded mode, this control technique is suitable for balanced load conditions for a DG
unit when it is electronically coupled. However, this technique is constrained to small load variations
and remain unable to stabilize the system in large load variations. A robust controller is proposed
in [26] for balanced as well as unbalanced systems. However, it fails to address non-linear load properly.
In [27], a repetitive control is implemented for controlling the inverters but the relatively slow response
and absence of a systematical technique for stabilizing the error dynamics are the core problems. In [28],
the uncomplicatedly designed controller is used to mitigate the load disturbances up to a significant
extent through a feedforward compensation element, however, it is only restricted to balanced load
conditions. In [29], a spatial repetitive control technique is implemented for controlling the current
in a single-phase inverter. The results are satisfactory under non-linear load conditions; however,
it is not guaranteeing the optimal tracking ability for a three-phase inverter. In [30], a discrete-time
sliding mode current controller is proposed, it is optimally operating to control the system at a sudden
load change, an unbalanced load and a nonlinear load, however, the system is quite intricate. In [31],
the voltage and frequency controller is presented through a discrete-time mathematical model in
order to operate the distributed resource units. This technique is achieving good voltage regulations
under different load conditions but the results are not verified through the experimental setup. In [32],
a controller is proposed having an adaptive feedforward compensation method applied through
a Kalman filter for estimating the variation in parameters, the response was robust; however, tuning of
covariance matrices are not appropriately described in the paper. In [33], a corresponding controller
is recommended for distributed generation systems in grid applications, the anticipated controller is
good in handling the grid disturbances and handling the nonlinearities, however, it is not suitable
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in stand-alone mode due to the nonexistence of voltage loop. In [34,35], the adaptive controller is
used and voltage tracking is achieved precisely. The system is guaranteed under systems parameter
variations, however, complexity in computation exists and a certain pre-defined value is needed for
parameters. In [36], an output voltage controller based on the resonant harmonic filters is presented.
It measures the capacitor current and load current in the same sensor. Unbalanced voltage condition
and harmonic distortion are compensated in this controller. However, THD value is not defined
appropriately, therefore, it is complicated to assess the quality of the controller. An adaptive control
technique based proportional derivative controller is presented in [37], for a pulse width modulated
inverter operation in islanded distributed generation system, voltage regulation under numerous load
conditions is evaluated, though it is not easy to achieve the suitable control gains as par the designing
procedure specified in the paper. Moreover, voltage and frequency are optimally controlled, active and
reactive power unbalancing is aptly compensated through small signal modeling of inverters in [38].

The key purpose of this study is to provide a comprehensive review of the digital control
strategies for different types of three-phase inverters in stand-alone as well as grid-connected
modes. Correspondingly, explanation, discussion and comparison of the various control strategies are
described in this manuscript in detail.

The manuscript is organized as: classification of voltage source inverters is described in Section 2.
Section 3 discusses the characteristics of control systems, followed by a depiction of reference frames
in Section 4. The control strategy in decoupled dq frame and time-delay sampling scheme for VSI
are depicted in Sections 5 and 6 respectively. An overview of the most commonly used filters and
damping techniques is illustrated in Sections 7 and 8 respectively. The grid synchronization techniques
followed by modulation techniques are described in Sections 9 and 10 of the manuscript, respectively.
Moreover, control Techniques along with their pros. & cons. are described in Section 11. In Section 12,
comparative analysis and future goals for the researchers are elaborated. Whereas, conclusions are
drawn in Section 13.

2. Classification of VSIs

There are various types, in which the inverters are categorized. Figure 1 shows the complete
detail of categories in which voltage source inverters are classified.

Electronics 2018, 7, x FOR PEER REVIEW  3 of 37 

 

variation in parameters, the response was robust; however, tuning of covariance matrices are not 
appropriately described in the paper. In [33], a corresponding controller is recommended for 
distributed generation systems in grid applications, the anticipated controller is good in handling the 
grid disturbances and handling the nonlinearities, however, it is not suitable in stand-alone mode 
due to the nonexistence of voltage loop. In [34,35], the adaptive controller is used and voltage tracking 
is achieved precisely. The system is guaranteed under systems parameter variations, however, 
complexity in computation exists and a certain pre-defined value is needed for parameters. In [36], 
an output voltage controller based on the resonant harmonic filters is presented. It measures the 
capacitor current and load current in the same sensor. Unbalanced voltage condition and harmonic 
distortion are compensated in this controller. However, THD value is not defined appropriately, 
therefore, it is complicated to assess the quality of the controller. An adaptive control technique based 
proportional derivative controller is presented in [37], for a pulse width modulated inverter operation 
in islanded distributed generation system, voltage regulation under numerous load conditions is 
evaluated, though it is not easy to achieve the suitable control gains as par the designing procedure 
specified in the paper. Moreover, voltage and frequency are optimally controlled, active and reactive 
power unbalancing is aptly compensated through small signal modeling of inverters in [38].  

The key purpose of this study is to provide a comprehensive review of the digital control 
strategies for different types of three-phase inverters in stand-alone as well as grid-connected modes. 
Correspondingly, explanation, discussion and comparison of the various control strategies are 
described in this manuscript in detail.  

The manuscript is organized as: classification of voltage source inverters is described in Section 
2. Section 3 discusses the characteristics of control systems, followed by a depiction of reference 
frames in Section 4. The control strategy in decoupled dq frame and time-delay sampling scheme for 
VSI are depicted in Sections 5 and 6 respectively. An overview of the most commonly used filters and 
damping techniques is illustrated in Sections 7 and 8 respectively. The grid synchronization 
techniques followed by modulation techniques are described in Sections 9 and 10 of the manuscript, 
respectively. Moreover, control Techniques along with their pros. & cons. are described in Section 11. 
In Section 12, comparative analysis and future goals for the researchers are elaborated. Whereas, 
conclusions are drawn in Section 13. 

2. Classification of VSIs 

There are various types, in which the inverters are categorized. Figure 1 shows the complete 
detail of categories in which voltage source inverters are classified.  

Indirect 
Conversion

Direct 
Conversion

High Power 
Drives

CycloconvertersCurrent Source 
Inverters

Multilevel 
VSI

PWM-CSI

Voltage Source 
Inverters

Load Commutated 
Inverter

2-level High- 
Power VSI

Cascaded 
H-Bridge VSI

Neutral Point 
Diode Clamped 

VSI

Flying Capacitor 
VSI

 
Figure 1. Classification of voltage source inverters (VSIs) in high power drives. 

  

Figure 1. Classification of voltage source inverters (VSIs) in high power drives.

2.1. Multilevel Diode Neutral-Point Clamped Inverter

Multilevel inverter (MLI) was proposed in 1975, its design was like a cascade inverter with
diodes facing the source. This inverter was later transformed into a Diode Clamped Multilevel Inverter,
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which is also named as a Neutral-Point Clamped Inverter (NPC) [39]. In this type of multilevel inverters,
the integration of voltage clamping diodes is indispensable. An ordinary DC-bus is separated by
an even number of bulk capacitors connected in series with a neutral point in the middle of the line
that is dependent on the voltage levels of the inverter. In Figure 2, a five-level NPC-MLI is shown,
here the clamping diodes are interlinked to M-1 regulatory pairs if M is considered as voltage levels of
the inverter.
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The neutral point converter was designed by Nabae, Takahashi and Akagi in 1981, this was
basically a three-level diode-clamped inverter [40]. A three-phase Three-level diode-clamped inverter
is shown in Figure 3.

The NPC-MLI is considered as an important device in conventional high-power ac motor drive
applications like mills, fans, pumps and conveyors, moreover, it also offers solutions for industries
including chemicals, gas, power, metals, oil, marine, water and mining. The back-to-back configuration
of inverters for reformative applications is also considered as a major plus point of this topology, used,
for example, in regenerative conveyors, mining industry and grid interfacing of renewable energy
sources like wind power [41].

