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Abstract: Hardware-based implementations of the Fast Fourier Transform (FFT) are highly regarded
as they provide improved performance characteristics with respect to software-based sequential
solutions. Due to the high number of operations involved in calculations, most hardware-based
FFT approaches completely or partially fold their structure to achieve an efficient use of resources.
A folding operation requires a permutation block, which is typically implemented using either
permutation logic or address generation. Addressing schemes offer resource-efficient advantages
when compared to permutation logic. We propose a systematic and scalable procedure for generating
permutation-based address patterns for any power-of-2 transform size algorithm and any folding
factor in FFT cores. To support this procedure, we develop a mathematical formulation based on
Kronecker products algebra for address sequence generation and data flow pattern in FFT core
computations, a well-defined procedure for scaling address generation schemes, and an improved
approach in the overall automated generation of FFT cores. We have also performed an analysis and
comparison of the proposed hardware design performance with respect to a similar strategy reported
in the recent literature in terms of clock latency, performance, and hardware resources. Evaluations
were carried on a Xilinx Virtex-7 FPGA (Field Programmable Gate Array) used as implementation
target.

Keywords: Discrete Fourier Transform; Fast Fourier Transform; Linear Transform; Pease Factorization;
scalable address generation; Digital Signal Processing; hardware generation

1. Introduction

The Fast Fourier Transform (FFT) is the main block in many electronic communications,
signal processing, and scientific computing operations. It allows for the fast computation of the
Discrete Fourier Transform (DFT). The DFT, in turn, is used to obtain the spectrum of any finite
discrete signal or numeric sequence. Many FFT factorizations have been proposed since its first
formulation, including Cooley-Tucky, Pease, and Hartley, among others, each with different advantages
and limitations [1]. As regularity becomes a desirable characteristic when FPGA-based solutions are
pursued, this work uses the Pease FFT formulation due to its constant geometry structure [2,3]. Our work
formulates a set of algorithms for addressing schemes or scheduling operations in FFT computations.
Figure 1a shows the standard representation of a 2-point FFT calculation, also called a butterfly
operation. In Figure 1b we introduce an alternate butterfly notation which we will use for the
butterfly operation. This notation facilitates the formulation of FFT algorithms in terms of Kronecker
products algebra, introduced later in this paper. An N-point FFT operation is divided into S stages,
where S = log2(N) is a positive integer.
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Figure 2 shows the structure of an 8-point Pease FFT implementation, illustrating a representative
N-point structure where butterflies are presented as processing elements (PEs) in the rectangular
boxes. Figure 2 also allows for introducing the concepts of horizontal and scalable vertical folding.
A horizontal folding consists on reducing by half the number of columns in a FFT structure.
A horizontal folding is considered maximum when successively halving the column count, reduces the
total number of columns to one, maximizing the usability of hardware resources. The vertical
folding consists on reducing the number of butterflies in the single column resulting resulting after
a maximum horizontal folding has been applied. A vertical folding is considered scalable when the
factor introduced to reduce the number of butterflies in the single column can be conveniently adjusted
to fit a particular hardware resource limitation. A scalable vertical folding process affects the overall
latency associated with memory operations. It also creates the need for a permutation block which is
in charge of controlling the data flow between stages. A vertical folding factor φ is defined such that
φB = N, where B = 2β is defined as the number of memory banks required in the implementation,
and β is defined as the number of processing elements in a single column. A permutation block consists
of two data switches and B memory banks. For small values of β, the memory latency is high and the
amount of consumed hardware resources is low. On the contrary, for large values of β, the latency is
low and the amount consumed hardware resources is high. The resulting structure may be classified
as a Burst I/O design since the computation must wait for the entire FFT calculation to finish before
providing a new input signal to the hardware computational structure (HCS).

(a) Standard representation (b) Notation used in this work

Figure 1. Representations for a 2-point Fast Fourier Transform (FFT) operation.

Stage 2

Horizontal Folding

V
er

ti
ca

l 
F

o
ld

in
g

Stage 1 Stage 3

Figure 2. 8-point Pease FFT architecture.

Permutation blocks in folded hardware FFTs can be implemented in one of two ways: either using
dedicated permutation logic or using address generation schemes. In the first approach, a complex
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dedicated logic circuit controls the data flow, while in the second, data are stored in memory banks
and a simple controller generates the addresses depending on the needed permutations.

