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Abstract: The localization of unmanned aerial vehicles (UAVs) for autonomous landing is challenging
because the relative positions of the landing objects are almost inaccessible and the objects have nearly
no transmission with UAVs. In this paper, a hierarchical vision-based localization framework for
rotor UAVs is proposed for an open landing. In such a hierarchical framework, the landing is defined
into three phases: “Approaching”, “Adjustment”, and “Touchdown”. Object features at different
scales can be extracted from a designed Robust and Quick Response Landing Pattern (RQRLP) and
the corresponding detection and localization methods are introduced for the three phases. Then a
federated Extended Kalman Filter (EKF) structure is costumed and utilizes the solutions of the three
phases as independent measurements to estimate the pose of the vehicle. The framework can be
used to integrate the vision solutions and enables the estimation to be smooth and robust. In the end,
several typical field experiments have been carried out to verify the proposed hierarchical vision
framework. It can be seen that a wider localization range can be extended by the proposed framework
while the precision is ensured.

Keywords: UAV; vision localization; hierarchical; landing; information integration

1. Introduction

Unmanned aerial vehicles (UAVs) are popular among civil and military situations that are
hazardous to human operators. Automated localization is therefore highly desirable while the vehicles
are required to land on stationary or moving platforms. Therefore, a real-time relative localization is
desirable, which refers to the ability to localize themselves relying on onboard sensors, such as Global
Positioning System (GPS), Inertial Measurement Unit (IMU), vision, lidar, etc. Currently the GPS, IMU
or their combination is the most common method used to determine the pose of a UAV. However, these
require the transmission of information between the air vehicle and the landing platform. The use
of vision sensors for localization has many advantages. As one low-cost sensor vision is mostly
passive and does not rely on an external signal. It is worth noting that vision can have millimeter-level
accuracy and can determine not only the distance but also the relative orientation between two objects.
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This paper describes a vision-based localization framework and the key enabling technologies for an
open landing.

In recent years, there has been a wealth of research and various vision-based methods available for
UAV landing. These include both feature-based methods and direct methods. Some of the approaches
require prior knowledge of the targets and others extract information from the surroundings in real
time. These vision-based methods work with a good localization precision but are limited by the
detection range. Especially, UAVs can hardly extract constant pose features from landing objects as the
relative distance increases or decreases. To solve this problem, a hierarchical vision-based localization
strategy is designed to extract reliable visual features at different scales in this paper.

It is noted that open landing refers to a complete decline process from a high altitude to
touchdown, which normally requires a wide localization range. For this purpose, this paper
describes a hierarchical vision-based UAV localization demonstration in which the pose (position
and orientation) can be estimated by using the onboard camera. A Robust and Quick Response
Landing Pattern (RQRLP) is designed for the hierarchical vision detection. The RQRLP is able
to provide various scaled visual features for UAV localization. In detail, for an open landing, three
phases—“Approaching”, “Adjustment”, and “Touchdown”—are defined in the hierarchical framework.
First, in the “Approaching” phase the UAV is relatively far from the vessel and the contour of the
RQRLP is detected and used as the main visual feature. Second, as the UAV approaches the landing
object, detailed location markers can be extracted from the RQRLP. This phase is called “Adjustment”
and the aerial vehicle can calculate the current pose with respect to the RQRLP with a high precision
and adjusts its pose for the touchdown. In the final “Touchdown” phase, the UAV is so close to the
vessel that the location markers are almost out of the field of view (FOV). As one alternative solution,
an optic-flow based tracker is employed to calculate the current pose by tracking the previous one until
the touchdown. To obtain a robust localization estimation, the three phases work in parallel as nodes.
A federated filter based on the Extended Kalman Filter (EKF) is costumed to integrate these vision
solutions. In the end, the proposed framework is tested and verified by several field experiments and
results, which illustrate its performance.

The remainder of the paper is organized as follows. In Section 2, some related work is introduced.
In Section 3, the design of the RQRLP is described as the landing object in the hierarchical vision
localization framework and provides visual information for the UAV pose calculation. Section 4
introduces a hierarchical vision-based localization framework, which enables the three phases and
integrates the UAV pose. Section 5 presents the experiments and results to verify and illustrate our
proposed hierarchical vision-based framework. Finally, the conclusions are presented in Section 6.

2. Previous Work

Currently, vision-based localization is one of the most-adopted ways to actively study UAV
autonomous landing. In general, for a spot landing, such as landing on a moving vehicle, UAVs
with onboard cameras are able to calculate the pose by recognizing a referenced object [1]. In these
related works, it is assumed that the image pattern and size of the referenced object are known in
advance. The relative localization can be acquired by analyzing the projection image. For example,
depending on the inertia moments of the image, the landing object could be distinguished from the
background [2]. The UAV orientation is calculated by matching real-time images with a stored dataset
of labeled images that have been calibrated offline. Due to image blurring, the cooperative feature
points cannot be accurately extracted from the images. As one solution, a special pattern consisting
of several concentric white rings on a black background was designed as a landing object [3]. Each
of the white rings is recognized by a unique ratio of its inner to outer border radius. However, only
the height with respect to the landing platform is provided by this method. Based on the feature
lines of the cooperative object, a pose estimation algorithm was reported in [4]. In the algorithm,
feature lines and vanishing lines were extracted to reduce the influence of image blurring. An initial
5 Degree-Of-Freedom (DOF) pose with respect to a landing pad was obtained by calculating the
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quadratic equation of the projected ellipse [5]. The IMU data was integrated to eliminate the remaining
geometric ambiguity. The remaining one DOF of the camera pose, the yaw angle, was calculated
by fitting an ellipse to the projected contour of the letter “H”. The homography between the image
frame and the object reference plane was also used to estimate the UAV initial pose [6]. With four
correspondences between the world plane and the image plane, a minimal solution of the homography
was estimated. A similar work was also reported in [7], where the homography between current and
previous frames was decomposed and accumulated for ego-motion estimation. Moreover, the relative
pose between current and previous frames could be estimated by tracking a structured-unknown
object [8–10]. Similar to the dead reckoning of an inertial navigation system (INS), these type methods
would suffer from signal drift as time elapsed.