There are several benefits as well as drawbacks of multilevel diode-clamped [39,42]. A common dc
bus is shared by all the phases, this results in the reduction of capacitance requirements of the inverter.
Due to this reason, implementation of a back-to-back topology is not only credible but can also be
applied practically for performing different operations in an adjustable speed drive and a high-voltage
back-to-back inter-connection. The capacitors can be recharged as a group. On fundamental frequency,
switching efficacy is relatively higher. However, real power flow is problematic in case of a single
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inverter as the intermediate dc levels will tend to overcharge or discharge due to inappropriate
monitoring and control. The number of clamping diodes are quadratically associated with the number
of levels, which can be unwieldy for units with a high number of levels.
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2.2. Multilevel Capacitor Clamped/Flying Capacitor Inverter

A corresponding topology for the NPC-MLI topology is the Flying Capacitor (FC), or Capacitor
Clamped, MLI topology, it is depicted in Figure 4. As an alternative to clamping diodes, capacitors are
used for holding the voltages to the referred values. In the NPC-MLI, M − 1 number of capacitors are
integrated on a shared DC-bus, where M is the level number of the inverter and 2(M − 1) switch-diode
regulatory pairs are used. Though, for the FC-MLI, instead of clamping diodes, one or more capacitors
are used to produce the output voltages depends upon the position and the level of the inverter.
They are coupled to the midpoints of two regulatory pairs on the same position on each side of
a midpoint [42], see capacitors Ca, Cb and Cc in Figure 5.

The basic difference is the usage of clamping capacitors in place of clamping diodes, as using
them increases the number of switching combinations as capacitors do not block reverse voltages [42].
Numerous switching states would be able to produce the same voltage level and the redundant
switching states would also be available.

DC side capacitors in this topology have a ladder-like structure and the voltage on each capacitor
deviates from that of the other capacitor. The voltage increment between two adjacent legs of the
capacitors provides the size of the voltage steps in the output waveform. One advantage of the
flying-capacitor-based inverter is the redundancies for inner voltage levels; i.e., two or more effective
switching amalgamations can produce an output voltage.

Unlike the diode-clamped inverter, the flying-capacitor inverter never requires all of the switches
to be on (conducting state) in a consecutive series. Moreover, the flying-capacitor inverter has
phase redundancies, while the diode-clamped inverters have only the line-line redundancies [40].
These redundancies provide selective charging and discharging of specific capacitors and it can be
incorporated in the control system for the voltage balancing across the various levels.
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There are several advantages and disadvantages of multilevel flying capacitor inverters [41,43].
Phase redundancies are offered for balancing the voltage levels between the capacitors. Active and
reactive power flow can be regulated. The presence of various capacitors allows the inverter to ride
through outages for short duration and deep voltage sags. However, the control system is complex for
tracking the voltage levels for all of the capacitors. Correspondingly, recharging all the capacitors to
the same voltage level and startup are complex. Switching operation and efficacy are poor for real
power transmission. The installation of large numbers of capacitors is not much economical and it also
makes the system bulky as compared to the clamping diodes in multilevel diode-clamped converters.
Likewise, packing is also tougher in the inverters with a higher number of levels. The five-level and
three-level FC-MLIs are represented in Figures 4 and 5 respectively.
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2.3. Cascaded H-Bridge Inverter

There are minimum three voltage levels for a multilevel inverter using cascaded topologies. In order
to attain a three-level waveform, a single full-bridge or H-bridge inverter is considered. Each inverter is
provided with a separate DC source. A three-level cascaded inverter is shown in Figure 6.

By using different combinations of the four switches, Sa, Sb, Sc and Sd, each inverter level can
produce three different outputs of voltage, i.e., Vdc, 0 and −Vdc by connecting the dc source to the ac
output. −Vdc can be obtained by turning on switches Sb and Sc whereas for obtaining Vdc, switches Sa

and Sd can be turned on. However, for achieving the output voltage on 0 level either Sa and Sb or Sc

and Sd can be turned on. The different full-bridge inverters must be connected in series in the way that
the finally produced voltage waveform should be the sum of the inverter outputs. Multilevel cascaded
inverters are proposed for the applications such as static VAR generation (reactive power control),
an interface with renewable energy sources and for battery-based applications. The main reasons
for preferring a cascaded multilevel H-bridge inverter are the availability of possible output levels
more than twice the number of dc sources [42–44]. The series of H-bridges enables the manufacturing
and packaging process more easy, quick and economical. However, the requirement of a separate dc
source for each H-bridge constrains the applications of these inverters to the products having multiple
separate DC sources already or readily available.
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2.4. Two-Level Three Phase VSI with an Output Filter

A simple two-level inverter is used to convert dc to ac output. It consists of six switches, IGBTs and
MOSFETs are the two most suitable switching components for these inverters. Due to simplicity in
their structure and ability to handle the voltage by keeping the system stable, they are preferred
utmost in the industry and for commercial purpose due to their support in uninterruptible power
supply applications. These are usually connected to the load or the grid by using LC or LCL filter.
Various types of control systems are implemented by the researchers to improve their performance,
robustness and stabilization, compensating the power losses and lowering the THD value. SPWM
or SVPWM are mostly applied to these types of inverters for getting appropriate values. Two level
three phase VSI is shown in Figure 7. In Figure 7, the S1 to S3 and S′1 to S′3 shows the switches of the
inverter. Whereas, uc represents the voltage across the capacitors, C.
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2.5. Three Phase Four-Leg VSI with an Output Filter

Nowadays, a growing interest in using the three-phase four-leg inverters is observed from
the researchers’ due to their ability to handle the unbalanced loads efficaciously in four-wire
systems [45,46]. In this topology, the neutral point is proposed by connecting the neutral path to
the mid-point of the additional fourth leg, as shown in Figure 8. In Figure 8, uo represents the output
voltage of the LC filter, whereas M represents the point neutral point between two switches, SM and
S′M. Even though the configuration in this topology does not need expensive and large capacitors and
produces lower ripple on the DC link voltage, however, using two extra switches lead to a complex
control system [47]. Additionally, the split DC-link voltage is about 15% less as compared to the AC
voltage in this configuration [48].

Another topology can be using split DC link, which is the most common way of providing
a neutral point to three-phase VSIs. This configuration can be provided by using two capacitors
i.e., splitting the DC-bus into two parts by using a pair of capacitors and by connecting a neutral
path to the mid-point of these capacitors, as shown in Figure 9. Both these configurations have
several advantages and disadvantages, however, the split dc-link is found unsuitable for handling the
unbalanced loads, whereas, three-phase four leg inverter is found most appropriate for handling the
non-linear and unbalanced load conditions. A comparison of different types of VSIs with respect to
their characteristics, control contents and complexity is described in Table 1.
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Table 1. Comparison of different types of VSI in terms of design, implementation & complexity.

Characteristic Cascaded
H-Bridge VSI

NP-Diode
Clamped VSI

Flying
Capacitor VSI 2L-VSI

Design & implementation
complexity High Low Medium Low

Specific Requirements Separate DC
sources Clamping diodes Additional

capacitors IGBTs/MOSFETs

Control Concerns Power Sharing Voltage balancing Voltage Setup Voltage/current
regulation

Modularity High Low High Low
Fault tolerance ability Easy Difficult Easy Easy

Reliability Medium Medium Medium-High High
Converter Complexity Medium Medium Low-Medium High
Controller Complexity Medium-High Medium-High Medium-High Medium

Power Quality Good Good Good Medium
Operational Power (MW) 3–6 3–7 3–6 3

Switching devices MV-IGBT, IGCT MV-IGBT, IGCT MV-IGBT,
IGCT LV-IGBT

3. Characteristics of Control Systems

There are several parameters and characteristics through which a particular control system is
identified. Mainly, there are two characteristics of a control system are found i.e., analog or digital
control systems. Both are having some advantages and disadvantages, described as follows:
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3.1. Analog Control System

The control systems in which the input and output are designed and analyzed by continuous
time analysis or Laplace transform (in s-domain) using state-space formulations. In analog control
systems, the representation of the time domain variable is assumed to have infinite precision. Hence,
the equations of state space model are differential equations. These systems can be designed without
using a computer, microcontrollers or a programmable logic control (PLC). Implementation of analog
signals is generally done by using Op-amps, capacitors etc. Robustness against crash or breakdown,
having a wide dynamic range, analytical composition accessibility and continuous processing indicate
numerous advantages of the analog control systems. However, slow processing speed, interference,
complicated implementation in comparative logic, intelligent control systems, neural networks and
MIMO are several disadvantages of analog control systems.

