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Abstract: The benefit of the super-junction (SJ) technique at the low-voltage (30 V) range is
investigated in this work. Optimizations such as adding a buffer layer to the device have been
used, but simulation and theoretical evidences show that the benefits of the SJ technique are marginal
for 30 V applications. The floating P structure proved to be a good replacement for SJ devices at
the 30 V range due to a simpler fabrication process as well as performance gains achieved with
optimization. Also, a new idea of combining the floating P layer with a shallow trench isolation layer
is proposed and simulated using TCAD, yielding the figure of merit (RDS(on) × QG) of 5.93 mΩ-nC,
which is a 39% improvement on the standard floating P device.
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1. Introduction

Efficient power supplies with fast transient response and accurate voltage regulation for
low-voltage applications are becoming more important in today’s market. This can be mainly attributed
to the fast growth and increase in demand for data-centers, as well as the massive increase in the
amount of data being transmitted. It is estimated that the amount of annual global data-center traffic
will increase from 4.7 zettabytes in 2015 to 15.3 zettabytes in 2020, where 1 ZB = 240 gigabytes [1]. Also,
the user base of consumer cloud storage is predicted to increase from 47 in 2015 to 59% in 2020 [1].
With the current system design of data-centers, there is a significant volume of these low-voltage
power devices in use when it comes to voltage regulation [2]. As a result, it is critical to optimize the
design of these power devices such that high efficiency and performance are achieved in data-center
power regulators.

The laterally double-diffused metal oxide semiconductor (LDMOS) transistor offers higher levels
of integration for integrated circuits (ICs) [3]. As a result, the LDMOS is viewed as a viable solution
for advanced systems on a chip (SoC), which have power integrated within the solution combining
both high speed digital logic CMOS and high power LDMOS devices onto the same silicon chip [4].
These SoCs are often found in Internet of Things (IoT) applications. LDMOS devices have also found a
footing in advanced integrated power electronics modules and electric vehicles that are now rampant
in the market.

The work presented gives a viable solution for improving upon the design of 30 V power devices.
The super-junction (SJ) technique, which involves the use of consecutive N and P pillars in the device’s
drift region and is well established in the high voltage (600 V) range, is tested here for the low-voltage
range. In [5] the authors attempt to integrate the SJ technique within their low-voltage device design,
but from [6,7], and further investigation here, it can be seen that the SJ technique may not be preferred
for low-voltage applications. An alternative approach to designing a 30 V power device is proposed by
replacing the SJ pillars and the shallow trench isolation (STI) with a floating p-type layer in the drift region.
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This paper contains five sections. Following the introduction, Section 2 discusses the low-voltage
Super-Junction LDMOS that was investigated in this work. Section 3 covers all of the details for the
floating P layer device and explains how it can be used to replace SJ devices at low-voltages (30 V
range). Section 4 presents a new concept of combing both STI technology with a floating P layer to
generate a device with a very low figure of merit (FOM) (QG × RDS(on)). Section 5 gives a summary.

2. Low-voltage SJ LDMOS Analysis

Figure 1 shows a conventional LDMOS used in our simulation, while the structure of the SJ
LDMOS device is displayed in Figure 2. The SJ LDMOS in Figure 2 contains N and P SJ pillars. Shallow
trench isolation (STI) is used in the drift region. This assists in absorbing the peak electric field that
commonly occurs at the edge of the gate [8]. Both the conventional and SJ devices are simulated using
two-dimensional (2D) and three-dimensional (3D) Sentaurus Device TCAD. For the conventional
device, it was possible to simulate it in a 2D environment, while the SJ LDMOS is simulated in 3D.
The SJ LDMOS is quite unique in that the SJ N and P pillars do not exist on the front facing 2D cross
section, but the pillar array is placed within the width of the device, requiring a 3D simulation [9].
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Table 1 lists the super-junction LDMOS key device dimensions.

Table 1. Super-junction device dimensions.

