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Abstract: In this paper, a system for identifying eight kinds of radar waveforms is explored.
The waveforms are the binary phase shift keying (BPSK), Costas codes, linear frequency modulation
(LFM) and polyphase codes (including P1, P2, P3, P4 and Frank codes). The features of power spectral
density (PSD), moments and cumulants, instantaneous properties and time-frequency analysis are
extracted from the waveforms and three new features are proposed. The classifier is support vector
machine (SVM), which is optimized by artificial bee colony (ABC) algorithm. The system shows well
robustness, excellent computational complexity and high recognition rate under low signal-to-noise
ratio (SNR) situation. The simulation results indicate that the overall recognition rate is 92% when
SNR is −4 dB.

Keywords: radar waveform recognition; electronic warfare; support vector machine; artificial
bee colony

1. Introduction

Low Probability of Intercept (LPI) radar waveforms possess many characteristics. They are widely
used in many fields, such as air defense radar, airborne fire control radar and beyond visual range
radar and so forth. However, the detection of them is a difficult thing. Therefore, it is important to
study LPI radar waveform recognition.

Many recognition methods have been put forward to recognize radar waveforms. For instance,
extracting the bispectrum cascade feature to identify six kinds of waveforms (CW, LFM, NLFM, BPSK,
QPSK and FSK) in [1]. Atomic Decomposition (AD) and Expectation Maximization (EM) algorithms
are used to detect radar waveforms [2]. But only LFM and BPSK can be identified in this method.
In [3], power spectrum accumulation and similarity theory are utilized to detect the noise frequency
modulation signal. When SNR is −3 dB and the duration is 1 ms, the recognition rate is 100%.
The method based on the statistics of energy for detecting noise frequency modulation signal is
proposed [4]. But it has good performance only for the signals of long time. The paper [5] presents
Bispestra Diagonal Slice (BDS) to distinguish four types of waveforms (including FMCW, Frank code,
Costas codes and FSK/PSK). The ratio of successful recognition (RSR) is more than 93.4% when
signal-to-noise ratio (SNR) ≥8 dB. In [6], random projections and sparse classification are adopted to
recognize LFM, FSK and PSK. The RSR is about 90% when SNR is 0 dB. Lunden explored the system
based on Choi-Williams distribution (CWD) and Wigner-Ville distribution (WVD) to distinguish eight
kinds of waveforms [7]. However, the algorithm requires prior information and the RSR is 98% at SNR
of 6 dB. In [8], Zhang proposes the system to recognize eight radar waveforms. The RSR is 94.7% at
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SNR of −2 dB and the number of features is 23. Therefore, it is a challenge for the existing methods to
distinguish more radar waveforms with fewer features under high noise environment.

The system for recognizing eight LPI waveforms is proposed in this paper. The recognizable radar
waveforms contain BPSK, Costas codes, LFM, P1-P4 and Frank codes. The classifier is the support
vector machine (SVM) of artificial bee colony (ABC) algorithm. The features what we use are roughly
divided into two types. Some features are calculated by time-domain signals and we call them time
features. The other features are from time-frequency analysis and we call them time-frequency (T-F)
features. Time features are extracted from the power spectral density (PSD), second order moments
and cumulants and instantaneous properties. T-F features are related to WVD and CWD. Simulation
results indicate that recognition rate can reach up to 92% when SNR is −4 dB.

The contributions of this paper are mainly in four aspects: (1) the recognition system is proposed
and getting better results than other methods; (2) proposing three new features, that is, the ratio of peak
values of WVD (M̂w), the number of extreme points (N̂m) and the oscillation amplitude of the sidelobe
(âs); (3) the number of features of this article is less than other methods; (4) and prior information is
not needed in the system.

The framework of this article is shown below. Section 2 mainly presents the structure of system.
The classifier is explained in Section 3. All the features and the principle of each feature are introduced
in Section 4. Section 5 conveys the simulation results and the conclusions are drawn in Section 6.