Several works have been reported using scalable permutation logic with variable number of
points and folding factors. A major drawback of these approaches is the large amount of consumed
hardware resources [4–6]. Addressing schemes were introduced by Johnson as an alternative able to
significantly reduce the amount of consumed hardware resources [7]. Many FFT implementations have
been reported to follow the concept of addressing schemes. Some have used a non-scalable approach
targeted to specific applications [8–12]. Others provide scalable implementations in terms the number
of FFT points [13–21].

Francheti et al. proposed a framework for the hardware generation of linear signal transforms [22].
Although their work produced functional solutions, this framework did not describe in sufficient
detail the address generation scheme utilized in its table lookup procedure for twiddle factors or
phase factors operations. It is essential to develop FFT computational algorithms with optimal data
placement and access strategies, to obtain data accesses with zero conflicts. Data address generation
schemes need to be designed to accomplish this task. Our address generation scheme satisfies this
design requirement without the need of a reordering procedure, and it is independent of pipeline
overlapping techniques, such as those reported in works by Richardson et al. [23].

Despite this diverse set of implementations, there are few approaches addressing the issue of
using an HCS to allow for scalable folding processing. The main motivation behind this work is
the existing need for a generalized addressing scheme for scalable algorithms based on maximum
horizontal folding. To the best of our knowledge, no such generalized addressing scheme has been
previously proposed. The key benefits of a our proposed addressing scheme can be summarized
as follows:

• a set of methods to generate scalable FFT cores based on an address generation scheme for Field
Programmable Gate Array (FPGA) implementation when the vertical folding factor is optimized,

• a mathematical procedure to automatically generate address patterns in FFT computations,
• a set of stride group permutations to guide data flow in hardware architectures, and
• a set of guidelines about space/time tradeoffs for FFT algorithm developers.

The rest of this paper is organized as follows: Section 2 describes the mathematical foundations
of the FFT core. Section 3 describes the hardware implementation procedure. Section 4 evaluates the
design performance in terms of clock latency and hardware resources when the target HCS is a Xilinx
FPGA. Finally, Section 5 provides concluding remarks.

2. Mathematical Preliminaries

In this section, we start by presenting definitions and mathematical concepts used for the
formulation of the proposed scalable address generation scheme.

2.1. Definitions

Let us first define two main matrix operations frequently used in this paper: Kronecker products
and matrix direct sum. If A ∈ Rm1×n1 and B ∈ Rm2×n2 , then their Kronecker product is defined as
C ∈ Rm1m2×n1n2 [24], where

C = A⊗ B = [a[k, l]× B]k∈Zm1 ,l∈Zn1
. (1)

The matrix direct sum of matrix set A1, A2, ..., An is defined as

n⊕
d=1

Ad = diag(A1, A2, ..., An) =


A1

A2
. . .

An

 . (2)
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Now let us define the Pease formulation for an N-point FFT in Kronecker products,

FN =

{
S

∏
i=1

(LN
2 (IN/2 ⊗ F2)Ti)

}
RN , (3)

where LN
2 is a stride by 2 permutation of order N, IN/2 is an identity matrix of size N/2, RN is termed

the bit reversal permutation of order N, and F2 is the radix-2 butterfly defined as

F2 =

[
1 1
1 −1

]
. (4)

Ti is the twiddle or phase factor matrix defined as

Ti =
2S−i−1⊕

r=0
(I2i−1 ⊗Wq

2 ), (5)

where q = r× 2i−1 and,

Wq
2 =

[
1 0
0 ωN

]q

, (6)

where ωN = e−j 2π
N [25]. Furthermore, the direct computation shows that

RN = (IN/2 ⊗ L2
2)(IN/4 ⊗ L4

2) . . . (I2 ⊗ LN/2
2 )LN

2 , (7)

where LN
2 is, again, a stride by 2 permutation [26].

