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Abstract: This article presents a robust speed tracking algorithm for a permanent magnet synchronous
generator utilized for wind power generation systems, considering the machine parameter and
load uncertainties. There are two major contributions: (a) a disturbance observer is designed to
exponentially estimate disturbances from the model-plant mismatches and severe load torque
variations, and (b) it is included in a nonlinear cascade-type proportional speed tracking controller
to establish the performance recovery and offset-free properties without the use of tracking error
integrators. A simulation result numerically verifies the effectiveness of the proposed technique,
where the PowerSIM software emulates a wind power generation system.

Keywords: permanent magnet synchronous machine; wind power generation; speed tracking
algorithm; performance recovery; offset-free

1. Introduction

Permanent magnet synchronous machines (PMSMs) have been widely adopted for wind power
generation systems because of their high efficiency and control performance [1–6], and the PMSM
controller plays the pivotal role of securing high reliability for wind power generation systems.
In particular, the speed tracking performance must be maximized for a satisfactory maximum power
point tracking (MPPT) control [7].

The PMSM current and voltage behaviors can be described as vectors determined by coordinate
systems. Because these current and voltage vectors given in the d-q rotational coordinate system
represent their DC-components, the current tracking problem can easily be solved through the use of a
simple proportional-integral (PI) regulator. This result certainly aids solving the speed tracking problem
under the cascade control strategy, where the outer-loop PI speed regulator automatically computes
the desired q-axis current reference for the inner-loop PI current regulator [8]. This PI cascade speed
controller has been widely used in several industrial applications because of its simplicity. The PI gains
determine the closed-loop performance and were designed to meet the specification described in the
frequency domain under a given operating condition. Thus, an additional gain-scheduling algorithm
as in [9] should be embedded in the control algorithm to achieve a satisfactory closed-loop performance
under several operating conditions. A feed-forward compensation technique was proposed to
eliminate disturbances by the back electromotive force (EMF) effect, which is interpreted as the
feedback-linearization (FL) technique in the control theoretical perspective [10,11]. The corresponding
PI gains were systematically designed using the PMSM true parameter values to transform the
closed-loop behavior into a desired low-pass filter (LPF) dynamics. However, the parameter
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dependency still requires the use of an additional parameter identification (on/off-line) or gain
scheduling algorithms.

A model predictive, an observer, and a sliding mode control (SMC) based techniques have been
applied to both inner and outer-loops. The model predictive control (MPC) technique optimizes
the cost function of tracking errors by predicting the states, one or two-steps ahead, utilizing
PMSM parameters [12,13]. The optimization procedure was conducted through an exhaustive search
method for each control period, and the offset-free property was obtained by adopting tracking error
integrators. The disturbance observer (DOB) was designed to simultaneously estimate both state
and disturbance using the PMSM parameters, combined with a robust stabilizing controller [14].
The active disturbance attenuation property was obtained with a PMSM position estimator based on
a high-gain observer depending on PMSM parameters [15]. Sliding mode techniques were utilized
to obtain a robust stabilization property, which contains a conservative feed-forward compensation
term with a high-gain discontinuous sign-function; it could make the control input infeasible for some
transient periods [16,17]. A passivity-based PI speed regulator was recently presented with an adaptive
time-delay compensator [6]. However, there was no systematic procedure to adjust the closed-loop
speed tracking performance.

Unlike aforementioned literatures depending on the true machine parameters with tracking error
integrators, this study systematically designs a proportional-type speed controller by considering
nonlinear dynamics with parameter and severe load torque variations emanating from the wind
turbine and wind velocity. The resulting controller is in the form of a cascade structure. Both inner
and outer-loop controllers are derived to simultaneously stabilize current and speed tracking error
dynamics, whereas feedbacks simply proportionate tracking errors with the dynamic disturbance
compensation terms generated by the DOBs. The first contribution is to design exponential convergent
DOBs for the inner and outer-loops using only nominal PMSM parameters. The second one is to
incorporate resulting DOBs into a nonlinear proportional-type speed tracking controller. These two
features could further effect the control algorithm simplification by eliminating the use of tracking
error integrators as well as anti-windup algorithms. The effectiveness of the proposed controller
is demonstrated by conducting realistic simulations using the PowerSIM (PSIM) software with the
dynamic-link library (DLL) block for the controller.