Parameter Size

cell pitch 8 µm
channel L 1.4 µm

tbuff 2 µm
tSJ 0.6 µm

WSJ 0.5 µm
lSTI 2.5 µm
tSTI 0.3 µm
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The device simulation uses the following physics models: Old Slotboom model [10] for the
effective intrinsic carrier density; while doping dependence [11], high field saturation [12], and
Lombardi [13] models are used for the mobility dependence. Shockley Reed Hall [14], Auger [15], and
Okuto avalanche models [16] for the recombination and breakdown current.

Figure 3 compares the on-state resistance (RDS(on)) and gate charge (QG) between the conventional
device and the SJ device. Both devices have a breakdown voltage of 30 V. The conventional device has
a FOM of 123 mΩ-nC while the SJ device has a FOM of 51 mΩ-nC. Note that RDS(on) and QG are both
normalized to an active area of 1 mm2. RDS(on) was examined at the 1 A device operating point in the
linear region. QG was extracted from the gate voltage (VGS) versus QG plot in Sentaurus.
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From Table 2 we can see that at the same operating voltage of 30 V, the low-voltage SJ has a slight
increase in RDS(on), but a lesser amount of charge is accumulated at the gate terminal. This leads the
SJ device to have an overall improved FOM, lower than that of the conventional device. It is worth
pointing out that lower QG leads to improved switching losses, while lower RDS(on) helps reduce
conduction losses. Conduction losses are significant in switching power supplies at low frequency [17].
The conduction losses become an even more critical factor when looking at most modern soft switching
topologies. Soft switching topologies significantly reduce the switching losses by switching at either
zero current or zero voltage [18].

Table 2. Conventional versus SJ device for specific RDS(on) and QG.

Conventional SJ Device

RDS(on) 87 mΩ-mm2 113 mΩ-mm2

QG 1.4 nC/mm2 0.45 nC/mm2

The lack of improvement in RDS(on) of the examined SJ LDMOS device reduces or negates the
benefit of using SJ for the 30 V range. Equation (1) shows the on-state resistance as a function of
breakdown voltage (BVDss) for both the conventional and SJ devices [6]:

RDS(on) =

 a·
√

B·BVDss
5
2

µn ·ε·A conventional

a·B
1
6 ·BVDss

7
6

q·µn ·ND ·A SJ device
(1)
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where BVDss is the breakdown voltage, a is a constant that discerns between low-voltage and high
voltage devices (a = 6.21 for a 30 V conventional device & a = 1.87 for a 600 V conventional device, and
a = 6.9 for a 30 V SJ device & a = 2.07 for a 600 V SJ device), B is the radiative recombination constant,
µn is the electron mobility, ε is the silicon permittivity, ND is the drift doping, and A is the active area.

Equation (1) is often used to derive the silicon limit line (RDS(on)× active area). In capturing
RDS(on) in Equation (1) as a function of BVDss, the analytical equation uses the constant a, whose value
changes depending on the breakdown voltage of the device. This difference stems from the design of
the device and the growth of drift region length as the device size gets larger for higher breakdown
voltages. It is worth pointing out that the RDS(on) model presented in Equation (1) is based on a
dominant drift resistance. As the size of the device and drift length decrease, the ratio over which the
drift resistance contributes to the overall resistance also decreases. For example, for a 600 V device the
drift resistance is 96.5% of the total resistance [6]. However, for a 30 V device, the drift resistance is
only 29% of the overall on-state resistance. Figure 3 gives a plot of simulated results using Equation (1)
comparing the BVDss versus RDS(on) trend for both the super-junction device and the conventional
device. From Figure 3 it is evident that for devices with BVDss less than 200 V the conventional
device achieves a lower RDS(on) than that of SJ, but this trend is reversed for devices with BVDss greater
than 200 V. For this reason, and also from our obtained simulation results, it is evident that the use
of SJ technique to design power devices is more suitable to design high voltage power devices [19]
than low-voltage ones. The off-state breakdown voltage and on-resistance can be expressed by the
analytical equations below:

BVDss =
√

Ecrit
2 − EL2 · tSJ (2)

RDS(on) · A =
tSJ ·Wn

ε · µn · EL
(3)

where Ecrit is the critical breakdown electric field for silicon, EL = SJ pillars lateral electric field value,
tSJ is the SJ pillar depth, Wn is the SJ pillar width.