3.2. Digital Control System

In digital control systems, modeling, designing, implementation and analysis is carried out in
discrete-time or z-transformation domain. In digital control systems, as the name depicts that digital
signals are analyzed. Therefore, time is sampled and quantized for state space equations. Additionally,
as a digital computer has finite precision, extra attention is needed to ensure that error in coefficients,
i.e., A/D conversion, D/A conversion etc. are not producing any disturbances or inadequate effects.
In a digital controller, the output is a weighted sum of current as well as previous input and output
samples, therefore, its implementation requires the storage of relevant values in a digital controller.

Mostly, a digital controller is implemented via a computer, so, found most economical to control
the plants. Moreover, it is relatively easier to constitute and reconstitute through software. Likewise,
programs can be leveled to the confines of storage without any additional cost. Correspondingly, digital
controllers are compliant with constraints of the program can be changed. Furthermore, the digital
controllers are less responsive to the changes in environmental conditions, unlike the analog controllers.
Flexibility, swift expansion, uncomplicated implementation in comparative logic, intelligent systems
and MIMO, high accuracy as well as robustness against interference are several advantages of these
systems. Though, low processing speed, low dynamic range and non-user-friendly interface are the
several drawbacks of the digital control systems. The digital controllers are implemented with various
technologies which are classified into three categories expressed as follows:

1. Microcontroller Based implementation (MC) [49–51]
2. Digital Signal processing-based implementation (DSP) [52–54]
3. Field programmable gate array-based implementation (FPGA) [55–57]

In reliable scientific research, generally, DSP is used. Fixed point arithmetic and floating-point
algorithms are mostly used in implementing the digital control technique by DSP. A traditional slow
microprocessor is used normally in slow applications. However, an FPGA is found adequate in fast
controllers, due to its abilities of bug fixing and to be reprogrammed in complex structures.

A general structure of a closed loop grid connected digital control system, with an inner current
loop and an outer voltage loop, is depicted in Figure 10. In this figure, a voltage source inverter with
an output filter is considered. An AC bus is connected to point of common coupling, PCC. Moreover,
coordinates transformation from abc to dq is achieved by a phase angle, PH. However, PLL represents
the phase locked loop. The symbols S1, S2, S3, S′1, S′2 and S′3 represents the switches, responsible for
positive and negative sequences of the inverter output.

The vdre f . and vqre f . represents the reference voltages in dq frame. SVPWM shows the space vector
pulse width modulation technique for generating drive signals for a voltage source inverter.

The voltage across capacitors, uc and current across inductors, iL are measured and transformed
into a synchronized dq reference frame. The input voltage is computed in the dq frame on the basis of
vre f . in the three-phase reference frame. The computed data is then transformed from rotating dq to
abc reference frame. Afterward, the PWM technique would be selected accordingly.
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4. Reference Frames

Control systems are implemented in either a single phase or a three-phase synchronous reference
frame. These frames are synchronized with each other through special formulation in order to
be compatible for facilitating the modeling, design, analysis and transformation of one phase and
three phase systems into other systems. Complex structures, especially for multi-level converters,
can be simplified by using these reference frames describes as follows [1,58].

4.1. abc Reference Frame

A general three-phase system is said to be applied to abc frame without any transformation.
An individual controller is to be used for each phase current in abc frame but Delta and star connection
has to be considered for designing a control system. Non-linear controllers are used in this system due
to their rapid dynamic response.

4.2. dq Reference Frame

This frame is used in three-phase systems. Park’s Transformation is used for transforming the abc
frame into dq frame. This transformation causes the current and voltage waveforms to be converted
into a frame that rotates synchronously with the grid voltage. As a result, the variables are converted
into DC variables and they can easily be controlled and filtered if required.

4.3. αβ Reference Frame

This frame is used in three-phase systems and sometimes sensationally in single phase systems
too. Grid current is transformed into a stationary reference frame from abc frame or single-phase
frame by using Clark’s transformation. Therefore, by using this transformation control variable can be
transformed into sinusoidal quantities.

5. The Control Strategy in Decoupled dq Frame

In a digital control scheme in dq reference frame, decoupling is the most important issue to be
discussed. Generally, a balanced and interrupted sinusoidal waveform can be obtained by adopting
ac voltage control in an inverter station. Therefore, the fundamental requirement is to simplify the
control design [59]. The controller in an inverter station is based on a mathematical steady-state model
in the synchronous reference frame. Moreover, during a balanced network state, the direction of the
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current injected into the loads is assumed as the reference direction. The mathematical representation
of a steady-state model is expressed as following:{

ubd = ωLisq + usd
ubq = −ωLisd + usq

(1)

In Equation (1), the terms ubd and ubq represents the voltages in dq frame under balanced network
conditions. Likewise, kp and ki represents the proportional and integrated controllers and the equation
by using aforementioned coefficients represents a PI controller. Correspondingly, usd and usq represents
the bus voltages in dq axis. However, isd and isq represents the active and reactive current respectively.
Commonly, the d-axis is fixed to the voltage source space vector, i.e., the amplitude of the desired ac
voltage space vector is kept constant and the value of usq = 0. Then Equation (1) can be simplified as:{

ubd = ωLisq + usd
ubq = −ωLisd

(2)

According to Equation (2), the control structure of the inverter station is shown in Figure 11,
where a PI controller is employed in the ac voltage control [60]. Moreover, usre f . is the reference voltage
which can be set accordingly for the desirable amplitude of AC bus voltage.
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6. Time Delay Sampling Scheme for VSI

Time sampling for digital controllers is done by using a discrete time-domain analysis, i.e., z-domain.
Two fundamental advantages of using z-domain analysis over s-domain (continuous time domain)
analysis for designing a current controller are: First the control implementation is achieved on
a computer-based system, i.e., the control calculation, sampling measurements and PWM signals sequence
are updated in discrete time steps. Although, this sample and hold feature is a characteristic of a control
system and effects its dynamics as per the referred sampling frequency. Secondly, the multiple time delays
can be modeled by using a backshift operator, which affords no simplifications in linear control design,
unlike continuous time domain, where the multiple time delays were sampled using an exponential term,
which is approximated generally by applying Taylor-series expansion. The sampling effect is a most
critical requirement to handle model uncertainties, issues in power supplies and relative disturbances.
Therefore, in order to deal with aforementioned issues, zero order hold, ZOH should be incorporated in
the control system. In ZOH, a pole or a zero is added into the existed controller through the compensator.
The fundamental advantage of this technique is its uncomplicated structure to be implemented on a system,
though, it only affects a limited share of the overall delay.

There are two basic sampling routines generally employed in the digital control systems, i.e., single
updated sampling and double updated sampling [61]. A single-update sampling method comprises
of the measurement samplings, in which calculated modulation indexes are updated once in every
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switching period. Whereas, a double-update sampling concept conferred to a PWM concept in which
the measurement sampling and therefore, the calculated modulation index are updated twice in every
switching period [61]. The detailed single-update and double-update sampling are shown in Figure 12,
where, T(k) represents the switching period of the present time slot. However, T(k − 1) and T(k − 2)
shows the switching period of the former time slots.