2. Recognition System Structure

Recognition system is employed to classify the intercepted waveforms and we can obtain the
category of them. Recognition System can be divided into two parts, that is, features and classifier.
First of all, the features of the intercepted radar waveforms are extracted, that is, time features and
T-F features. Then, to select part of the data as the training set and get the model through training.
Finally, to take the rest of data as the test set and put the test set and model into the classifier to get the
classified results. For more details, see Figure 1.
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Figure 1. The structure of classification system is displayed in this figure. It is formed by time features,
T-F features and classifier.

The intercepted signal in system can be given by

y(k) = x(k) + n(k) = Aejφ(k) + n(k) (1)

where x(k) is the radar waveform. n(k) is the noise and we assume it is additive white Gaussian noise
(AWGN). A and φ(k) are the amplitude and phase sequence, respectively. The phase φ(k) of BPSK,
Costas, LFM and polyphase codes is listed in Table 1.
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Table 1. The phase of 8 radar waveforms.

Radar Waveforms Phase φ(k)

BPSK φ(k) = 2π fck + θ, θ ∈ {0, π}
Costas φ(k) = 2π fsk, fs = { f1, f2, · · · , fNF}
LFM φ(k) = 2π

(
fck + k2µ/2

)
P1 φ(k) = 2π fck−π

[√
Nc − (2n− 1)

][
(n− 1)

√
Nc + (m− 1)

]
/
√

Nc
P2 φ(k) = 2π fck− π

[
2m− 1−

√
Nc
][

2n− 1−
√

Nc
]
/
(
2
√

Nc
)

P3 φ(k) = 2π fck + π(l − 1)2/Nc
P4 φ(k) = 2π fck + π(l − 1)2/Nc − π(l − 1)

Frank φ(k) = 2π fck + 2π(m− 1)(n− 1)/
√

Nc

In Table 1, fc is the carrier frequency. For BPSK, θ is the initial phase and its value is 0 or π.
For Costas, fs is the frequency sequence and it is given by

fk+i − fk 6= f j+i − f j

where 1 ≤ k < i < i + j ≤ NF. For LFM, µ is the slope of instantaneous frequency and it equals
to the ratio of bandwidth B to pulse width τ. For polyphase codes, Nc is the number of symbols,
m = 1, 2, 3, · · · ,

√
Nc, n = 1, 2, 3, · · · ,

√
Nc and l = 1, 2, 3, · · · , Nc. In addition,

√
Nc must be the even

for P2 codes.
The classifier in the system is composed of network1 and network2. It can classify eight waveforms.

BPSK, Costas and LFM can be directly classified by network1 and network2 does not work at this time.
When the signal is deemed to be polyphase codes (P1-P4 and Frank codes) by network1, then network2
is used to classify polyphase codes in detail. The purpose of adopting two classification networks is to
reduce input features and improve the classification accuracy. For more details, see Figure 2.
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3. Classifier

The classifier of the system is ABC-SVM and it is applied in two networks. In SVM, parameter
selection has a significant impact on the classification accuracy of model. Therefore, ABC algorithm is
adopted to find the optimal parameters of SVM.

In SVM [9], the hyperplane is used to separate different types of data because the symbols on
both sides of the hyperplane are different. When the interval between hyplane and data is greater,
the confidence of classification is greater. Therefore, the key question for SVM is to find the hyperplane
that can separate the training data without mistakes and make the geometric interval (margin) is
the largest, that is optimal separating hyperplane. The SVM about two classes and linear separable
problems is shown in Figure 3. We assume that the number of samples is l, the training vectors xi ∈ Rn,
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i = 1, . . . , l, an indicator vector y ∈ Rl and yi ∈ {1,−1}. The hyperplane is (ω•x) + b = 0. Therefore,
the problem of solving the optimal hyperplane is turned into an optimization problem [10]:

min
ω,b,ξ

1
2ω

Tω+ C
l

∑
i=1

ξi

subject to yi
(
ωTφ(xi) + b

)
≥ 1− ξi,

ξi ≥ 0, i = 1, . . . , l,

(2)

where ω is the normal vector of hyperplane, ξ and b mean the slack variable and threshold, respectively.
C is the error penalty factor and it need to be designed. φ(xi) is the result of non-linear transformation
of xi in the new space. Then the optimization problem is converted to its dual problem by the method
of Lagrange [10]:

min
α

1
2α

TQα− eTα

subject to yTα = 0,
0 ≤ αi ≤ C, i = 1, . . . , l,

, (3)

where α is the Lagrange multiplier, e is a vector of all ones and Q is an positive semidefinite matrix,
that is, Qij = yiyjK