2. Dynamics of Permanent Magnet Synchronous Generator with Wind Turbine in Rotational
d-q Axis

In the rotational d-q axis, the speed and current dynamics of the permanent magnet synchronous
generator (PMSG) can be described as [18]

Jω̇(t) = −Bω(t) + (TL(t)− Te(idq(t))), (1)

Li̇dq(t) = −Rsidq(t) + p(ω(t), idq(t)) + udq(t), ∀t ≥ 0, (2)

where the mechanical parameters B and J represent viscous damping and total inertia, including the
rotor and wind turbine, respectively; the mechanical speed ω(t) and d-q axis current vector idq(t) :=[

id(t) iq(t)
]T

function as state-variables; the d-q axis stator voltage vector udq(t) :=
[

ud(t) uq(t)
]T

is used as the control input to be designed later. The state-dependent back-EMF term p(ω(t), idq(t)) is

defined as p(ω(t), idq(t)) :=
[

LqPω(t)iq(t) −(Ldid(t) + λPM)Pω(t)
]T

with the d-q axis inductance
matrix L := diag{Ld, Lq}, the pole pair P, and the magnet flux λPM, respectively. The electrical output
torque Te(idq(t)) is given by

Te(idq(t)) :=
3
2

P
(

∆Ldqid(t)iq(t) + λPMiq(t)
)

, ∀t ≥ 0, (3)
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with the d-q axis inductance difference of ∆Ldq := Ld − Lq, and the load torque emanating from the
wind turbine with wind velocity is described as [19]

TL(t) =
1
2

ρπR3 Cp(λ(t), β)v(t)2

λ(t)
, ∀t ≥ 0, (4)

with ρ, R, β, λ(t) := ω(t)R
v(t) , ∀t ≥ 0, and v(t) denoting the air density, blade radius, pitch angle, tip-speed

ratio, and wind velocity, respectively. The wind turbine power Cp(λ(t), β) can be approximately
written as

Cp(λ(t), β) = 0.22(
116

λi(t)
− 0.4β− 5)e

− 12.5
λi(t) + 0.0068λ(t), ∀t ≥ 0, (5)

where 1
λi(t)

= 1
λ(t)+0.08β

− 0.035
β3+1 , ∀t ≥ 0.

Considering the model-plant mismatches and unexpected severe load torque variations from
the wind turbine with the wind velocity, it is reasonable to consider the nominal PMSG dynamics for
designing the controller, instead of (1) and (2):

J0ω̇(t) = −B0ω(t)− Te,0(idq(t)) + do
ω(t), (6)

L0i̇dq(t) = −Rs,0idq(t) + p0(ω(t), idq(t)) + udq(t) + do
dq(t), ∀t ≥ 0, (7)

with nominal parameters B0, J0, Rs,0, L0, and λPM,0, where the nominal electrical output torque
Te,0(idq(t)) and back-EMF term p0(ω(t), idq(t)) are defined as

Te,0(idq(t)) := Te(idq(t))
∣∣∣∣
Lx=Lx,0,x=d,q,λPM=λPM,0

=
3
2

P
(

∆Ldq,0id(t)iq(t) + λPM,0iq(t)
)

, ∀t ≥ 0,

and

p0(ω(t), idq(t)) := p(ω(t), idq(t))
∣∣∣∣
Lx=Lx,0,x=d,q,λPM=λPM,0

=

[
Lq,0Pω(t)iq(t)

−(Ld,0id(t) + λPM,0)Pω(t)

]
, ∀t ≥ 0,

respectively, and unknown lumped disturbances are represented as do
ω(t) and do

dq(t). In the rest of this
article, a speed tracking algorithm is designed based on the perturbed PMSG dynamics of (6) and (7).

3. Speed Tracking Algorithm Design

This section devises a speed tracking algorithm to transform the closed-loop speed dynamics into

Ω(s)
Ωre f (s)

=
ωsc

s + ωsc
, ∀s ∈ C, (8)

where Ω(s) and Ωre f (s) represent the Laplace transforms of the speed ω(t) and its reference ωre f (t),
respectively, and ωsc > 0 refers to the cut-off frequency used as a design parameter. For the speed-loop,
the design parameters are given as λsc and lω, and the current-loop design parameters correspond to λcc

and lcc, which adjusts the speed and current convergent behaviors. Section 3.1 derives the stabilizing
q-axis current reference with the closed-loop speed tracking error dynamics, and Section 3.2 constructs the
final speed control law using the resulting q-axis current reference and analyzes closed-loop properties.
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3.1. Outer-Loop Controller Design

In order to achieve the control objective of (8), consider the target dynamics given by