A single-update PWM-technique with sampling at the beginning of a switching period is depicted
in Figure 12a. In this technique, the modulation index is updated once in beginning of a switching
period. A time domain of one sampling time is introduced in the control loops. This effect is modeled
with a backshift operator while taking discrete time domain into the account.

Figure 12b shows another scheme of a single-update PWM sampling in which the modulation
index is updated in middle of a switching period. Therefore, the time delay due to sampling and
updating routine is the mean value of the two converter voltage reference values, i.e., actual and former
control cycles. Therefore, the transfer function of a single-update PWM technique with sampling in
middle of a switching period is determined.

In the double-update sampling concept, sampling and updating occurs twice in each sampling
period. In this technique, the modulation index is updated on the basis of former control cycle’s
measurements. According to this behavior, the time-delay is one control cycle. The pattern of
a double-update sampling is presented in Figure 12c.
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7. Output Filters for Inverters

The harmonics reduction is the foremost priority of the researchers while designing a power
electronics or an electrical system. Therefore, an output filter is used for this purpose. An output filter
uses the controlled phenomenon of switching the semiconductor devices for harmonics reduction.
There are numerous topologies of such filters introduced in the literature by combining the inductor
(L) and capacitor (C) i.e., L, LC and LCL filters unified with the inverters to their output.

7.1. L-Filter

In high switching frequency inverters, the first order L-filter is considered as the most suitable
filter. However, inductance decreases the dynamics of the whole system.

7.2. LC-Filter

An LC filter is a second-order filter having substantially sophisticated damping behavior as
compared to an L-filter. This filter topology is relatively easier to design and it is a compromise between
the values of inductance and capacitance. The cut-off frequency needs the relatively higher value
of inductance whereas the voltage quality can be improved through the higher value of capacitance.
The value of resonant frequency is dependent on the impedance of the grid when the system is
connected to the grid supply. An LC-filter is mostly preferred in standalone mode. The three-phase
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two-level and three-phase four legs voltage source inverters with an integrated LC filter are shown in
Figures 7 and 8 respectively.

7.3. LCL-Filter

An LCL filter is a third order filter, mostly used for the grid-tied inverters. The lower frequency
is preferable in presence of aforementioned filters. This filter supports the comparatively healthier
decoupling between the filter and the grid impedance. This filter should be precisely designed by
taking into consideration the parameters of the inverters. Otherwise even the smaller values of
inductance can bring resonance and unstable states into the system. However, the smaller inductance
can provide optimized current ripple diminishing values. A three-phase VSI with an LCL filter is
shown in Figure 13. Where, Vth and Zth represents the Thevenin voltage and Thevenin impedance
respectively. However, the complexity of the control system inflated significantly and the dynamic
performance of the inverter can perhaps be affected when relatively complex filter structures are
employed. Thus, these topologies are most suitable for high power applications, which employ low
switching frequencies. However, Figures 14 and 15 show the one-leg block diagram of a single-phase
and three-phase grid-connected systems, respectively. Where, Kpwm represents the pulse width
modulation characteristic of the system, whereas, ug, ui, uc, Lg, Li, ii and ig represents the grid side
voltage, inverter side voltage, voltage across capacitor, grid side inductance, inverter side inductance,
inverter side current and grid side current respectively.
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8. Damping Techniques for Grid-Connected VSIs

In the grid-connected applications, LCL filter is highly preferred due to its harmonic suppressing
capability. In this case, the voltage across the point of common coupling PCC is controlled in
synchronism with the current. Therefore, it becomes possible to regulate the active and reactive power
injected into the grid according to the requirement. The LCL filter offers a resonance frequency which
can be a source of instability in the closed-loop system. This problem is stated by various researchers
in the literature and numerous damping strategies are proposed to solve it [62–65]. Damping methods
can be classified into two groups. (i) Passive damping and (ii) Active damping.

8.1. Passive Damping

Passive damping is to inserting passive elements in the filter for reduction of the resonant
peak in the system [32]. Generally, passive damping schemes never desire any amendments in the
control strategy. Though, these approaches change attenuation of the filter, as a result of which losses
increases [18,32,34]. The passive damping techniques, presented generally in the literature, results in
the addition of a simple resistor in series with the filter capacitor [63]. The major drawback of this
technique is a reduction in filter attenuation, increasing power losses and large filter volume [62].
A general schematic of passive damping control strategy for a grid connected VSI is shown in Figure 16.
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8.2. Active Damping

The active damping methods are proposed to overcome the drawbacks associated with the
passive damping techniques. Active damping techniques offer modifications in the control policy
in order to afford closed loop damping [65,66]. The active damping techniques are classified into
3 groups, i.e., single loop, multi-loop and complex controllers. Single loop methods are incorporated
to damp the LCL filter resonance, without supplementary measurement. These methods comprise of
low pass filter-based method, virtual flux estimation method, sensor-less method, splitting capacitor
method, notch-filter method and grid current feedback method. Generally, single-loop methods
are found relatively robust during uncertainty in parameters and variation in grid inductance [62].
Multiloop methods explore additional measurements. This group comprises of capacitor current
feedback, capacitor voltage feedback and weighted average current control techniques. However,
the third group of active damping methods is based on complex control structures. This outcome of
these techniques is usually a suitable and a robust dynamic response [67]. These techniques include
predictive control, state-space controllers, adaptive controllers, sliding mode controller and vector
control. Additionally, when LCL filter is selected, there are two options for current control: grid current
or converter current. Various techniques are proposed but there exists a disagreement in the literature
about the suitable solution of these issues and it is agreed that the current control strategy should be
carefully selected. An active damping technique with a damping resistance as well as a harmonic
compensator are described in [65]. A general schematic of active damping control strategy for a grid
connected VSI is shown in Figure 17.
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9. Grid Synchronization Techniques

The grid voltage must be synchronized with the injected current in a utility network for
a significant output. In synchronization algorithm, phase of the grid voltage vector is considered and
control variables i.e., grid voltages and grid currents are synchronized by using it. Various methods
are introduced in literature for extracting the phase angle [68]. Some commonly used techniques found
in credible research articles are discussed as:

9.1. Zero-Crossing Technique

The simplest method to implement is Zero-Crossing method. However, it is not considered on
a larger scale due to poor performances reported in the literature. Especially, during voltage variations,
ample values of harmonics and notches are observed.

9.2. Filtering of Grid Voltages

The grid voltages can be filtered in the dq frame as well as in the αβ reference frame.
The performance of zero-crossing method is improved by voltage filtering [68]. However, it is
a complicated process to extract the phase angle out of utility voltage, especially during a fault
condition. This method uses the arctangent function to realize the phase angle. Generally, a delay is
observed in processing a signal while using the filtering method. Therefore, designing of the filter
must be considered critically.

9.3. Phase Locked Loop Technique

The phase locked loop, PLL technique is considered as the state-of-the-art method to obtain
the phase angle of the grid voltages. The PLL is implemented in dq-synchronous reference frame.
In this case, the coordinates transformation from abc to dq is preferred and reference voltage, ûd
would be set to zero for realizing the lock. A general schematic of PLL technique is depicted in
Figure 18. A PI regulator is generally used to control the reference variable. Afterward, the grid
frequency is integrated in the system and utility voltage angle is acquired after passing through
a voltage-controlled oscillator, VCO. This voltage angle is then fed into the αβ to dq transformation
module for transforming into the synchronous reference frame.

This technique is found the most suitable for rejecting notches, grid harmonics and other
disturbances. However, additional improvements are needed to handle the unsymmetrical voltage
faults. Especially, filtering techniques to filter the negative sequence should be proposed in case of
unsymmetrical voltage faults, as second-order harmonics are propagated by the PLL system and
reflected in the obtained phase angle. Moreover, it should be assured to estimate the phase angle of the
positive sequence of the grid voltages during unbalanced grid voltages [68].
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10. Modulation Schemes

In power electronics converters, the major problem is the reduction in harmonics. PWM control
techniques provide the most suitable solution for harmonics reduction. A sinusoidal output having
controlled values of frequency and magnitude is the core purpose for using these PWM techniques.
Primarily, PWM techniques are classified into three major categories i.e., Triangular Comparison-based
PWM (TC-PWM), Space Vector-based PWM (SV-PWM) and Voltage look-up table-based PWM
(VLUT-PWM).