2.2. Kronecker Products Formulation of the Xilinx FFT Radix-2 Burst I/O Architecture

Our work is based on an equivalent architecture for the Xilinx FFT Radix-2 Burst I/O core
(Figure 3) for implementing DFT computations [27]. Our goal is to present a systematic and scalable
procedure for generating permutation-based address patterns for any power-of-2 transform size FFT
algorithm and any folding factor. For this purpose, we propose to use the language of Kronecker
products algebra as a mathematical tool. Therefore, we start by representing mathematically this
architecture using a specific DFT computation example, for N = 8.

RADIX-2 BUTTERFLY

ROM for 
Twiddles

sw
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sw
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Data
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Data
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● 

●
 

● 
Input Data

Output Data

Figure 3. Xilinx Radix-2 Burst I/O architecture. RAM: random access memory; ROM: read
only memory
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At the beginning of the process, in the Xilinx architecture, data points are stored serially in RAM0
and RAM1 through the input data bus (Figure 3). The first 4 data points are stored in RAM0 and
the last 4 are stored in RAM1. Following the Pease FFT formulation, the addressing schemes can be
expressed as:

RA0 = R4

[
0 1 2 3

]T
, (8)

RAi+1 = L4
2RAi 0 ≤ i ≤ 2 , (9)

RB0 = R4

[
0 1 2 3

]T
, (10)

RBi+1 = (J2 ⊗ I2)L4
2RBi 0 ≤ i ≤ 2 , (11)

where RAi is the addressing scheme for RAM0, RBi is the addressing scheme for RAM1, i is the
stage identifier, and J2 is a data exchange matrix. In the first stage, switch 1 in Figure 3 does not
perform any permutation over the input data. In the rest of the stages, switch 1 does not perform any
permutation in the first half, and interchanges the input data in the second half. That is,

SW1out = SW1in; i = 0, 0 ≤ b ≤ 3,
SW1out = SW1in; i > 0, 0 ≤ b ≤ 1,

SW1out = J2SW1in; i > 0, 1 ≤ b ≤ 3,
(12)

where SW1out is the output of switch 1, SW1in is the input of switch 1, b is the internal step counter.
The single butterfly operation can be expressed as:

BFout =

[([
1 1
1 1

] [
1 0
0 ω8

]p

�
[

1 1
1 −1

])
BFin

]
, (13)

where BFout and BFin are the radix-2 butterfly’s output and input in Figure 3, respectively. ω8 = e−j 2π
8 and,

p = 8× 2−(i+1)
⌊
(2i+1b)

8

⌋
, (14)

where bac denotes the floor operation on a. Switch 2 in Figure 3 does not perform any permutation for
the even-indexed values of b, the internal step counter. On the other hand, switch 2 interchanges the
input data on the odd-values of b. That is,

SW2out = SW2in; i ≥ 0, b = {0, 2},
SW2out = J2SW2in; i ≥ 0, b = {1, 3}, (15)

where SW2out is the output of the switch 2 and SW2in is the input of the switch 2. This process
applies for any value of N. The equations included in this subsection are presented as an example
of how a signal transform hardware architecture can be represented mathematically under a unified
computational framework.

It is important to notice that this architecture only uses one butterfly. What would happen with
the addressing schemes, switches, and phase factor scheduling if two or more butterflies were used?
the next subsection addresses this relevant issue.

2.3. Kronecker Products Formulation of the Scalable FFT with Address Generation

Figure 4 shows an FFT architecture designed with the required blocks for our addressing scheme,
under the control of a Finite State Machine (FSM). TheData Address Generator (DAG) produces the
addresses depending on the needed permutations. The Memory Banks (MBs) store the input signal
and the processed data as well. The Data Switch Read (DSR) permutates the data points from the
MBs to process them correctly. The Processing Elements (PEs) perform the mathematical operations.
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Finally, the Data Switch Write (DSW) permutates the data to avoid memory conflicts. Every block
is mathematically represented as an entity, with specified inputs and outputs. To obtain these
mathematical representations, we use again the language of matrix algebra and tensor or Kronecker
products. In the next subsection, we define the general aspects of these mathematical representations.

Data
Switch
Read
(DSR)

Data
Switch
Write
(DSW)

Processing 
Elements

(PEs)

FSM

Memory 
Banks
(MBs)

Data Address 
Generator

(DAG)

Figure 4. FFT architecture with our proposed addressing scheme. FSM: Finite State Machine.