(
xi, xj

)
. K
(
xi, xj

)
is the kernel function and it is influenced by the kernel function

parameter σ. It can be given by
K
(
xi, xj

)
= φ(xi)

Tφ
(
xj
)
. (4)

When the Formula (3) is calculated, the solution α∗ can be obtained and the vectorω is also be
confirmed, that is,

ω∗ =
l

∑
i=1

α∗i yiφ(xi), (5)

b is estimated by

yi

(
l

∑
i=1

α∗i K
(
xi, xj

)
+ b∗

)
− 1 = 0 (6)

and the classified decision function is [10]

f (x) = sgn(ω∗φ(x) + b∗) = sgn

(
l

∑
i=1

α∗i yiK(xi, x) + b∗
)

. (7)

Thus, the choice of C and σ has an important impact on the classification results of SVM [11,12].
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Figure 3. This figure shows the support vector machine (SVM) about two classes and linear separable
problems. Margin means the geometric interval.

ABC algorithm proposed by Karaboga [13] is utilized to evaluate the parameters of SVM in this
paper. ABC is a global optimization algorithm and its purpose is to search the optimum solution of
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problems by imitating the behavior of honey bee swarm in nature. ABC algorithm is composed of
scouts, onlookers and employed bees. The quantity of employed bees is one half of the populations
and the amount of food sources (solutions) is equal to the employed bees. The specific process is
described as below [14]: the first step is to initialize the food sources. Then, employed bees search
around the food sources in some way to find new sources and choose the better ones according to the
nectar amount (fitness). Next, onlookers pick good food sources further on the basis of the message of
employed bees and confirm the quantity. If nectar amount of that food source is not improved within
given steps, the employed bee will turn into the scouts. The task of scouts is to find new food sources.
When the cycle reaches the terminating condition, the optimal food source will be received. For more
details, see Table 2.

Table 2. The main steps of artificial bee colony (ABC) algorithm.

Steps Features

1 Initialize Stage
2 repeat
3 Employed Bees Stage
4 Onlooker Bees Stage
5 Scout Bees Stage
6 Memorize the best food source
7 until cycle = Maximum Cycle Number (MCN)

In initialize stage, we assume the number of solutions is SN and the solutions are randomly
generated. The quantity of employed bees is SN, as well. Initial solutions are given by

xij = xmin,j + rand(0, 1)
(
xmax,j − xmin,j

)
, (8)

where xi(i = 1, 2, . . . , SN) is a D-dimensional vector, D represents the amount of optimized parameters
and j ∈ {1, 2, . . . , D}. xij is the jth parameter of xi.

In employed bees stage, employed bees calculate the fitness and search around the initial values
to find new solutions. If new fitness is more than the original, employed bees will remember the new
solutions and forget the original ones. When employed bees finish seeking and return to the beehives,
they share information with onlookers. The formula of searching new solutions is given by

vij = xij + ϕij

(
xij − xkj

)
, (9)

where j ∈ {1, 2, . . . , D}, k ∈ {1, 2, . . . , SN} and k 6= i. ϕij is a random number of [−1, 1].
In the onlooker bees stage, onlookers select solutions according to the received message with

a certain probability. Then, onlookers search the solutions in the same way of employed bees to
produce new solutions. If new fitness is better, we will replace the previous. The probability of
onlookers to choose the solutions is given by

Pi =
f it(xi)

SN
∑

n=1
f it(xn)

, (10)

where f it(xi) is the fitness of the ith solution.
In the scout bees stage, if the solution xi is not improved within limit, it will be abandoned.