10.1. Triangular Comparison Based PWM

In Triangular Comparison based PWM (TC-PWM) techniques, PWM waves are produced by
the combination of an ordinary triangular carrier and a fundamental modulating reference signal.
The triangular carrier signal has relatively very higher frequency than that of a fundamental modulating
reference signal. The magnitude and frequency of the fundamental modulating reference signal control
the magnitude and frequency of the central module in the grid side. PWM and Synchronous PWM
(SPWM) are the core techniques to be mentioned in TC-PWM [69].

10.2. Space Vector Based PWM

In SVPWM techniques, the revolving reference vectors provide the reference signals.
The magnitude and frequency of central module in grid side are controlled by the frequency and
magnitude of the revolving reference vectors respectively. This technique was first introduced to
generate vector based PWM in the three-phase inverters. However, nowadays it is expanded to various
other newly introduced inverters. SV-PWM is considered to be the more advanced technique for PWM
generation for getting qualified sinusoidal output with low THD values [69].

10.3. Voltage Look-Up Table-Based PWM

In VLUT-PWM, a new method is introduced to obtain the voltage reference based on the current
reference for an inverter. The major advantage of this technique is its compatibility and simplicity with
the load conditions. The switching frequency in this technique is usually taken significantly lower as
compared to various other presented techniques [52].

11. Control Techniques

Connecting the grid to the distributed generation system plays a key role and if bit negligence
is shown in implementing this procedure, a number of problems can arise i.e., the grid uncertainty
and disturbance, so in order to overcome this situation, a suitable controller must be designed for it.
In this section, the most appropriate control techniques are described according to their applications.
Various single loop and multiloop control systems are discussed in the literature for power droop
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control, voltage and current control. In which inner loop is for current regulation and outer loop
is for voltage regulation [13,70,71]. In Figure 19, the categorization of classical an advanced control
technique is depicted clearly.
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11.1. Classical Control Techniques

The classical controllers include the category of controllers for adding or subtracting a proportion
and adjusting the system accordingly. These controllers involve proportional (P), proportional
integration (PI), proportional integral derivative (PID) and proportional derivative (PD) controllers.
These controllers are considered as the most fundamental controllers in the industry for controlling
linear systems and considered as the base of control theory. Lot of work in literature is being done
on these controllers [49–52,72–78]. The fundamental benefits of implementing these controllers are
their ability to tune themselves according to the requirement of the plant and their simple structure.
Moreover, they are the most commonly used controllers on commercial levels, so easily available.
However, their tracking ability, response time and ability to handle stable error are relatively lower as
compared to modern state-of-the-art controller. The schematic of a digital PI controller for controlling
a three-phase VSI with an LC filter in stand-alone mode is shown in Figure 20. In Figure 20, ia f ,
ib f and ic f represents the filter current across phase a, b and c respectively. Likewise, va, vb and vc

characterizes the voltage across phase a, b and c respectively. Likewise, id and iq represents the current
across the d and q axis respectively. Moreover, Sa, Sb and Sc represents the switching commands across
phase a, b and c respectively. Correspondingly, Vd

re f . and Vq
re f . symbolizes the reference voltages along

d and q axis respectively.
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Figure 20. Schematic of a PI control algorithm for a VSI. 

11.2. PR Controllers 

PR controllers are the combination of proportional and resonant controllers. The frequencies 
closer to resonant frequency are integrated by the integrator. Therefore, phase shift or stationary error 
do not occur. This controller can be applied in both ABC and αβ frames. Due to high gain near 
resonant frequencies, this controller has the ability to eliminate the steady-state errors of electrical 
quantities. The resonant controller maintains the network frequency equal to the resonant frequency. 
It is capable of adjusting the frequency according to changes in grid frequency. However, an accurate 
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11.2. PR Controllers

PR controllers are the combination of proportional and resonant controllers. The frequencies
closer to resonant frequency are integrated by the integrator. Therefore, phase shift or stationary
error do not occur. This controller can be applied in both ABC and αβ frames. Due to high gain near
resonant frequencies, this controller has the ability to eliminate the steady-state errors of electrical
quantities. The resonant controller maintains the network frequency equal to the resonant frequency.
It is capable of adjusting the frequency according to changes in grid frequency. However, an accurate
tuning is always needed for optimal results and this technique is found sensitive to the frequency
variations [30,31]. These controllers are relatively better than PI controllers in terms of their tracking
ability and response time. If used with a harmonic compensator, they can optimally handle THD.
Their capability to handle current in grid-connected inverters is also remarkable. However, damping
issues still exist. The active and passive damping adjustments and integration in a system with
a harmonic compensator are somehow, the complicated issues. Moreover, they do not have outstanding
ability to handle stable error and phase shift. The limitation to handle specific frequencies i.e., closer
to resonant frequencies is also a drawback of these controllers. A PR controller with a harmonic
compensator, HC, in stand-alone mode for a VSI is shown in Figure 21. Structures of a simple
PR controller and a discrete PR controller are shown in Figures 22 and 23, respectively. Where,
Ts represents the sampling period, ω represents the grid angular frequency. However, Kp and Kr

denotes the proportional and resonant coefficients respectively. The PR controller with a harmonic
compensator is proposed in [65].
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11.3. LQG Control Technique

The integration of Kalman filter with an LQR controller gives rise to an LQG controller. In this
technique, Kalman Filter, as well as an LQG controller, can be designed independently of each other.
This control scheme is valid for both linear time-invariant systems as well as for linear time-varying
systems. LQG control technique facilitates the designing of a linear feedback controller for an uncertain
nonlinear control system [79–81]. An LQG control structure with a Kalman estimator is shown
in Figure 24. Where, ue represents the known input and yc is the estimated noise/disturbance.
The Kalman estimator provides the optimal solution to the continuous or discrete estimation problems.
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11.3.1. Linear Quadratic Regulator

The linear quadratic regulator (LQR) technique is found optimal for steady as well as transient
states [82–84]. As the name depicts, this control technique is a combination of linear and quadratic
functions, where the dynamics of the system are described by a set of linear equations and the cost
of the system is a quadratic function. The cost function parameters are considered critically while
designing the controller. LQR algorithm is an automatic approach for finding a suitable state-feedback
controller. Pole placement with state feedback controller provides the system with a high degree of
freedom and makes it simpler to implement. This method is characteristically steady and it can be
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employed even if some of the system parameters are unknown. However, exertion in finding the exact
weighting factors limits the applications of LQR control scheme. Moreover, it has a discrepancy of
tracking accuracy during load changes [83–85].

11.3.2. Linear Quadratic Integrator

In linear quadratic integrator (LQI) scheme, cost minimization is considered critically.
This technique is implemented for nullifying the steady-state error between actual grid voltage
and reference grid voltage during load variations [82]. An integral term used with LQ control is
for minimizing the tracking error produced by uncertain disturbances in instantaneous reference
voltage. Optimal gains for providing adequate tracking with zero steady-state error are relatively
simpler to attain by using this technique. The rapid dynamic response, accurate tracking ability
and relatively simpler designing procedure provide this technique a benefit over other techniques.
However, complications in extracting the model and phase shift in voltage tracking even in normal
operative condition are the major drawbacks of this scheme.