The SJ technique also comes with some process complexities. These arise from the meticulous
need to accurately balance the implantation charge required to realize the N and P pillars in the
fabrication process. Any implantation imbalance between the pillars leads to a significant reduction
in the device’s breakdown voltage [7]. Another issue stems from the scaling of these SJ pillars for
low-voltage applications: Equations (2) and (3) list the BVDss and RDS(on) dependence on the depth and
width of the SJ pillars [20]. Most modern SJ manufacturing, such as in [21], rely on ion implantation.
However, the need to scale down the SJ pillars while at the same time still ensuring their optimal
performance may make their fabrication process too challenging and costly, due to the ion scattering
that becomes more problematic when features are small.

3. LDMOS with Floating P-Type Layer

The implementation of a floating p-type layer in place of the STI gate edge region is a technique
that is examined for the LDMOS device; the method is also implemented in [22]. The technique was
investigated for low-voltage devices to measure the possibility to outperform SJ in this voltage range.
Figure 4 shows a cross section of the device considered. It can be seen from Figure 5 that the device has
a simpler 2D cross section when compared to that of the SJ LDMOS. Its device dimensions are given in
Table 3. The device cell pitch has also been modified and reduced from 8 µm to 3 µm. This achieves a
higher cell density improving the on-state characteristics of the device. Table 2 lists some of the key
device dimensions.
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A process simulation for the p-type layer device was developed. The process simulation sheds
light on how the added device features can be incorporated with relative ease, especially when
compared to the complex SJ process. Figure 4 shows cross sections of the device throughout the process.

The device is built on a <100> lattice p-type silicon wafer. The process is self-aligned to the gate:
as such, the gate dielectric and the gate poly are initially deposited and patterned on the surface of the
silicon wafer using the same mask. The P and N wells are then formed using the same mask with a
combination of positive and negative photoresist, such that each dopant is deposited on either side of
the gate. A dose of 3 × 1013 cm−2 with an energy of 150 keV is used for the N well, while a dose of
4 × 1013 cm−2 with an energy of 100 keV is used for the P well. The junction depth of the N well is
around 1.35 µm, while the junction depth of the P well is around 1.40 µm.

For the floating p-type structure, implanting the dopants just under the edge of the gate on
the drain side proved challenging, due to the fact that the process is self-aligned to the gate and
the thickness of the polysilicon does not permit to implant the dopants directly. To solve this, an
angled implant at varying energies was used to achieve the desired structure just under the gate edge.
Four different doses of 3.5 × 1012 cm2 were used to obtain the desired profile; the energies used are in
the following order: 20, 40, 80, and 160 keV.

The process is completed by implanting the phosphorus dopants for the source; a dose of
4.5 × 1013 cm2 is used with an energy of 70 keV. The dopants were activated using rapid thermal
annealing (RTA) for 5 mins to stay within the thermal budget. Similarly the P+ body dopants were
introduced as well as the N+ contact dopants, RTA is also used here to activate the dopants.

This floating P LDMOS process displays the feasibility and replicability of making the floating
P device. The process advantage coupled with the performance improvement achieved with further
optimization shows how the floating P layer device can outperform SJ devices at the 30 V application.

Table 4 gives a comparison of the RDS(on) and QG between the SJ device and the floating p-type
layer device. Both devices have a breakdown voltage of 30 V. The FOM of both devices can be
determined. The SJ device has a FOM of 51 mΩ-nC while the floating P layer device has a FOM
of 9.75 mΩ-nC. Note that both RDS(on) and QG are both normalized to an active area of 1 mm2.
The performance enhancement seen in Table 4 stems from the cell pitch optimization that was given
to the floating P device. This led for the device unit cell to occupy less area resulting in an improved
normalized RDS(on) and QG values.

Table 4. SJ versus floating P device for specific RDS(on) and QG.