The DAG must perform two kinds of permutations over the data points, regardless of the folding
factor: a bit-reversal permutation in the first stage and stride-2 permutations in the next stages.
Furthermore, since our implementation is intended to be used as a “conflict free memory addressing
strategy” [7], these permutations have to be performed by rewriting the data points into the same
locations as being read. Since each butterfly needs two different values at the same time, 2β different
addressing schemes are needed. However, this work demonstrates that for any folding factor, only two
array addressing schemes are needed. An array addressing scheme is defined as a systematic procedure
for simultaneously pointing to B blocks of an ordered set of memory data. For an N-point FFT with
vertical folding factor φ the array addressing schemes can be expressed as:

X0 = Rφ

[
0 1 2 . . . φ− 1

]T
, (16)

Xi+1 = Lφ
2 Xi 0 ≤ i ≤ S− 1 , (17)

Y0 = Rφ

[
0 1 2 . . . φ− 1

]T
, (18)

Yi+1 = (J2 ⊗ Iφ/2)Lφ
2 Yi 0 ≤ i ≤ S− 1 , (19)

where Xi is the even array addressing scheme, Yi is the odd array addressing scheme, i is the stage identifier,
J2 is an exchange matrix, Lφ

2 and Rφ are, again, a stride permutation and a bit-reversal permutation,
respectively, and the superscript T denotes matrix transpose operation.

The addressing scheme requires B memory banks. Since each processing element or butterfly
accepts two complex numeric values at the same time, and there are β processing elements, the number
of memory banks is equal to B = 2β. Each memory bank consists of φ memory locations. The memory
banks can be indexed using the following scheme,

b
i Mk[l]; k ∈ ZB, l ∈ Zφ, (20)
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where b
i Mk is the k-th memory bank, and 0 ≤ b ≤ φ− 1 is the internal step counter. We use row major

storage which means that each row contains the complex numeric values of an entire memory bank.
That is,

b
i M =



M0[0] M0[1] . . . M0[l] . . . M0[φ− 1]
M1[0] M1[1] . . . M1[l] . . . M1[φ− 1]

...
...

. . .
...

. . .
...

Mk[0] Mk[1] . . . Mk[l] . . . Mk[φ− 1]
...

...
. . .

...
. . .

...
MB−1[0] MB−1[1] . . . MB−1[l] . . . MB−1[φ− 1]


. (21)

To extract the numeric values stored in the memory banks, we perform an inner product stage
operation. This operation consists in first creating a state indexing matrix

iSIMl [k]; l ∈ Zφ, k ∈ ZB, (22)

and then performing thememory bank output (i
b MBO) operation. We form this matrix by interleaving the

even and odd array addressing schemes. That is,

iSIM =
[

Xi Yi Xi . . . Xi Yi

]
︸ ︷︷ ︸

B

, (23)

where Xi and Yi are, again, the even and odd array schemes vectors respectively. Furthermore, we use
the notation iSIMk[l] to refer the l-th element in k-th row in the i-th stage. Let Eφ be an ordered
basis of φ column vectors with an entry of value one in the i-th position and zeros elsewhere. Let ei,
termed a basis vector, denote the i-th element of order φ, of this basis, where i ranges from 0 to φ− 1.
That is,

Eφ = {e0, e1, ..., eφ−1}. (24)

The result of the inner product stage operation is the memory bank output (b
i MBO), and is obtained

by making

b
i SRI =

b
i MBO =



〈bi M0, eiSIMb [0]
〉

〈bi M1, eiSIMb [1]
〉

...
〈bi Mk, eiSIMb [k]

〉
...

〈bi MB−1, eiSIMb [B−1]〉


, (25)

where b
i SRI is the DSR input bus, eiSIMb [k]

∈ Eφ is a basis vector, and

b
i Mk[

iSIMb[k]] = 〈bi Mk, eiSIMb [k]
〉 = ∑

n∈Zφ

b
i Mk[n](eiSIMb [k]

)[n]. (26)

The numeric values fetched throughout these addressing schemes are the ones to be operated by
the PEs at each stage, but they are not in the same order according to the butterflies arrangement.