11.4. Hysteresis Control Technique

Hysteresis control is considered as a nonlinear method [86–93]. The hysteresis controllers are
used to track the error between the referred and measured currents. Therefore, the gating signals are
generated on the basis of this reference tracking. Hysteresis bandwidth is adjusted for error removal
in reference tracking. This is an uncomplicated concept and has been used since analog control
platforms were intensively used. This technique does not require a modulator; therefore, the switching
frequency of an inverter is dependent on the hysteresis bandwidth operating conditions and filter
parameters [94]. The major drawback of hysteresis controller is its uncontrolled switching frequency;
however, researchers are working on improving this controller and several works are presented and
several techniques are proposed in the literature. Main advances in this technique are direct torque
control (DTC) [87,88,95,96] and direct power control (DPC) [97–99]. In DPC, active and reactive powers
are directly controlled, however, in DTC torque and flux of the system are controlled. Error signals are
produced by hysteresis controllers and drive signals are generated by the look-up according to the
magnitude of the error signals. Hysteresis controllers require very high frequency for constraining the
variables in hysteresis band limits, whenever implemented on a digital platform as shown in Figure 25.
Moreover, switching losses are very high in this type of controllers. So, Hysteresis controllers are found
inappropriate for high power applications.

Electronics 2018, 7, x FOR PEER REVIEW  21 of 37 

 

it can be employed even if some of the system parameters are unknown. However, exertion in finding 
the exact weighting factors limits the applications of LQR control scheme. Moreover, it has a 
discrepancy of tracking accuracy during load changes [83–85].  

11.3.2. Linear Quadratic Integrator 

In linear quadratic integrator (LQI) scheme, cost minimization is considered critically. This 
technique is implemented for nullifying the steady-state error between actual grid voltage and 
reference grid voltage during load variations [82]. An integral term used with LQ control is for 
minimizing the tracking error produced by uncertain disturbances in instantaneous reference 
voltage. Optimal gains for providing adequate tracking with zero steady-state error are relatively 
simpler to attain by using this technique. The rapid dynamic response, accurate tracking ability and 
relatively simpler designing procedure provide this technique a benefit over other techniques. 
However, complications in extracting the model and phase shift in voltage tracking even in normal 
operative condition are the major drawbacks of this scheme. 

11.4. Hysteresis Control Technique 

Hysteresis control is considered as a nonlinear method [86–93]. The hysteresis controllers are 
used to track the error between the referred and measured currents. Therefore, the gating signals are 
generated on the basis of this reference tracking. Hysteresis bandwidth is adjusted for error removal 
in reference tracking. This is an uncomplicated concept and has been used since analog control 
platforms were intensively used. This technique does not require a modulator; therefore, the 
switching frequency of an inverter is dependent on the hysteresis bandwidth operating conditions 
and filter parameters [94]. The major drawback of hysteresis controller is its uncontrolled switching 
frequency; however, researchers are working on improving this controller and several works are 
presented and several techniques are proposed in the literature. Main advances in this technique are 
direct torque control (DTC) [87,88,95,96] and direct power control (DPC) [97–99]. In DPC, active and 
reactive powers are directly controlled, however, in DTC torque and flux of the system are controlled. 
Error signals are produced by hysteresis controllers and drive signals are generated by the look-up 
according to the magnitude of the error signals. Hysteresis controllers require very high frequency 
for constraining the variables in hysteresis band limits, whenever implemented on a digital platform 
as shown in Figure 25. Moreover, switching losses are very high in this type of controllers. So, 
Hysteresis controllers are found inappropriate for high power applications.  

+
+

-

-
-

+ -

Three-Phase 
Load

Analogue to 
Digital 

Converter

cfibfiafi

cf
i

bf
i

af
i

dcv

C

L

cU

Li
LC Filter

+

.
b
refi

.
a
refi

.ref
ci

aS

bS

cS

 

Figure 25. A Hysteresis control technique for VSI. 

11.5. Sliding Mode Control 

The sliding mode control is considered to be an advanced power control technique for the power 
converters. It fits into the family of adaptive control and variable structure control [100–104]. Sliding 

Figure 25. A Hysteresis control technique for VSI.

11.5. Sliding Mode Control

The sliding mode control is considered to be an advanced power control technique for the
power converters. It fits into the family of adaptive control and variable structure control [100–104].
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Sliding mode control is a non-linear technique, whereas it can be instigated to both non-linear as well
as linear systems [100]. In Figure 26, a sliding mode control along with SVM/PWM is presented.
Where, βv represents the gain, λ is a strictly positive constant and φ is a trade-off between the tracking
error and smoothing of the control discontinuity. The sliding controller produces the voltage references
in a converter for generating the drive signals. A predefined trajectory is executed and the control
variable is forced to slide along it [102–104]. The robust and stable response is achieved even in the
system parameters variation or load disturbances by implementing sliding mode control technique.
This controller is more robust and capable of removing the stable error as compared to the classical
controllers. However, some drawbacks in implementing a sliding mode control are difficulty in finding
a suitable sliding surface and limitation of sampling rate that degrades the performance of SMC will
be degraded. Whenever tracking a variable reference, the chattering phenomenon is another drawback
of SMC technique. As a result, overall system efficacy is reduced [105,106].
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11.6. Partial Feedback Controllers

There are several techniques presented for conversion of non-linear systems to linear systems
for their uncomplicated computation. Partial feedback controllers are one of the most effective and
forthright techniques for transforming the non-linear systems into the linear ones. By this technique,
a system can be converted either partially or fully into a linear system, depends on the system
constraints. Linearity in a system is attained by the cancellation of the nonlinearities inside the system.
So, these systems can be controlled by using the linear controllers whenever a non-linear system is fully
transformed into a linear system i.e., exact feedback linearization method. However, if it is partially
converted into a linear system then it is known to be partial feedback linearization. PFL controller is
implemented in [104,106–109]. In PFL, it is difficult to ensure the stability of complicated renewable
energy system applications. However, an independent subsystem can be obtained from PFL for
constraining the extensive use of this method. Moreover, in order to deal with these problems,
exact feedback linearization (EFL) is a forthright and model-based technique for scheming nonlinear
control techniques. EFL receipts the built-in nonlinearity characteristic of the system under deliberation
and consents the conversion of a nonlinear structure into a linear one, algebraically. EFL removes
nonlinearities of a system through nonlinear feedback, as a result, the transformed system is not reliant
on an operating point.

11.7. Repetitive Control

The plug-in scheme (PIS) and internal model (IM) principle are the basic concepts of repetitive
control (RC). RC uses an IMP which is in correspondence to the model of a periodic signal. In order to
derive this model, trigonometric Fourier series expansion is used. If the model of reference is fed into
the closed loop path, optimal reference tracking can be obtained. Moreover, it is found robust against
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disturbances and has the ability to reject them. RC mostly deals with periodic signals. Closed loop
behavior of the system and Magnitude response of the IM are the core factors used for analyzing the
performance of the repetitive controller in case of frequency variation or any other uncertainty in the
system. Both these factors indicate the performance sagging in case of variation or uncertainty in the
reference signal. In presence of a periodic disturbance, RC intends to attain zero tracking error when
a periodic or a constant command is referred to it. RC has an ability to locate an error, a time-period
before and fine-tunes the next command according to the feedback control system for eliminating the
observed error. However, it lacks the ability to handle physical noise. For this purpose, an LPF can be
used. Kalman’s filtering approach is also noticeable to remove this noise [27,110–113]. The general
structure of a repetitive controller is shown in Figure 27.
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11.7.1. Fuzzy Control

This control technique belongs to the family of intelligent control systems. The PI controller
is replaced by a fuzzy logic controller in this technique as shown in Figure 28. Where, v f z. is the
fuzzified output voltage. However, its block diagram is shown in Figure 29. In a fuzzy controller,
the tracking error of load current and its derivative are given as the input. This controller design is
dependent on the awareness, knowledge, skills and experience of the converter designer in terms of
functions involvement. Due to non-linear nature of the power converters, the system can be stabilized
in case of parameters variation even if the exact model of the converter is unknown. Fuzzy logic
controllers are also categorized as non-linear controllers and probably the best controllers amongst the
repetitive controllers [113–116]. However, strong assumptions and adequate experience are required in
fuzzification of this controller. As it is dependent on the system input and draw conclusions according
to the set of rules assigned to them during the process of their modeling and designing.
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11.7.2. Artificial Neural Network Control

The Artificial neural network (ANN) controllers are the fundamental form of the controllers based
on the human-thinking mode. It consists of a number of artificial neurons to behave as a biological
human brain. The reference tracking error signals are given through a suitable gain or a scaling factor
(S) as input to the ANN for generating the switching signals into the power converters. This approach
is used for achieving the constant switching operation in power converters. ANN can be used in both
online as well offline modes while operating it on system control. It has high tolerance level to faults
because of its ability to estimate the function mapping. Its topology is shown in Figure 30.