ω̇∗(t) = ωsc

(
ωre f (t)−ω∗(t)

)
, ∀t ≥ 0, (9)

and define the speed tracking error as ω̃∗(t) := ω∗(t)−ω(t), ∀t ≥ 0. Then, it follows that

J0 ˙̃ω∗(t) = −ω̇(t) + ω̇∗(t)

= B0ω(t) +
3
2

PλPM,0iq(t) +
3
2

P∆Ldq,0id(t)iq(t) + dω(t)

= B0ω(t) + biq,re f (t) +
3
2

P∆Ldq,0id(t)iq(t)− bĩq(t) + dω(t), ∀t ≥ 0, (10)

where b := 3
2 PλPM,0 and dω(t) := ω̇∗(t)− do

ω(t), ∀t ≥ 0, which can be stabilized by the proposed q-axis
current reference given by

iq,re f (t) =
1
b

(
− J0λscω̃∗(t)− B0ω(t)− 3

2
P∆Ldq,0id(t)iq(t)− d̂ω(t)

)
, ∀t ≥ 0, (11)

with a design parameter of λsc, where the disturbance estimate d̂ω(t) is defined as

d̂ω(t) := ζω(t) + lω J0ω̃∗(t), ∀t ≥ 0, (12)

and the state variable ζω(t) satisfies

ζ̇ω(t) = −lωζω(t)− l2
ω J0ω̃∗(t) + lω

(
− B0ω(t)− 3

2
P∆Ldq,0id(t)iq(t)− biq(t)

)
, ∀t ≥ 0, (13)

with a design parameter of lω. The dynamic system comprising the state equation of (13), and the
output equation of (12) is defined as the outer-loop DOB in this study. The closed-loop speed tracking
error dynamics can be obtained by combining (10) and (11) as

˙̃ω∗(t) = −λscω̃∗(t)− b
J0

ĩq(t) +
1
J0

d̃ω(t), ∀t ≥ 0, (14)

where d̃ω(t) := dω(t)− d̂ω(t), ∀t ≥ 0.

3.2. Inner-Loop Controller Design and Closed-Loop Property Analysis

This section derives an inner-loop controller to stabilize the speed and current tracking error
dynamics, simultaneously. For this purpose, define the current tracking error as ĩdq(t) := idq,re f (t)− idq(t),

∀t ≥ 0, with the current reference of idq,re f (t) :=
[

id,re f (t) iq,re f (t)
]T

, ∀t ≥ 0, where the q-axis current
reference of iq,re f (t) comes from (11), which gives the current tracking error dynamics as

L0
˙̃idq(t) = −L0i̇dq(t) + L0i̇dq,re f (t)

= Rs,0idq(t)− p0(ω(t), idq(t))− udq(t) + ddq(t), ∀t ≥ 0, (15)

with the unknown lumped disturbance ddq(t) := L0i̇dq,re f (t)− do
dq(t), ∀t ≥ 0. Then, to stabilize the

current tracking error dynamics of (15), the control law for the d-q stator voltage of udq(t) is proposed as

udq(t) = λccL0ĩdq(t) + Rs,0idq(t)− p0(ω(t), idq(t))−
b
J0

L0cω̃∗(t) + d̂dq(t), ∀t ≥ 0, (16)
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with design parameters of λcc and c :=
[

0 1
]T

, where the disturbance estimate of d̂dq(t) is
defined as

d̂dq(t) := ζdq(t) + lccL0ĩdq(t), ∀t ≥ 0, (17)

and the state variable ζdq(t) :=
[

ζd(t) ζq(t)
]T

satisfies

ζ̇dq(t) = −lccζdq(t)− l2
ccL0ĩdq(t) + lcc

(
− Rs,0idq(t) + p0(ω(t), idq(t)) + udq(t)

)
, ∀t ≥ 0, (18)

with a design parameter lcc. The dynamic system comprising the state equation of (18) and output
equation of (17) is defined as the inner-loop DOB in this study. The proposed controller structure is
visualized in Figure 1. The closed-loop current tracking error dynamics can be obtained by combining
(15) and (16) as

˙̃idq(t) = −λcc ĩdq(t) +
b
J0

cω̃∗(t) + L−1
0 d̃dq(t), ∀t ≥ 0, (19)

where d̃dq(t) := ddq(t)− d̂dq(t), ∀t ≥ 0.

Figure 1. Proposed controller structure.

Theorem 1 presents the stabilization property of the closed-loop system, and the proof is provided
in the Appendix.