The DSR permutates these numeric values. In the first stage, the DSR performs a bit reversal
permutation over the input data. In the rest of the stages, the DSR performs stride-2 permutations in
the first half of the stage, and modified stride-2 permutations in the second. That is,

b
i PEI =

b
i SRO = RB

b
i SRI ; i = 0, 0 ≤ b ≤ φ− 1,

b
i PEI =

b
i SRO = LB

2
b
i SRI ; i > 0, 0 ≤ b ≤ φ/2− 1,

b
i PEI =

b
i SRO = (J2 ⊗ Iφ/2)LB

2
b
i SRI ; i > 0, φ/2 ≤ b ≤ φ− 1,

(27)
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where SRO is the DSR output bus, and PEI is the PEs input bus. The next action is to process the DSR
output through the butterflies. The PEs are an arrangement of radix-2 butterflies represented as F2 and
is expressed as:

b
i SWI =

b
i PEO =



(U2Wp
2 � F2)

[
b
i PEI0
b
i PEI1

]

(U2Wp
2 � F2)

[
b
i PEI2
b
i PEI3

]
...

(U2Wp
2 � F2)

[
b
i PEI k

b
i PEI k+1

]
...

(U2Wp
2 � F2)

[
b
i PEI B−2
b
i PEI B−1

]



, (28)

where b
i SWI is the DSW input bus, U2 is a unit matrix defined as

U2 =

[
1 1
1 1

]
, (29)

and,

Wp
2 =

[
1 0
0 ωN

]p

, (30)

where ωN = e−j 2π
N and,

p = 2−(i+1)N
⌊
(2i+1βb + k)

N

⌋
. (31)

After the data points are processed by the butterflies, the results have to be stored in the same
locations in the memory banks. However, to avoid memory bank conflicts, the results have to be
permutated again. The DSW operator permutates these data points. For the even-indexed values of b,
the internal step counter, the DSW does not perform any permutation. On the other hand, the DSW
performs the next permutation on the odd-values of b. That is,

b
i MBI =

b
i SWO = b

i SWI ; i ≥ 0, b = 2n, n = {0, 1, . . . , φ/2− 1},
b
i MBI =

b
i SWO = (I2β ⊗ J2)

b
i SWI ; i ≥ 0, b = 2n + 1, n = {0, 1, . . . , φ/2− 1}, (32)

where b
i SWO is the DSW output bus, and b

i MBI is the input bus of the memory banks.
Let Gφ be an ordered set of φ row vectors with a zero in the i-th position and ones elsewhere.

Let gi, termed a masking vector, denote the i-th element of order φ, of this set, where i ranges from 0 to
φ− 1. That is,

Gφ = {g0, g1, ..., gφ−1}. (33)

The next action is to write-back into the memory banks the numeric values contained in b
i SWO.

This process can be done by making an addition. The operation is expressed as,
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b+1
i M = b

i H � b
i M +



b
i MBI0

[
eiSIMb [0]

]T

b
i MBI1

[
eiSIMb [1]

]T

...
b
i MBI k

[
eiSIMb [k]

]T

...
b
i MBI B−1

[
eiSIMb [B−1]

]T


, (34)

where the operator � denotes Hadarmard or entrywise product, the superscript T means matrix
transpose operation and,

b
i H =



giSIMb [0]
giSIMb [1]

...
giSIMb [k]

...
giSIMb [B−1]


, (35)

where giSIMb [k]
∈ Gφ is a masking vector. These formulations allow us to devise computational

architectures associated with each expression. The next section describes how these expressions,
called functional primitives, can be implemented as computational hardware architectures.

3. Hardware Implementation

3.1. Data Address Generator

The hardware implementation of this block consists mainly of a standard-order counter and
two blocks which modify the counter values. One block generates the addressing scheme for the
even-indexed memory banks (Equations (16) and (17)). The other generates the addressing scheme
for the odd-indexed memory banks (Equations (18) and (19)). The even-indexed memory banks
require stride-2 permutations calculated throughout the stages making a left-circular shift over the
previous addressing scheme. An example of how to generate the entire addressing scheme is shown in
Figure 5. Similarly, the odd-indexed memory banks require modified stride-2 permutations which
are calculated throughout the stages by making a left-circular shift and negating the least significant
bit over the previous addressing scheme. Figure 6 shows an example of how to generate the entire
addressing schemes Figures 5 and 6 also show the decimal (N column) and decimal bit-reversal
(R column) representations, respectively. Since it is easier to calculate the decimal representation,
this is the one actually implemented. Nevertheless, the addressing scheme needed is the decimal
bit-reversal representation. Therefore, all the address-generator outputs are bit-reversed to produce
the correct addresses.
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Figure 5. Addressing scheme example for even-indexed memories (N = 16 and β = 1).
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Figure 6. Addressing scheme example for odd-indexed memories (N = 16 and β = 1).