The employed bees of that position will turn into the scouts and a new solution is produced by
Formula (8). When the number of cycles reaches the maximum cycle number (MCN), the best solution
will be obtained.
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4. Features Extraction

Feature extraction is an important step in the recognition system and it is closely related to the
classification results. These features are divided into time features and T-F features. Time features
means these features are based on the power spectral density (PSD), second order statistics and
instantaneous characteristics. T-F features are bound up with WVD and CWD. The process of extracting
T-F features need to be explained. The whole features of two networks are illustrated in Table 3.

Table 3. Features of network1 and network2.

Numbers Features Network1 Network2

1 M̂10
√

2 M̂20
√

3 Ĉ20
√

4 γ1
√

5 γ2
√

6 σ̂φ
√

7 σ̂f
√

8 M̂w
√

9 Nobj
√

10 tmax
√ √

11 σ̂obj
√ √

12 θ̂max
√

13 âs
√

14 N̂m
√

4.1. Time Features

4.1.1. Features Related to Moments and Cumulants

Second order moments and cumulants are suitable for discriminating BPSK from others. Therefore,
two features about Moments and Cumulants are proposed.

The nth moment of the signal y(k) is given by

M̂nm =

∣∣∣∣∣ 1
N

N−1

∑
k=0

yn−m(k)(y∗(k))m

∣∣∣∣∣, (11)

where N is the size of signals. m is the amount of conjugated sections. M̂10 and M̂20 are obtained by
this formula.

The nth order cumulant can be computed through [15,16]

Ĉnm =

∣∣∣∣∣ 1
N

N−1

∑
k=0

(
y(k)− M̂10

)n−m(y∗(k)− M̂10
)m
∣∣∣∣∣ (12)

where M̂10 is calculated by Formula (11). Ĉ20 can be received by Formula (12).

4.1.2. Features Related to Power Spectral Density (PSD)

PSD expresses the frequency domain distribution of signal energy. Hence the PSD features can be
estimated as [6]

γm =
1
N

max
n

 1
N

∣∣∣∣∣N−1

∑
k=0

ỹm(k)e−j2πnk/N

∣∣∣∣∣
2
, (13)
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where ỹ(k) is given by

ỹ(k) =
y(k)√

M̂21 − σ2
ε

, (14)

where σ2
ε is the variance of noise. M̂21 is the third moment and can be received by Formula (11).

γ1 and γ2 can be explored by Formula (13). γ1 applies to distinguish BPSK from Costas codes.
The squared complex envelope is constant for BPSK, therefore, γ2 is beneficial to differentiate between
BPSK and other waveforms.

4.1.3. Features Related to Instantaneous Properties

It has good effect to discriminate the frequency modulation signals from the phase modulation
signals by the instantaneous properties of radar waveforms. Therefore, two features based on the
instantaneous frequency and instantaneous phase are presented.

σ̂φ means the standard deviation of the absolute of instantaneous phase and it can be given by [17]

σ̂φ =

√√√√ 1
N

(
N−1

∑
k=0

φ2(k)

)
−
(

1
N

N−1

∑
k=0
|φ(k)|

)2

, (15)

where φ(k) indicates the instantaneous phase of radar waveforms and N still implies the amount of
samples. The range of φ(k) is between −π and π.

σ̂f means the standard deviation of the absolute of normalized centered instantaneous frequency
and it can be estimated as

σ̂f =

√√√√ 1
N f

N−1

∑
k=0

f̃ 2(k)−
(

1
N f

N−1

∑
k=0

∣∣∣ f̃ (k)∣∣∣)2

, (16)

where f̃ (k) indicates the normalized centered instantaneous frequency and the size of f̃ (k) is N f . It can
be obtained through the following process:

1. to compute the instantaneous phase, that is, φ(k);
2. to acquire the unwrapped instantaneous phase φu(k) by φ(k);
3. to calculate the instantaneous frequency f (k), that is, f (k) = φu(k)− φu(k− 1);
4. to calculate the mean of f (k), that is, µ f ;

5. to get f̃ (k) by f̃ (k) =
(

f (k)− µ f

)
/
(

max
∣∣∣ f (k)− µ f

∣∣∣).