SJ Device Floating P

RDS(on) 113 mΩ-mm2 63 mΩ-mm2

QG 0.45 nC/mm2 0.16 nC/mm2

4. LDMOS with STI Region Surrounded by P-Type Layer

It was observed that the peak electric field of the floating P LDMOS device occurred on the surface
of the p-type layer as shown in Figure 6. It is known that the critical electric field of silicon is around
5 × 105 V/cm; the electric field on the surface exceeds that of the critical electric field as the device
approaches breakdown and is the major source of impact ionization in the device. To counter the
effects of the surface peak electric field, it was necessary to replace the material of the affected region
with a material that has a higher critical electric field. Since the affected region is on the surface of the
device, it is feasible with an SiO2-filled trench realized at the same time and in the same way with the
STI used in the fabrication process, as demonstrated in Figure 7.
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Table 5 gives the performance of the LDMOS device when the STI surrounded floating P layer
technique is applied. Both devices are designed with a breakdown voltage of 30 V. The simulation
results show that the device with the floating P layer has a FOM of 9.75 mΩ-nC while the device with
STI plus floating P layer has a FOM of 5.93 mΩ-nC. That is a 39% improvement in the FOM. From our
understanding of the current state of art, the implementation of such floating P layer with a STI region
is a new design that led towards the given low FOM value observed by device simulation.

Table 5. Floating P versus STI w/floating P device for specific RDS(on) and QG.

Floating P STI + Floating P

RDS(on) 63 mΩ-mm2 22.8 mΩ-mm2

QG 0.16 nC/mm2 0.26 nC/mm2

From Table 5 one can notice that there is a slight increase in the gate charge of the STI plus floating
P device which can be attributed to the wider surface area of the oxide in contact with silicon attracting
a higher total number of charges. Despite this slight increase in QG, the on-state resistance was reduced
by a significant amount. The increase in QG is due to the larger MOS capacitor plate area at the gate
terminal caused by the addition of the STI region. The reduction in RDS(on) stems primarily from the
decrease of the depth of the p-type layer, as some of it is occupied by STI, leading to a thinner space
charge region to be formed in the in the N- buffer layer, which is in contact with the P layer. Since the
buffer layer is lowly doped, any changes in the P layer dimensions would lead to sizable variation in
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the depletion width. The smaller space charge region causes a reduction in the device sheet resistance
which leads to the lower on-state resistance.

The performance of the device was optimized by adjusting the size and placement of the oxide
STI region. Figure 8 plots the performance of the device when the STI is staggered by shifting it to the
left. An STI width of around 0.25 µm was the optimal design point giving the desired 30 V breakdown
and the RDS(on) value is equal to 22.8 mΩ-mm2. Reducing the STI width from 0.25 µm to smaller values
will increase the on-resistance and decrease the off-state breakdown voltage, as shown in Figure 8.
For example, when the STI width is reduced from 0.25 µm to 0.125 µm, the RDS(on) increases from
23 to 23.3 mΩ-mm2 and the breakdown voltage decreases from 30 to 29 V. On the other hand, when
the STI width is increased from 0.25 µm to 0.375 µm, the RDS(on) decreases to 22.7 mΩ-mm2 but the
breakdown voltage decreases 29 V. Figure 9 plots the performance when the STI is centered with respect
to the mid-point of the P type layer. In this case, the optimal width for the STI centered with respect
to floating P type region is around 0.28 µm. Similarly, reducing the STI width from 0.28 µm to smaller
values will increase the on-resistance and decrease the breakdown voltage (see Figure 9). When the STI
width is decreased from 0.28 µm to 0.125 µm, the RDS(on) increases from 22.8 to 23.3 mΩ-mm2 and the
breakdown voltage drops to about 29 V. On the other hand, when the STI width is increased from 0.28 µm
to 0.375 µm, the RDS(on) decreases to 22.5 mΩ-mm2 but the breakdown voltage decreases 29 V as well.
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From Figures 8 and 9 one can see that that the staggered STI achieves an overall better performance
as far as the on-state resistance is concerned. Also, the staggered STI achieves a lower QG compared to
the centered STI. This is due to the smaller surface area of the oxide under the gate field plate.