3.2. Phase Factor Scheduling

We took advantage of the periodicity and symmetry properties of the phase factors to reduce
memory usage. Only N/4 numbers are stored, instead of N/2 as an FFT implementation normally
requires [28]. The other N/4 values needed were obtained using,

ωn+N/4
N = Im{ωn

N} − jRe{ωn
N} (36)

Tables 1 and 2 show the phase factor memory addresses. It is important to remark that the
addressing scheme for the phase factors assumes memories of N/2 locations. Although we had
established that the phase factor memories had N/4 locations. This is done due to the fact that
the most significant bit of these addresses determines when Equation (36) is used. To establish
an algorithm to generate the phase factors, we define three main parameters: the step (s), the frequency
( f ), and a parameter related with the initial value (n). The step s refers to the value to be added
for obtaining the next address value, the frequency f refers to how often this step has to be added,
and the initial value n is the first number in the addressing scheme. These main parameters behave
as shown in Table 3. The frequency always starts at N/(2β), decreases by halving its value in each
iteration until the value is one, and remains as such until the calculation is over. The step always
starts at N/2, and also decreases by halving its value in each iteration until the value reaches the
number of butterflies β, and remains as such until the calculation is over. Finally, the parameter
n, which represents the repetition and stride, at the same time, of the sequence of initial values,
always stars at N/4, decreases by making a right shifting operation until the value is zero. Algorithm 1
generates the twiddles address pattern for an implementation of size N and β number of butterflies.
In this Algorithm, T is the twiddle address, f is the frequency parameter, s is the step parameter, and
n is the initial value.

Variable i represents the stage counter, b is the internal counter, and c is a counter. They are
used to initialize the j-sequence per stage and to generate the addresses at each stage, respectively.
Finally, R is a temporary variable used to store previous values of T.

Table 1. Phase factor addressing scheme example (N = 32 and β = 1).

Stage Twiddle Address

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 8 8 8 8 8 8 8 8
2 0 0 0 0 4 4 4 4 8 8 8 8 12 12 12 12
3 0 0 2 2 4 4 6 6 8 8 10 10 12 12 14 14
4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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Table 2. Phase factor addressing scheme example (N = 32 and β = 2).

Stage Twiddle Address

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

1 0 0 0 0 8 8 8 8
0 0 0 0 8 8 8 8

2 0 0 4 4 8 8 12 12
0 0 4 4 8 8 12 12

3 0 2 4 6 8 10 12 14
0 2 4 6 8 10 12 14

4 0 2 4 6 8 10 12 14
1 3 5 7 9 11 13 15

Table 3. Main parameters behaviour of the phase factor scheduling for N = 32.

a β = 1

Stage s f n

0 16 16 8
1 8 8 4
2 4 4 2
3 2 2 1
4 1 1 0

b β = 2

Stage s f n

0 16 8 8
1 8 4 4
2 4 2 2
3 2 1 1
4 1 1 0

c β = 4

Stage s f n

0 16 4 8
1 8 2 4
2 4 1 2
3 4 1 1
4 4 1 0

Algorithm 1: Twiddle Address.
Input: f = N/(2β), s = N/2, n = N/2
Output: Twiddle Pattern for N points and β butterflies

T = 0;
for i = 1 to log2 N do

R = 0;
for c = 0 to β− 1 do

T = R;
if c + 1 is divisible by n and T + n < N/2 then

R = T + n;
end
for b = 2 to N/(2β) do

if b− 1 is divisible by f then
T = T + s;

end
end

end
n = n/2;
if f > 1 then

f = f /2;
end
if s > β then

s = s/2;
end

end
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3.3. Data Switch Read (DSR)

In hardware, the Data Switch Read (DSR) is implemented as an array of multiplexers, as shown in
Figure 7. To perform the permutations, every multiplexer must choose the correct input. Equation (27)
shows these permutations. The bit-reversal, stride-2, and modified stride-2 permutations are generated
with bitwise operations over a standard-ordered sequence, such as circular shifting and simple logical
operations. A bit-reversal permutation is obtained by making the select input bus (SEL) equal to

SEL = RB


0
1
...