4.2. T-F Features

4.2.1. Feature Related to Wigner-Ville Distribution (WVD)

WVD [18] was proposed by Wigner. It is used to describe the signal distribution in time and
frequency domain. Hence the WVD of x(t) is given by [19]

Wx(t, ω) =
1

2π

∫ ∞

−∞
x
(

t +
1
2

τ

)
x∗
(

t− 1
2

τ

)
e−jωτdτ, (17)

where t is time variable and ω is frequency variable.
The feature based on the cross terms of WVD is proposed. It is utilized to discriminate LFM from

Frank code and P3 code. For a single-component LFM of finite length, there are no cross terms and the
amplitude of the WVD is related to the sampling signal [20]. Therefore, the absolute of the ratio of the
minimum value to the maximum value is about 0.25. For Frank code and P3 code, the amplitude of the
cross terms is about two times the signal terms in WVD [21]. That means the maximum and minimum
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value are both related to the cross terms. The amplitude of cross terms contains cosine function [22].
Therefore, the absolute of the ratio of the minimum to the maximum is about 1. For LFM, Frank and
P3, the maximum, minimum and the ratio of 500 signals at SNR = 6 dB are displayed in Figure 4.
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Figure 4. In this figure, (a), (c) and (e) are the minimum and minimum values of Wigner-Ville
distribution (WVD) of linear frequency modulation (LFM), Frank and P3 at signal to noise ratio
(SNR) = 6 dB, respectively. (b), (d) and (f) are the absolute of the ratio of minimum to maximum of
LFM, Frank and P3, respectively. There are 500 signals of each waveform.

The ratio of LFM, Frank and P3 at diverse SNR is displayed in Figure 5. When SNR is 6 dB,
the ratio of LFM is about 0.24 and it is very close to 0.25. The ratio of Frank and P3 is about 0.9 and it is
very close to 1. When SNR is −4 dB, the ratio of LFM is about 0.3. It is also close to 0.25. The ratio of
Frank and P3 is about 0.9. It is also close to 1. That indicates the differences between LFM and the
other waveforms (Frank and P3). The feature related to this ratio is proposed, that is, M̂w.
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Figure 5. In this figure, (a) is the ratio of LFM, Frank and P3 at SNR = 6 dB; (b) is the ratio at
SNR = −4 dB.

M̂w is given by:

M̂w =
abs(Wmin)

Wmax
, (18)

where Wmin and Wmax are the minimum and maximum amplitudes in Wx(t, ω), respectively. Wx(t, ω)

can be calculated by Formula (17).

4.2.2. Choi-Williams Distribution (CWD)

CWD belongs to the Cohen time-frequency distribution [23]. It is given by:

C f (t, ω, φ) =
1

2π

y
ej(ξµ−τω−ξt,τ)φ(ξ, τ)x(µ + τ/2)x∗(µ− τ/2)dµdτdξ, (19)

where t indicates the time variable and ω indicates the frequency variable. φ(ξ, τ) means the kernel
function and it can reduce the cross terms. φ(ξ, τ) is given by [24]

φ(ξ, τ) = e−ξ2τ2/σ, (20)

where σ(σ > 0) is the scaling factor and its value is set to 1 in this paper. The two-dimensional results
of CWD of eight radar waveforms are displayed in Figure 6.
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image of P4.

4.2.3. Preprocessing of the CWD Image

The next step is to calculate the features of the CWD image. Before doing that, the results of CWD
need to be processed. The specific operations are as follows [8]:

1. make the CWD transformation of 1024 points for the signals whose sampling numbers are less
than 1024 and zero padding is used to deal with waveforms;

2. resize the size of the CWD image to N × N to reduce the computation cost;
3. the global threshold algorithm [25] is used to transform the resized CWD image into binary image

and the procedure is illustrated in Figure 7;
4. remove part of the binary image that is less than 10% of the size of the largest part to eliminate

noise and then get the processed image.
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For P4 code, the processing procedure of the CWD image at SNR = −6 dB is displayed in Figure 8.
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4.2.4. CWD Features

The region consisting of pixels with the same pixel value and adjacent positions is called connected
domain. For the CWD image of each waveform, P3 and Frank possess two connected domains,
P1, P4 and LFM possess one domain and Costas has different results. Therefore, the amount of
connected domains in binary image is a very helpful feature. In this article, that feature is Nobj.
It means the amount of domains that greater than 20% of maximum component.