Fuzzy and ANN can be combined to achieve an optimal control performance in a power
converter [113–115]. ANN does not need a converter model for its operation, however, the operational
behavior of a power converter should be precisely known to the designer/operator while designing
the ANN control system.
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11.8. Robust Controllers

In robust control theory, a control system vigorous against uncertainties and disturbances is offered.
The basic aim is to attain the stability in case of inadequate modeling. All the descriptions, criteria and
limitations should be appropriately defined in order to get robust control. This controller guarantees the
stability and high performance of closed-loop system even in multivariable systems [117].

11.8.1. H-Infinity Controllers

The expression H∞ control originates from the term mathematical space on which the
optimization takes place: H∞ is considered as a space of matrix-valued functions that are investigative
and confined in the open right-half of the complex plane. In this type of control system, first of all,
the control problem is formulated and then mathematical optimization is implemented i.e., selection
of the best element according to criterion from the set of obtainable alternatives. H-infinity control
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techniques are generally pertinent for the multivariable systems. The impact of a perturbation can
be reduced by using H-infinity control techniques in a closed loop system subject to the problem
formulation. The impact can be measured either in terms of performance or stabilization of the
system. However, modeling of the system should be well-defined for implementation of these control
techniques. Moreover, H-infinity control techniques have another discrepancy of high computational
complications. In case of non-linear systems limitations, the control system cannot handle them well
and response time also increases [118]. However, these controllers are implemented and well defined
in [111,112,119].

11.8.2. µ-Synthesis Controllers

Mu-synthesis is based on the multivariable feedback control technique, which is used to handle
the structured as well as unstructured disturbances in the system. Where µ mentions the singular
value that is reciprocal of the multivariable stability margin. The basic purpose is to mechanize the
synthesis of multivariable feedback controllers that are insensitive to uncertainties of the plant and be
able to attain the anticipated performance objectives. This method is well described in [120,121].

11.9. Adaptive Controllers

An adaptive controller is designed to have the ability of self-tuning, i.e., to regulate itself
spontaneously according to variations in the system parameters. It does not require initial conditions,
system parameters or limitations for its implementation due to its ability to modify the control
law according to system requirements. Recursive least squares and Gradient descent are two most
commonly known technique for parameters estimation in adaptive controllers. The structure
of a typical adaptive controller is shown in Figure 31. In the literature, some credible research
articles and state-of-the-art techniques for adaptive controllers are found in [14,37,53,55,113,122–125].
These controllers are applicable for both dynamic as well as static processes. However, the complicated
computational process leads to exertion in its implementation.
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11.10. Predictive Controllers

Predictive controllers are commenced as a propitious control technique for electronics inverters.
The system model is considered critically and then imminent behavior of the control variables is
predicted conferring to the specified criterion. It is an uncomplicated technique and can handle
multivariable systems efficiently. Moreover, it can handle the system with several limitations or
non-linearities. It is generally preferred due to its prompt static as well as dynamic response and
ability to handle stable errors. However, its computational analysis is complex as compared to classical
controllers. It is further categorized into Deadbeat control and Model Predictive control. It can refer to
literature [105,125–127] for predictive controllers. A comparison of predictive control techniques on
basis of their pros. and cons. is described in Table 2.
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11.10.1. Deadbeat Control

Deadbeat control technique is the most authentic, competent and attractive technique in terms
of low THD value, frequency as well as rapid transient response. Differential equations are derived
and discretized in this type of control system for controlling the dynamic behavior of the system.
The control signal is predicted for the new sampling period for attaining the reference value. Its effective
dynamic performance and high bandwidth simplify the current control for this type of controller.
Error compensation is a specialty of a deadbeat controller. However, its major discrepancy is its
sensitivity for network parameters and accurate mathematical filter modeling [13,54,56,128–135].
Its topology is shown in Figure 32, where a disturbance observer, a state estimator and a digital
deadbeat controller are used to control the voltage and current of a VSI. The coefficient d̂ represents
the output of disturbance observer comprises of current and voltage. However, v̂d and v̂q represents
the controlled voltage across d-axis and q-axis respectively.
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11.10.2. Model Predictive Control

As the name depicts, a model of the system is used to predict the behavior of the system in model
predictive control (MPC) technique. A cost function criterion is defined in this type of control system,
which can be minimized for optimal control actions. The controller adapts the optimal switching
states according to the cost function criterion. Forecast error can be lessened for current tracking
implementing. Moreover, system limitations and non-linearities, as well as multiple inputs and output
systems, are handled well by MPC. Control actions of the present state are considered in order to
predict the control actions of the system in the next state. Like deadbeat control, it is also found
sensitive to system parameter variations [136–147]. The topology for implementation of MPC on VSI
is shown in Figure 33, whereas, its control schematic is depicted in Figure 34.
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11.11. Iterative Learning Scheme

Iterative Learning Scheme (ILS) is a complicated but authentic technique for attaining
zero tracking error. In this scheme, each control command is executed and the system is examined and
then adjusted accordingly before each repetition. Highly accurate modeling of the system is essential
for the implementation of ILS; therefore, its designing technique is relatively more complicated than
other schemes. ILS is capable of removing the tracking error caused by the periodic disturbances.
The next cycle is predicted by considering the learning gain, system adjustment in z-transform, tracking
error at each repetition, control function of the designed controller and the error function between
two consecutive iterations.

12. Comparative Analysis and Future Research Goals

VSIs are specially designed for converting DC to three-phase AC, therefore, control strategies
must be according to the three-leg three-phase power inverters. However, for MLIs, the control
strategies must be inherited from three-leg three-phase power inverters. The control policies of
VSIs in stand-alone mode can be categorized into numerous categories depending upon similar
and dissimilar considerations. Considering the PWM, VSIs can be classified into two categories
i.e., carrier-based modulation and carrier-less modulation. The carrier-based modulation schemes
such as Selective Harmonic Elimination (SHE), 3D SVPWM, Sinusoidal Pulse Width Modulation
(SPWM) and Minimum-Loss Discontinuous PWM (MLDPWM) based PWM techniques have attained
significant consideration due to their constant switching frequency.

SPWM offers constant switching frequency and flexible control schemes; nevertheless, one major
disadvantage of this technique is the compact efficacy of the DC voltage [148]. The 3D-SVPWM delivers
an adequate DC bus utilization and a standardized load harmonic curvature as compared to the SPWM
technique. However, it is complex in nature to be implemented on the digital devices. Correspondingly,
the SHE-PWM suggests a flexible controller by considering the switching angle. However, the real-time
enactment of this carrier-based modulation is quite difficult. The capability of the MLDPWM under
nonlinear and unbalanced conditions is found relatively admissible; however, its real-time execution
is found very much circuitous. However, the carrier-less modulation approaches such as flux vector
and hysteresis provide a rapid-dynamic response [149]. But, they suffer from variable switching
frequency [91]. Additionally, they require composite switching tables for their implementation.