B− 1

 , (37)

where RB is, again, a bit-reversal permutation.
A stride-2 permutation is obtained by making the SEL bus equals to

SEL = L2
B


0
1
...

B− 1

 , (38)

where L2
B is, again, a stride permutation. In hardware, this operation can be implemented by making

a left circular shifting. A modified stride-2 permutation is also obtained by making the SEL bus equal to

SEL = (J2 ⊗ IB/2)L2
B


0
1
...

B− 1

 , (39)

where J2 and IB/2 are, again, the exchange matrix and the identity matrix, respectively. In hardware,
this operation can be implemented by making a left circular shifting only once, but negating the least
significant bit.

Figure 7. Hardware Implementation of the DSR.
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3.4. Data Switch Write (DSW)

In hardware, the Data Switch Read (DSW) is also implemented as an array of multiplexers,
as shown in Figure 8.

Figure 8. Hardware implementation of the DSW.

Equation (32) shows the required permutations. The first permutation outputs the input data in
the same order. That is,

SEL =



0
1
0
1
...
0
1


. (40)

The second permutation interchanges the even indexed input data with the next odd indexed
input data. That is,

SEL =



1
0
1
0
...
1
0


. (41)

3.5. Finite State Machine (FSM)

The FSM is a simple two-state Mealy machine. In first state, the machine is in idle state, waiting for
an enable signal. The second state performs the address calculation, returning to the first state when
i = S − 1 and b = φ − 1. The FSM uses the values of i and b to successively generate the signals
required to control:
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• the output change of the DAG as indicated in Equations (17) and (19),
• the permutation to perform by the DSR and DSW as indicated in Equations (27) and (32),
• the phase factor addresses for the PEs and as indicated in Equation (28),
• the reading and writing process in the MBs as indicated in Equations (25) and (34).

4. FPGA Implementation

This section describes the procedure followed to validate the design. It shows the results obtained
after completing the implementation of the proposed address generation scheme. The target hardware
platform was a Xilinx VC-707 Evaluation Platform (Xilinx, Inc., San José, CA, United States). This
particular board is based on a XC7VX485TFFG1761-2 FPGA (Xilinx, Inc., San José, CA, United States),
which is a Virtex-7 family device. Resource consumption results were referenced for this specific
chip. In order to provide a reference for comparison, a Xilinx FFT core v9.0 (Xilinx, Inc., San José, CA,
United States) were included. Xilinx FFT IP core generator provides four architecture option: Pipelined
Streaming I/O, Radix-4 Burst I/O, Radix-2 Burst I/O, and Radix-2 Lite Burst I/O. We concentrated
on the Radix-2 architectures since they address the nature of our work. The Radix-2 Lite Burst I/O
was not considered since is a simplified version of the Burst I/O version. Furthermore, the Pipelined
Streaming I/O was not considered either since the architecture presented in this work optimizes the
horizontal folding of any FFT computation.

It is important to emphasize that the Radix-2 Burst I/O architecture was designed to use a single
butterfly performing simultaneously vertical and horizontal folding. Our architecture allows for
a scalable vertical folding from N/2 butterflies (zero folding) to one butterfly (maximum folding).
Hence, Radix-2 Burst I/O was chosen because it falls into the same category as the cores designed in
this work. Our scalable vertical folding scheme may result in a time speed-up in a factor of β.