5. Conclusions

This work investigates the super-junction LDMOS figure of merit (RDS(on) × QG) for the 30 V
application. The Sentaurus TCAD device simulation results indicate that the super-junction technique
may not be suitable for low-voltage applications due to limited performance improvement in specific
on-state resistance versus breakdown voltage. The process difficulties faced with creating long pillars
for small feature sizes and charge balancing between the P and N pillars when the super-junction
device is fabricated are added unfavorable factors for low-voltage super-junction device applications.

A replacement for the super-junction technique is suggested by removing the super-junction
pillars and shallow trench isolation region and adding a floating p-type layer. This technique shows
improvement in the device performance upon optimization. A process simulation for the device
was developed; this process demonstrated the feasibility and replicability of using this technique in
real application. Lastly a new technique of surrounding the shallow trench isolation region with a P
type layer is introduced which to our understanding is a new design to achieve a low figure of merit.
The figure of merit (RDS(on) × QG) improved, going from 9.75 mΩ-nC down to 5.93 mΩ-nC for the
floating P device.

Author Contributions: Aiman Salih performed the device design and simulation as well as wrote the manuscript.
Jiann-Shiun Yuan provided suggestion for simulation and revised the manuscript. Both of them proofread the
final manuscript.

Funding: This research was supported in part by the National Science Foundation for the Industry/University
Cooperative Research Center on Multi-Functional Integrated System Technology (MIST), grant# IIP-1439680
and IIP-143964.

Acknowledgments: The authors would like to thank Dr. Patrick Shea at Renesas Electronic Corporation
for discussions.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Cisco. Cisco Global Cloud index: Forecast and Methodology, 2015–2020; Cisco Systems, Inc.: San Jose, CA, USA,
2016; Volume 26.

2. Yeaman, P. Datacenter Power Delivery Architectures: Efficiency and Annual Operating Cost. Available
online: http://www.vicorpower.com/docuents/whitepaper/server_efficiency_vichip.pdf (accessed on
1 March 2017).

3. Mai, A.; Rucker, H.; Sorge, R.; Schmidt, D.; Wipf, C. Cost-effective integration of RF-LDMOS transistors in
0.13 µm CMOS technology. In Proceedings of the IEEE Typical Meeting on Silicon Monolithic Integrated
Circuits in RF Systems, San Diego, CA, USA, 19–21 January 2009; pp. 1–4.

4. Heyer, P. Meeting the Power Management Needs of Portable Products. Available online: http://www.
eetimes.com/documents.asp?doc_id=1273021 (accessed on 28 March 2017).

5. Sabui, G.; Shen, Z. On the feasibility of further improving figure of merit (FOM) of low voltage power
MOSFETs. In Proceedings of the IEEE International Symposium on Power Semiconductor Devices & ICs,
Waikoloa, HI, USA, 15–19 June 2014; pp. 155–158.

6. Lutz, J.; Schlangenotto, H.; Scheuermann, U.; De Doncker, R. Semiconductor Power Devices; Sringer: Singapore,
Singapore, 2011.

7. Wang, H.; Napoli, E.; Udrea, F. Breakdown voltage for superjunction power devices with charge imbalance:
An analytical model valid for both punch through and non punch through devices. IEEE Trans.
Electron Devices 2009, 56, 3175–3183. [CrossRef]

8. Hu, Y.; Booth, R.; White, M. An analytical model for the lateral channel electric field in LDD structures.
IEEE Trans. Electron Devices 1990, 37, 2254–2264. [CrossRef]

http://www.vicorpower.com/docuents/whitepaper/server_efficiency_vichip.pdf
http://www.eetimes.com/documents.asp?doc_id=1273021
http://www.eetimes.com/documents.asp?doc_id=1273021
http://dx.doi.org/10.1109/TED.2009.2032595
http://dx.doi.org/10.1109/16.59917


Electronics 2018, 7, 60 10 of 10

9. Quddus, N.; Tu, Y.; Ishiguro, S. Drain voltage dependence of on resistance in 700 V super junction LDMOS
transistor. In Proceedings of the IEEE International Symposium on Power Semiconductor Devices & ICs,
Kitakyushu, Japan, 24–27 May 2004; pp. 201–204.