Next feature indicates the position of the maximum energy in the time domain of image, that is,

tmax =
1

N − 1
argmax

t
{CN×N(t, ω)}, (21)
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where CN×N(t, ω) is the resized CWD image.
σ̂obj and θ̂max represent the standard deviation of the length of domains and the rotate angle of

the greatest domain, respectively. σ̂obj has a good effect on separating “stepped waveform” (Frank and
P1 codes) from “linear waveform” (P3, P4 and LFM). θ̂max can select P2 code from others because only
the slope of P2 is negative. The calculation process can be illustrated as below [8]:

• for every domain, k = 1, 2, . . . , Nobj;

1. extract the domain of k in binary image;
2. rotate the domain of k through the nearest neighbor interpolation until it is vertical to the

lateral axis and denoted by Br(x, y);
3. compute the row sum r(x), that is,

r(x) = ∑N−1
y=0 Br(x, y), x = 0, 1, 2, . . . , N − 1

4. normalize r(x), that is, r̂(x) = r(x)/max{r(x)};
5. compute standard deviation of r̂(x), that is,

σ̂k,obj1 =

√
1/N∑x r̂2(x)−

(
(1/N)∑x r̂(x)

)2

• calculate and output the angle of rotation of the largest object θ̂max;
• calculate and output the mean σ̂obj of σ̂k,obj1, that is,

σ̂obj =
(
∑

Nobj1
k=1 σ̂k,obj1

)
/Nobj1

Next step is to extract the framework of maximum domain in binary image and estimate its linear
tendency by the minimal square error method. The vector fn can be obtained by removing its linear
tendency in framework. Then to compute the autocorrelation function of fn, that is,

c(m) = ∑k fn(k) fn(k−m), m = 0, 1, . . . , M− 1, (22)

where c(m) is the autocorrelation function of fn and M is the length of fn.
Some characteristics of c(m) can be utilized to distinguish P1 code from P4 code. The framework

of the maximum domain, the linear tendency of framework, fn and c(m) of P4 and P1 at SNR = 6 dB
are displayed in Figure 9.
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Figure 9. In this figure, (a) and (b) are the framework of the maximum domain and its linear tendency
of P4 and P1. (c) and (d) are the fn of P4 and P1. (e) and (f) are the c(m) of the two waveforms.

We present two new features which are bound up c(m), that is, âs and N̂m. They are used to
distinguish P1 from P4.

âs is the oscillation amplitude of the sidelobe in c(m), that is,

âs = abs(smax) + abs(smin), (23)

where smax and smin are the maximum and minimum of sidelobe in c(m),respectively.
N̂m is the number of extreme points in, that is,

N̂m = min(Nmax, Nmin), (24)

where Nmax means the amount of maxima in c(m) and Nmin is the number of minima in c(m).

5. Simulation Results and Discussion

5.1. Create Signals

The simulation conditions of eight radar waveforms are introduced in this section. Before creating
the waveforms, we suppose the noise is additive white Gaussian noise (AWGN). The definition of
SNR is SNR = 10 log10(Ps/Pn), where Ps indicates the signal power and Pn indicates the noise power.
U(·) means the ratio of frequency. For example, the initial frequency f0 is 1500 and the sampling
frequency fs is 12000. So, the ratio of frequency is U( f0/ fs) = U(1/8). For BPSK, the range of carrier
frequency fc is from U(1/8) to U(1/4) and the barker codes is 7, 11 or 13; for Costas codes, the amount
of frequency Ns changes from 3 to 6, the basic frequency fmin is U(1/24) and the number of samples N
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is from 512 to 1024; for LFM, the initial frequency f0 is U(1/16, 1/8), the range of bandwidth ∆ f is the
same as f0 and the number of samples N is as large as Costas codes; For polyphase codes, the carrier
frequency fc is also U(1/8, 1/4), M indicates the step frequency and Nc indicates the coding length of
signals. More details are illustrated in Table 4.