4.1. Validation

The implemented FFT with address generation scheme first went through a high level verification
process. At this point, a MATLAB R© program (MathWorks, Inc., Natick, MA, United States, 2014b)
served to validate the correctness of the strategy by implementing the same dataflow that would
be applied to the hardware version. After a hardware design was completed in VHSIC (very high
speed integrated circuit) hardware description language VHDL,another program in MATLAB R© was
written with the purpose of generating random test data. These data were generated using the
MATLAB R© function rand, which generates uniformly distributed pseudorandom numbers. The
data were then applied to the design by means of a text file. Then, the generated numbers were
exported into MATLAB R©, where they were converted into a suitable format for comparison with the
reference FFT. After completing this procedure, we obtained the Mean Percent Error (MPE) of different
implementations through the following formula:

MPE = 100× 1
N

N

∑
t=1

|at − ht|
ht

, (42)

where N is number of points, at is data generated by MATLAB R©, and ht is data generated by our
FFT core in the target FPGA. This procedure was done for power of two transform sizes between
24 and 214 points, using one-, two-, and four-butterfly versions, and using single precision floating
point format. Figure 9 illustrates MPE of our core compared to the FFT calculated with MATLAB R©.
Figure 9 also shows that there is a minimum percent error of 1.5× 10−5 on an FFT core of 16 points
and a maximum percent error of 4.5× 10−5 for an FFT core of 16,384 points. This information reflects
an incrementing percent error while the number of points is increased. This is because MATLAB R©

uses double precision floating point format and rounding errors, which are produced by the large
number of operations involved in the calculation. These results confirm that our scalable FFT core
implemented using address generation scheme worked as expected.
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Figure 9. Mean percentage error of our core with respect to MATLAB R©’s FFT function.

4.2. Timing Performance

In general, when applying the developed strategy, the number of clock cycles required to complete
the operation is a well defined function of the transform size N and the number of butterflies used.
This is, for a given transform of size N, with β butterflies, and a butterfly latency Tb, the cycles required
to complete the calculation would be:

Cycles =
(

N
2β

+ Tb

)
× (log2 N). (43)

Figure 10 shows the computation times comparison of the core implemented with the one-, two-,
and four-butterfly versions and the Xilinx version running at 100 MHz as a function of the number
of points.
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Figure 10. Computation time.

4.3. Resource Consumption

Figure 11 shows the number of slice registers consumed by the different implementations,
starting with the single-butterfly to a four-butterfly version.Figure 12 shows the slice look up tables
(LUTs) used. Finally, Figure 13 show the memory usage in terms of RAM blocks. The number of
slices reflects the amount of logical resources spent. Flip-flops are contained within the slices and
give information on how much resource is spent in sequential logic. The number of digital signal
processing (DSP) blocks represents the amount of special arithmetic units from the FPGA dedicated to
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implement the butterfly. The total memory reflects the resources spent to store both, data points and
phase factors. Regarding the DSP blocks consumed, each butterfly in this work uses 24 blocks, 50%
more than the used by the Xilinx Core. The XC7VX485TFFG1761-2 has 607,200 slice registers, 303,600
Slice LUTs, and 2800 DSP blocks.
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Figure 11. Flip-Flops consumption comparison.
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4.4. Analysis

Figure 13 reveals that the most heavily affected resource was the memory, as its usage increased in
proportion to the transform size. However, using our addressing scheme did not affect the consumption
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of memory resources. Figure 13 highlights this fact by showing that for increasing levels of parallelism
the memory requirements were unaffected. Moreover, for a specific input size and phase factor,
the data and address bus width increased proportionally to log2(N); therefore, the system blocks
managing these buses would not grow aggressively. The one-butterfly version had a smaller slice
register consumption and almost the same slice count as the LUTs used by the FFT Xilinx Core.
However, the two- and four-butterfly versions had a higher slice register and slice LUTs use. This was
the trade-off to obtain a lower latency.

5. Conclusions

This paper proposed a method to generate scalable FFT cores based on an address generation
scheme for FPGA implementation when the folding factor is scaled. The proposed method is
an effective alternative to achieve a scalable folding of the Pease FFT structure. As a novel contribution,
we provide a mathematical formulation to generate the address patterns and to describe data flow in
FFT core computations.

Our approach is complete in the sense that it takes into consideration the address sequences
required to access data points as well as twiddle or phase factors. This is accomplished by providing
an algorithm and hardware to reproduce the twiddle factors for the Pease FFT radix-2 factorization
regardless the number of points, folding factor, and numeric format using addressing schemes.
Our implementation improves the computation time about 20% with one butterfly, 46% with two
butterflies and 58% with four butterflies when compared to a reference design of the FFT Xilinx Core.
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