10. Slotboom, J.; de Graff, H. Measurement of bandgap narrowing in Si bipolar transistors. Solid-State Electron.
1976, 19, 857–862. [CrossRef]

11. Roulston, J.; Arora, N.; Chamberlain, S. Modeling and measurement of minority-carrier lifetime versus
doping in diffused layers of n+-p silicon diodes. IEEE Trans. Electron Devices 1982, 29, 281–291. [CrossRef]

12. Canali, C.; Majni, G.; Minder, R.; Ottaviani, G. Electron and hole drift velocity measurement in silicon and
their empirical relaton to electric field and temperature. IEEE Trans. Electron Devices 1975, 22, 1045–1047.
[CrossRef]

13. Lombardi, C.; Manzini, S.; Saporito, A.; Vanzi, M. A physically based mobility model for numerical
simulation of nonplanar devices. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 1988, 7, 1164–1171.
[CrossRef]

14. Shockley, W.; Read, W. Statistics of the recombinations of holes and electrons. Phys. Rev. 1952, 87, 835.
[CrossRef]

15. Herderson, I.; McGhee, J. A boundary determined Auger recombination model for semiconductor power
diodes. Math. Model. 1987, 8, 279–282. [CrossRef]

16. Okuto, Y.; Crowell, C. Threshold energy effect on avalanche breakdown voltage in semiconductor junctions.
Solid-State Electron. 1975, 18, 161–168. [CrossRef]

17. Lakkas, G. MOSFET power losses and how they affect power-supply efficiency. Analog Appl. J. 2016, Q1,
22–26.

18. Hun, G.; Lee, C. An overview of soft-switching techniques for PWM converters. Eur. Power Electron. Drives J.
1993, 3, 39–50. [CrossRef]

19. Lorenz, L.; Deboy, G.; Knapp, A.; Marz, M. COOLMOSTM-a new milestone in high voltage power MOS.
In Proceedings of the IEEE International Symposium on Power Semiconductor Devices & ICs, Toronto, ON,
Canada, 26–28 May 1999; pp. 3–10.

20. Saito, W. Comparison of theoretical limits between superjunction and field plate structures. In Proceedings
of the IEEE International Symposium on Power Semiconductor Devices & ICs, Kanazawa, Japan, 26–30 May
2013; pp. 241–244.

21. Borany, J.; Friedrich, M.; Rub, M.; Deboy, G.; Butschke, J.; Letzkus, F. Application of ultra-high energy boron
implantation for superjunction power (COOLMOSTM) devices. Nucl. Instrum. Methods Phys. Res. Sec. B 2005,
237, 62–67. [CrossRef]

22. Sun, W.; Zhang, C.; Liu, S.; Su, W.; Zhang, A.; Wang, S.; Ma, S.; Huang, Y. Investigation on hot-carrier-induced
degradation for the n-type lateral DMOS with floating p-top layer. In Proceedings of the IEEE International
Symposium on Power Semiconductor Devices & ICs, Waikoloa, HI, USA, 15–19 June 2014; pp. 394–397.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/0038-1101(76)90043-5
http://dx.doi.org/10.1109/T-ED.1982.20697
http://dx.doi.org/10.1109/T-ED.1975.18267
http://dx.doi.org/10.1109/43.9186
http://dx.doi.org/10.1103/PhysRev.87.835
http://dx.doi.org/10.1016/0270-0255(87)90590-2
http://dx.doi.org/10.1016/0038-1101(75)90099-4
http://dx.doi.org/10.1080/09398368.1993.11463311
http://dx.doi.org/10.1016/j.nimb.2005.04.078
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Low-voltage SJ LDMOS Analysis 
	LDMOS with Floating P-Type Layer 
	LDMOS with STI Region Surrounded by P-Type Layer 
	Conclusions 
	References