Table 4. Parameters of each waveform.

Radar Waveforms Parameter Parameter Values

fs 1

BPSK
fc U(1/8, 1/4)

Nc 7, 11, 13

Costas codes
Ns [3, 6]

fmin U(1/24)
N [512, 1024]

LFM
f0 U(1/16, 1/8)

∆ f U(1/16, 1/8)
N [512, 1024]

P1 and Frank codes
fc U(1/8, 1/4)
M [6, 12]

P2 code
fc U(1/8, 1/4)
M 2 × [3, 6]

P3 and P4 codes
fc U(1/8, 1/4)

Nc 2 × [20, 65]

5.2. Experiment Results with SNR

In order to make experiments on the classification of eight kinds of radar waveforms, 1000 sets of
each waveform are obtained. 90% of them are employed to practice and the remaining is regarded
as the test set. The range of SNR is from −8 dB to 14 dB. The RSR in this article is compared with
Zhang [8] and Lunden [7] system.

Figure 10 shows the recognition accuracy at different SNR from this paper and from Zhang’s and
Lunden’s studies. For BPSK, LFM and P2 code, the performance of this paper is obviously higher than
the other two systems. For Costas codes, the recognition rate of Zhang’s is the highest but this paper is
very close to Zhang system. For P1, P3, P4 and Frank codes, the recognition rate of Zhang’s is only
a little higher than this paper in some cases and Lunden’s is the worst. On the whole, the recognition
accuracy of this paper is obviously higher than Zhang’s and Lunden’s, especially under the low SNR.
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Figure 10. Recognition accuracy at different SNR of each waveform. The overall RSR is 92% at SNR of
−4 dB for this paper. (a) The RSR of BPSK (b) The RSR of Costas, (c) The RSR of LFM, (d) The RSR of
P1, (e) The RSR of P2, (f) The RSR of P3, (g) The RSR of P4, (h) The RSR of Frank, (i) The overall RSR.
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When SNR is −4 dB, the overall RSR of this paper is 92%, the RSR of Costas and BPSK is 100%
and the RSR of LFM and P2 is above 95%. The CWD images of P1, P3, P4 and Frank are similar,
especially in low SNR conditions. Therefore, the effects of them are not excellent and the RSR is about
85%. What’s more, the untrained waveforms T4 code [26] with the number of phase states of 2 is used
to test the performance of system. After calculation, the probability that T4 is divided into unclassified
waveforms is 89%. The specific results of this paper at SNR = −4 dB are displayed in Table 5.

Table 5. Classification results of this paper at SNR = −4 dB.

BPSK Costas LFM P1 P2 P3 P4 Frank Unclassified

BPSK 100% 0 0 0 0 0 0 0 0
Costas 0 100% 0 0 0 0 0 0 0
LFM 0 0 97% 0 0 0 1% 0 2%

P1 0 0 0 84% 0 2% 4% 9% 1%
P2 0 0 1% 0 99% 0 0 0 0
P3 0 0 0 1% 0 84% 10% 5% 0
P4 0 0 2% 7% 0 5% 86% 0 0

Frank 0 1% 0 5% 0 8% 1% 85% 0
T4 0 9% 0 0 2% 0 0 0 89%

5.3. Experiment Results with Robustness

The following is to discuss the stability of system. The point is to ensure how recognition accuracy
varies with the number of training samples. The training samples vary from 100 to 900 and the interval
is 200. We draw the conclusions by comparing with Zhang’s [8] at SNR of −8 dB and −2 dB.