Theorem 1. Suppose that the control and DOB gains are chosen as λx > 0, x = sc, cc, lx > 0, and x = ω, cc.
Then, the proposed controller of (11)–(13) and (16)–(18) makes the input-output mapping of

d(t) 7→ y(t) (20)
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strictly passive, where the input d(t) and output y(t) are defined as

d(t) :=
[

0 0 0 γωḋω(t) γccḋT
dq(t)

]T
,

y(t) :=
[

ω̃∗(t) ĩT
dq(t) d̃ω(t) d̃T

dq(t)
]T

, ∀t ≥ 0,

for some γω > 0, γcc > 0. ♦

The analysis result of Theorem 1 implies that the exponential performance recovery property
limt→∞ ω(t) = ω∗(t) can be established by the proposed controller, as disturbances dω(t) and ddq(t)
exponentially reach their steady-states. In other words, the proposed controller can accomplish the
control objective of (8) in an exponential manner. The Appendix proves the statement of Theorem 1 by
showing that the closed-loop tracking error trajectories coerce the positive definite function of

V(t) :=
1
2
(ω̃∗(t))2 +

1
2
‖ĩdq(t)‖2 +

γω

2
d̃2

ω(t) +
γcc

2
‖d̃dq(t)‖2, ∀t ≥ 0, (21)

to be

V̇(t) ≤ −αV(t) + dT(t)y(t), ∀t ≥ 0, (22)

for some γω > 0, γcc > 0, α > 0.
Theorem 2 asserts that the closed-loop system guarantees the offset-free property, which is

not evident because the proposed controller only feedbacks the tracking error proportional term,
as shown in (11) and (16). The outer and inner loop DOBs provide this beneficial property. For details,
see Theorem 2 and the Appendix for proof.

Theorem 2. In the steady-state, the closed-loop system controlled by the proposed algorithm of (11)–(13) and
(16)–(18) eliminates offset-errors on the PMSG speed, i.e,

ω(∞) = ωre f (∞), (23)

where ω(∞) := limt→∞ ω(t) and ωre f (∞) := limt→∞ ωre f (t). ♦

4. Simulations

This section numerically verifies the features of the proposed technique, which are rigorously
proven by Theorems 1 and 2.

4.1. Wind Power System Configuration

The PSIM software emulates the wind power generation system, whereas the DLL block, created
using by the C-language, implements the control algorithms. The three-phase inverter was introduced
to synthesize the stator voltage command generated by the control law. The DC-link voltage was
regulated to Vdc = 600 V by the grid-side converter. The pulse-wide modulation (PWM) and control
periods were set to be synchronized to 0.1 ms. The PMSG true parameters were given by

Rs = 0.099 Ω, Ld = Lq = 4.07 mH, λPM = 0.3166 Wb,

P = 40, J = 0.12 kgm2, B = 0.000425 Nm/rad/s, (24)

and nominal PMSM parameters were picked as

Rs,0 = 1.3Rs, Ld,0 = Lq,0 = 0.5Lq, λPM,0 = 1.2λPM, J0 = 1.5J, B0 = 0.8B, (25)
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which were utilized for controller implementations. Note that the parameter J represent the total inertia,
including the PMSG and wind turbine. The wind turbine block provided in the PSIM software was
used, where the nominal output power, inertia, base wind speed, base rotational speed, and initial
rotational speed were set to 10-kW, 0.1 kg m2, 20 m/s, 50 rpm, and 10 rpm, respectively. The wind was
randomly generated according to the Weibull distribution-based wind model [20] presented in Figure 2.
Figure 3 shows the wind power generation system implementation including the speed controller.

Figure 2. Wind speed behavior from Weibull distribution-based wind model.

Figure 3. Wind power generation system implementation.

4.2. Controller Configuration

The FL controller was used for comparison and is given by

udq(t) = L0ωcc ĩdq(t) + Rs,0ωcc

∫ t

0
ĩdq(τ)dτ− p0(ω(t), idq(t)), ∀t ≥ 0, (26)

with the q-axis current reference obtained from

iq,re f (t) =
1
b

(
− B0ω(t)− 2J0ωscω̃(t)− J0ω2

sc

∫ t

0
ω̃(τ)dτ

)
, ∀t ≥ 0, (27)
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where ω̃(t) := ωre f (t)−ω(t), ∀t ≥ 0, and ωcc and ωsc denote the cut-off frequencies of the current and
speed loops, respectively. The closed-loop dynamics driven by the FL controller can be approximately
given as

Ix(s)
Ix,re f (s)

=
ωcc

s + ωcc
, x = d, q,

Ω(s)
Ωre f (s)

=
ωsc

s + ωsc
, ∀s ∈ C, (28)

for a slowly time-varying load torque of TL(t), where Ix(s) represents the Laplace transform ix(t),
x = d, q. Note that the d-axis current reference of id,re f (t) was set to zero for the maximum torque
per ampere (MTPA) operation because the PMSG used in this simulation is seemingly that of a
surfaced-type, i.e., Ld = Lq.