The conventional PI controllers encounter problems to eliminate the steady-state error. In order to
solve this problem, a PR controller is commonly used in the stationary reference frame for regulating
the output voltages of the VSIs due to its sophisticated explication in eliminating the steady-state
error, while controlling sinusoidal signals. Additionally, it is competent in eliminating selective
harmonic uncertainties.
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It is also taken into consideration that the PR controller perceives the resonant frequency to offer
gains at specific frequencies. Thus, the resonant frequency should be synchronized with the frequency
of the microgrid. Hence, it can be said that it is very sensitive with respect to the variations in system
frequency. The PI controller is also extensively used in the dqo frame and performs robustly with pure
DC signals. Though, in order to allocate the control variables from the abc to the dqo frame, the phase
angle of the microgrid should be known. Likewise, using cross-coupling and voltage feedforward
terms are the secondary problems in implementing this method.

In the stand-alone operating mode, VSIs primarily controls the power transfer, voltage and
frequency of the system. Nevertheless, power quality can be enhanced by offering a suitable control
technique in the inverter-based type DGs. As in VSIs, the auxiliary services for improvement in power
quality embedded in the control assembly. In case of VSIs, compensation of unbalanced voltage,
a lower value for total harmonic distortion, harmonic power-sharing schemes, power sharing between
active/reactive powers, imbalance power, active/reactive power control and augmentation in power
quality are critically considered and embedded in control schemes. VSIs are also applied on several
applications in microgrid systems, extensively, for improving the power quality. This power control
strategy is presented in [38]. However, a comprehensive review of various control strategies for
microgrids is described in [150]. Moreover, using modular multilevel inverters can improve the
modularity and scalability to meet reference voltage levels, efficiency in high power applications,
reduction in harmonics in high voltage applications and size of passive filters as well as no requirement
for dc-link capacitors [151].

In Table 3, different types of filters are suggested by various researchers based on the control
systems. However, it is significant to use L-filters for low power applications having a simple design,
nevertheless, L-filters are not found suitable in resonance state as well as for high power applications.
So, LCL-filter is highly preferred in aforementioned system characteristics. The designing of this filter
is comparatively complicated due to a few constrictions related to the system stability. The accuracy in
designing and modeling of the system leads to better performance against resonance and harmonics.
Nevertheless, the choice should be made according to the customer’s demand. The prime parameters
should be chosen on the basis of system condition and intended tasks to be performed by the system.
Afterward, the designing of power system and control system parameters should be finalized.

This corresponding study incorporates the advantages and disadvantages of each controller
in terms of stability, rapid response time, harmonic elimination, the nonlinearity of the system,
unbalanced compensation and robustness against parameter variation. Various suitable control
schemes for different types of VSIs are documented in this paper. However, their implementations
for power generation and power quality improvement are still not perfect simultaneously. Moreover,
each controller has its own benefits and obstructions. Therefore, it is not easy to decide that which
control scheme is better than the others. These are significant subjects for the future research. On the
basis of the analysis of former publications, appended research is suggested to be carried out in the
aforementioned area.

Regardless of the several investigations in this field, none of the proposed control techniques
can be selected as an immaculate solution to meet al.l the requirements of power quality,
i.e., harmonic/reactive/imbalance power-sharing and voltage unbalanced/harmonic/swell/sag and
Interruption compensation at the same time. Therefore, further research should be focused on the
novel power-electronics topologies to fulfill all aforementioned necessities simultaneously.

Three-phase three-wire VSIs are now a well-developed and mature research topic with respect
to their hierarchical control. But on the other hand, control hierarchies are not as well established for
ML-VSIs, as for three-phase three-wire VSIs. It may be beneficial to consider ML-VSI system, as well
as the primary, secondary and tertiary stages, whenever a control scheme is to be designed.

Substantially, a lot of work is to be done for exploiting the new control approaches for ML-VSIs.
In order to achieve enhanced performance, it is compulsory to use some innovative techniques such as
robust, MPC and LQR control techniques.
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It is also observed through a number of studies that coupling among the phases is neglected
whenever controlling an ML-VSI by means of a conventional PI controller, which results in a reduction
of the system’s robustness. Hence, it can also be beneficial to implement decoupled phase voltage
control to realize the referred response in time domain. A comparison of the credible research articles
found in literature with respect to their control techniques, modulation schemes, control parameters,
loop characteristics, employed filters and applications is described in Table 3.

13. Conclusions

On the basis of research, conventional multilevel inverter topologies given in the previous sections,
general and asymmetrically constituted ML-VSIs have been also reviewed in this paper. Several new
hybrid topologies can be designed through the combinations of three main MLI topologies. Besides the
combination of topologies, the trade-offs in MLI structures can be dealt by using H-MLIs that is formed
using different DC source levels in inverter cells. PWM strategies that generate switching frequency
at fundamental frequency are also introduced for H-MLIs for the switching devices of the higher
voltage modules to operate at high frequencies only during some inverting instants. Due to numerous
applications of conventional MLIs and flexibility to design the hybrid MLI topologies, this paper
cannot cover all utilizations with MLIs but the authors intend to provide a useful basis to define the
most proper control schemes and applications. In addition to these, the fundamental design and
control principles of MLIs have been introduced as a result of a detailed literature survey. This paper
has been destined to provide a reference to readers and the results given in this paper can also be
extended with experimental studies.

Table 2. Description of predictive controllers on the basis of their pros. & cons.

Predictive
Control

Deadbeat Control

• -Modulator required
• -Fixed switching frequency
• -Low Computations
• -Limitations not undertaken

Trajectory Based control

• -Modulator not required
• -Variable frequency
• -No cascaded structure

Hysteresis Based predictive control

• -Modulator not required
• -Variable frequency
• -Uncomplicated structure

Model Predictive Control

• -Modulator required in case of continuous control set (CCS) and not required
in case of finite control set (FCS).

• -Likewise, fixed switching frequency (CCS) and variable switching frequency
exists in (FCS).

• -Online optimization and simple designing is included in case of FCS.
• -Constraints are considered in both cases
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Table 3. Digital control system characteristics in numerous credible scientific proposals.

Application Controller Filter Ref. Frame Feedback Modulation Ctrl. Parameter Ref.

General adaptive LCL Single Phase Multi-loop SPWM V, I [51]
General Classic, PR LCL Single Phase Multi-loop PWM I [152]
General Adp., Rpt. L Single Phase Single-loop SPWM I [105]

UPS DB LC Single Phase Multi-loop PWM V, I [153]
General Rpt. LC Single-Phase Single-loop PWM V [101]
General Rpt C LCL Single Phase Single-loop PWM I [104]

DG Classic LCL abc, αβ Single-loop PWM V, P [47]
DG Classic LC abc, αβ Multi-loop SVPWM V, I [48]
DG Classic LC abc, αβ Multi-loop SPWM V, I [49]
DG Classic L abc, αβ Single-loop VLUT V [50]

General DB L abc, αβ Single-loop PWM I [52]
APF Adp., Rpt. LC abc, dq Multi-loop SVPWM I [53]

General DB LCL abc, dq Multi-loop PWM I [54]
DG Adp., MPC LCL abc, αβ Multi-loop SVPWM I [55]

General LQG LCL abc, dq Single-loop PWM I [66]
PV PR, LQG L abc, αβ Single-loop SVPWM I [64]

General Adp. L abc, αβ Multi-loop PWM I [107]
UPS Pred. LC abc, dq Single-loop SVPWM V [109]

PV, APF Pred., Fuzzy L abc, αβ Multi-loop PWM P [108]
PV, APF SMC, Pred. L abc, αβ Multi-loop PWM P [111]
General DB L abc, dq Single-loop SVPWM I [113]
General Adp., DB L abc, dq Single-loop PWM I [112]

DG DB L abc, dq Single-loop SVPWM I [116]
UPS DB, Rpt. LC abc, αβ Single-loop PWM V [115]

General MPC LCL abc, abc Single-loop PWM V, I [122]
General MPC L abc, αβ Single-loop PWM I [125]
General MPC L abc, dq Single-loop SVPWM I [128]

PV MPC L abc, dq Single-loop SVPWM I [130]
PV Classic, Rpt. L abc, dq Single-loop SVPWM I [97]
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