As Figure 11 shows, the recognition rates of this paper and Zhang’s are both increasing when
the training data is from 100 to 900. The RSR of this paper is higher than Zhang’s under any training
samples. When the number of training samples is 500, RSR is basically unchanged. That means the
two systems are both stable at this time. When SNR is −8 dB, the growth of RSR is 18.5% for Zhang’s
and the growth of this paper is 4.4%. When SNR is −2 dB, the growth of Zhang’s is 16.9% and the
growth of this paper is only 0.7%. That means the growth of this paper is smaller than Zhang system.
Therefore, the system of this paper has better robustness.
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Figure 11. In this figure, (a) is the RSR at different training samples at SNR = −8 dB. (b) is the result at
SNR = −2 dB.

5.4. Experiment Results with Time

In order to measure the property of system, we calculate runtime to represent the computational
complexity. Eight waveforms are tested when SNR is −8 dB and −2 dB. The simulation is repeated ten
times and take the average. The time of this paper, Lunden’s [7] and Zhang’s [8] is shown in Table 6
and the unit is seconds. The operation environment is in Table 7.
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Table 6. The time of this paper, Zhang’s and Lunden’s.

BPSK Costas LFM P1 P2 P3 P4 Frank

−8 dB
This paper 50.773 52.523 51.762 51.681 52.990 51.230 52.733 52.580

Zhang 51.332 54.875 55.604 58.628 56.754 58.830 54.895 56.336
Lunden 82.374 84.279 86.324 88.282 88.360 87.798 85.999 87.022

−2 dB
This paper 49.688 50.193 50.236 50.586 51.969 50.779 51.012 50.251

Zhang 51.195 54.009 54.979 58.422 55.801 58.107 54.428 56.294
Lunden 81.560 84.183 86.111 87.923 88.180 87.353 85.187 86.654

Table 7. The operation environment.

Item Version

CPU E5-1620V2 (Intel)
Memory 16 GB (DDR3@1600 MHz)

GPU NVS315 (Quadro)
MATLAB R2012a

In order to make the data in Table 6 more clearly, the ratio of system’s (this paper and Zhang)
time to Lunden’s time is calculated. The results can be seen in Table 8.

Table 8. The ratio of system’s (this paper and Zhang) time to Lunden’s time.

BPSK Costas LFM P1 P2 P3 P4 Frank

−8dB
This

paper/Lunden 0.616 0.623 0.599 0.585 0.599 0.583 0.613 0.604

Zhang/Lunden 0.623 0.651 0.644 0.664 0.642 0.670 0.638 0.647

−2dB
This

paper/Lunden 0.609 0.596 0.583 0.575 0.589 0.581 0.598 0.579

Zhang/Lunden 0.627 0.641 0.638 0.664 0.632 0.665 0.638 0.649

As Table 8 shows, this paper’s time is about 0.595 of Lunden’s. Zhang’s time is about 0.645 of
Lunden’s. That means the time of this paper is the least and the time of Lunden’s is the most. In Lunden
system, some methods spend a lot of time but they are not utilized in this article. For example,
data driven and peak search and so forth. In Zhang system, the number of features is 23 and there
are only 14 features in this article. Therefore, the computational complexity of this paper is less than
Zhang’s and Lunden’s.

6. Conclusions

In this paper, the system for recognizing 8 LPI radar waveforms is explored. The identifiable
waveforms are BPSK, Costas codes, LFM, P1–P4 and Frank codes. There are only 14 features in the
system and they are divided into time features and T-F features. Time features are obtained from
the time domain signals. T-F features are related to the WVD and CWD and 3 new T-F features are
proposed. The classifier of the system is SVM based on ABC algorithm. ABC is adopted to optimize
the parameters of SVM and it can avoid the problem of local optimal solution to some extent.

The system has good performance and the details are as follows: Firstly, it has high recognition
rate. When SNR at −4 dB, the overall RSR is 92% and the RSR of each waveform is all over 84%.
Especially for LFM and P2 code, the RSR is about 97% which is far better than other systems. Secondly,
it shows well robustness. When the training data is reduced to 100, the recognition rate is only dropped
by 0.7% at SNR of −2 dB. Lastly, it possesses excellent computational complexity. The runtime of this
paper is far less than other methods.
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