The cut-off frequencies used for both controllers were set to fcc = 300 Hz and fsc = 20 Hz for
ωcc = 2π fcc = 1884 rad/s and ωsc = 2π fsc = 125.6 rad/s. For the proposed controller, and the control
and DOB gains were tuned as λsc = 314 and λcc = ωcc = 1884, lω = lcc = 1884.

4.3. Simulation Scenario and Evaluation Metric

The numerical evaluations were performed under the periodical time-varying speed reference
which is given in a pulse wave form at 3 Hz, whose minimum and maximum values correspond to 45
and 70 rpm, respectively. For quantitative evaluations, a metric function of Jω̃∗ was introduced as

Jω̃∗ :=
∫ ∞

0
|ω̃∗(t)|dt =

∫ ∞

0
|ω∗(t)−ω(t)|dt, (29)

where ω∗(t) and ω(t) denote the target speed trajectory of (9) and the closed-loop speed
trajectory, respectively.

4.4. Numerical Verification Results

The speed tracking performance comparison result with the load torque behavior is depicted in
Figure 4, whereas Figure 5 presents the d-q axis current behaviors. In particular, Figure 4 shows that
the proposed method robustly drives the PMSG speed to its reference while maintaining the tracking
performance at the desired level in the presence of model-plant mismatches and severe load torque
variations. The disturbance estimate from DOBs are presented in Figure 6.

Figure 4. Speed tracking performance comparison result with load torque behavior at cut-off frequency
of fsc = 20 Hz.
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Figure 5. d-q axis current behavior at cut-off frequency of fsc = 20 Hz.

Figure 6. Disturbance estimate behaviors.

At this stage, all design parameters, except for the cut-off frequency of fsc, were retained as those
used under previous simulation settings. Speed tracking performance changes for various cut-off
frequencies were observed as fsc = 10, 20, 30 Hz, which were applied to both controllers. As can
be seen from Figure 7, the proposed technique successfully and precisely assigned the desired speed
tracking performance to the closed-loop system using the fixed design parameter. However, the FL
controller failed, which is regarded a practical benefit of this study.

Figure 7. Speed tracking performance changes for various cut-off frequencies as fsc = 10, 20, 30 Hz.
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Figure 8 summarizes the resulting evaluation values coming from the metric function of Jω̃∗ ,
which clearly turns out that the proposed technique considerably enhances the closed-loop robustness
by keeping the metric values similar for different cut-off frequencies.

Figure 8. Quantitative speed tracking performance comparison results.

These numerical results clearly confirm the useful closed-loop properties proven by Theorems 1
and 2, the performance recovery and offset-free properties, and the use of the fixed design parameter.
It was observed that the proposed method successfully keeps the closed-loop performance desirable
under severe load torque variations caused by wind velocity.

5. Conclusions

This paper proposes the use of a proportional-type nonlinear stabilizing speed tracking controller
incorporating DOBs, instead of tracking error integrators. The proposed controller and DOBs
were designed based on the nominal PMSG dynamics so as to remove the parameter dependency.
The beneficial closed-loop properties rigorously proven in this study were numerically verified by
performing a realistic simulation. Theoretical and numerical evidences indicate that the proposed
technique qualifies as a potential solution to achieve a satisfactory MPPT operation. This study
does not provide any systematical way to tune the design parameters for an acceptable closed-loop
performance, which will be addressed in a future study. Moreover, it is also desirable for a future study
to experimentally verify the power generation efficiency improvement under the MPPT operation
including the proposed speed tracking algorithm.
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Appendix A

This section gives the proofs of Theorems 1 and 2. First, the proof of Theorem 1 is given by:

Proof. The lumped disturbances, dω and ddq, in (10) and (15) satisfy

dω = J0 ˙̃ω∗ − B0ω− biq −
3
2

P∆Ldq,0idiq, (A1)

ddq = L0
˙̃idq − Rs,0idq + p0 + udq, ∀t ≥ 0, (A2)

and the combination of DOB outputs of (12), (17), and state equations of (13), (18) yield that

˙̂dω − lω J0 ˙̃ω∗ = −lω(d̂ω − lω J0ω̃∗)− l2
ω J0ω̃∗ + lω

(
− B0ω− 3

2
P∆Ldq,0idiq − biq

)
,

˙̂ddq − lccL0
˙̃idq = −lcc(d̂dq − lccL0 ĩdq)− l2

ccL0 ĩdq + lcc

(
− Rs,0idq + p0 + udq

)
, ∀t ≥ 0,
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which gives

˙̃dω = −lω d̃ω + ḋω, ˙̃ddq = −lccd̃dq + ḋdq, ∀t ≥ 0, (A3)

using the equations of (A1) and (A2). At this point, consider the positive definite function defined in
(21) as

V =
1
2
(ω̃∗)2 +

1
2
‖ĩdq‖2 +

γω

2
d̃2

ω +
γcc

2
‖d̃dq‖2, ∀t ≥ 0, (A4)

which gives the time-derivative of V̇ using the trajectories of (14), (19) and (A3) as

V̇ = ω̃∗ ˙̃ω∗ + ĩT
dq

˙̃idq + γccd̃ω
˙̃dω + γdqd̃T

dq
˙̃ddq

= −λsc(ω̃
∗)2 − λcc‖ĩdq‖2 − γω lω d̃2

ω − γcclcc‖d̃dq‖2

+
1
J0

ω̃∗d̃ω + ĩT
dqL−1

0 d̃dq + γω d̃ω ḋω + γccd̃T
dqḋdq, ∀t ≥ 0, (A5)

The application of Young’s inequality xTy ≤ ε
2‖x‖2 + 1

2ε‖y‖2, ∀x, y ∈ Rn, ∀ε > 0 to indefinite
terms in the inequality of (A5) leads to

V̇ ≤ −λsc

2
(ω̃∗)2 − λcc

2
‖ĩdq‖2 − (γω lω −

1
2λsc J2

0
)d̃2

ω − (γcclcc −
‖L−1

0 ‖2

2λcc
)‖d̃dq‖2

+γω d̃ω ḋω + γccd̃T
dqḋdq, ∀t ≥ 0. (A6)

Eventually, the constants γω := 1
lω
( 1

2λsc J2
0
+ 1

2 ) and γcc := 1
lcc
(
‖L−1

0 ‖
2

2λcc
+ 1

2 ) render V̇ as

V̇ ≤ −λsc

2
(ω̃∗)2 − λcc

2
‖ĩdq‖2 − 1

2
d̃2

ω −
1
2
‖d̃dq‖2 + γω d̃ω ḋω + γccd̃T

dqḋdq

≤ −αV + γω d̃ω ḋω + γccd̃T
dqḋdq

= −αV + dTy, ∀t ≥ 0, (A7)

which results in the strict passivity of the input-output mapping of (20).

Second, the proof of Theorem 2 is given by:

Proof. The DOB error dynamics of (A3), and the speed and current tracking error dynamics of (14)
and (19) give the steady-state equations as

0 = d̃ω(∞), 02×1 = d̃dq(∞), (A8)

0 = −λscω̃∗(∞)− b
J0

cT ĩdq(∞) +
1
J0

d̃ω(∞), (A9)

02×1 = −λcc ĩdq(∞) +
b
J0

cω̃∗(∞) + L−1
0 d̃dq(∞), (A10)

where d̃ω(∞) = limt→∞ d̃ω(t), d̃dq(∞) = limt→∞ d̃dq(t), ω̃∗(∞) = limt→∞ ω̃∗(t), ĩdq(∞) = limt→∞ ĩdq(t),

and 02×1 =
[

0 0
]T

. The equation of (A8) simplifies the two equations of (A9) and (A10) as

03×1 = (J−R)e(∞) (A11)
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where

e(∞) :=

[
ω̃∗(∞)

ĩdq(∞)

]
, J :=

[
0 − b

J0
cT

b
J0

c 02×2

]
, R :=

[
λsc 0
0 λcc

]
.

Using the skew-symmetricity of the matrix J, i.e., J = −JT , it follows from the equation of
(A11) that

0 = eT(∞)(J−R)e(∞)

= −eT(∞)Re(∞),

which indicates that e(∞) = 03×1 because of the positive definiteness of the matrix R. Therefore, the
offset-free property of (23) holds true.
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