In another case, it is assumed that the reference object for UAV landing and localization is unknown.
Optical flow is the typical method and it is used to track or stabilize the UAV pose [11–16]. A biological
guidance system was reported in [17], where some cues from the natural environment were detected
and analyzed, such as the horizon profile and sky compass. An image Coordinates Extrapolation
(ICE) algorithm [18] calculated the pixel-wise difference between the current view (panoramic image)
and a snapshot taken at a reference location to estimate the real-time UAV 3D position and velocity.
An optic flow-based vision system is reported in [19,20], where the optic flow was calculated and used
for autonomous localization and scene mapping. Relevant control strategies using vision information
are also discussed in detail. The combination of the vision and IMU data reported in [21,22] assumed
that the IMU had the ability to provide a good roll and pitch attitude estimation, and four infrared
spots on the target or the landing spot could be detected using the vision system. In addition, stereo
vision using triangulation has been applied during a UAV autonomous landing [23,24].

Following the works described above, it is therefore expected that feature detection and
recognition would be a key issue with regard to localization precision. In addition, for an open
landing, such as in the wilderness or maritime environment, the UAV must have the ability to process
the detection problem in a wide and consecutive working range. For this purpose, a hierarchical
detection and localization framework is proposed and studied to detect and extract various scale
features from the landing object. In one of our preliminary works, a UAV autonomous visual navigation
system was reported in [25].

3. Feature Recognition and Pose Recovery

The UAV localization for automatic landing is a complex but solvable problem that can be achieved
by the means of vision. In this section, the RQRLP as a reference object is designed for UAV vision and
consists of a set of friendly artificial location markers, shown in Figure 1. By detecting and recognizing
the RQRLP, the UAV can estimate its pose at different heights. The corresponding detection and pose
recovery algorithm, based on homography decomposition, is also introduced in this section.
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3.1. The RQRLP as Landing Object

A vision-based localization is any one that makes use of visual information. The visual information can
be used for navigation, vehicle stabilization, vehicle guidance, obstacle avoidance, or target tracking.

The visual feature at several scales can be provided by the designed landing object RQRLP. A series
of structured and non-structured graphs are set in the RQRLP. The structured graphs comprised of
several nested rectangles are used to provide the scale information for pose calculation, while the
non-structured ones are good feature points for pose tracking. Considering the QR (Quick Response)
code popularly applied in the field of current information recognition, each set of nested rectangles is
regarded as the location markers Top, Right, and Bottom, respectively. These location markers can be
detected and recognized robustly by contour extraction and statistics. First, since each location marker
has a constant contour number, they can be extracted from the background using contour detection
and statistics. Second, the “Top” marker is distinguished by calculating the straight-line distances
between any two markers and is the one that is not on the longest line. Third, the “Right” and “Bottom”
location markers are also recognized by calculating the slope of the longest line and the distance
from the “Top” marker to the longest line. So far, these location markers are recognized uniquely.
Assuming that the size of these markers is known, enough corners of the markers can be obtained as
the corresponding information between the RQRLP and its image plane. The corresponding points are
used for recovering the 6-DOF pose of the UAV. Except for the structured markers, random texture is
designed as the background and consists of rich traceable feature points. The use of such a RQRLP
mode can reduce algorithm complexity and run-time, and allows relative poses to be measured when
the onboard camera system has been correctly calibrated.

3.2. Pose Recovery Based on Image Homography

The 6-DOF pose of a UAV (position and orientation) can be recovered by homography decomposition.
Here, homography is a non-singular 3 × 3 matrix H that defines the projection between the RQRLP
and its image plane, and can be calculated using the acquired corresponding points. Assuming that
the 3D coordinate system is built on the RQRLP plane, the Z-axis of all the extracted points are zeros.

As a result, the 3D coordinates of all points on the RQRLP are defined to be
[

Xi Yi 0
]T

. And the

corresponding image points are
[

ui vi

]T
, the homography relation can be described as follows,

 ui
vi
1

 = H

 Xi
Yi
1

, with H = K3×3

[
r1 r2 t

]
(1)

Using the extracted corresponding points, one rough solution about the matrix H can be obtained
by Singular Value Decomposition (SVD) [26] or Gaussian Eliminate (GE) [27]. Then, using the Random
Sample Consensus (RANSAC) method, the matrix H can be optimized to remove the errors from the
mismatched points. The goal is achieved after iteratively selecting a random subset of the original
data points by testing it to obtain the model and evaluating the model consensus, which is the total
number of original data points that best fit the model.

As shown in Figure 2, the matrix H can be decomposed to require the onboard camera pose with
respect to the RQRLP, since the homography contains the information of the camera intrinsic and
extrinsic parameters. As shown in Equation (1), assuming that the camera parameter matrix K3×3 is
known, the 3 × 3 rotation matrix R and the 3 × 1 translation vector t are involved in the remaining
part and can be calculated based on the camera projection model [26],

r1 = λK−1h1

r2 = λK−1h2

t = λK−1h3

, with λ =
1

‖K−1h1‖
=

1
‖K−1h2‖

(2)
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where the 3 × 1 vector hi is the i-th column of H and the 3 × 1 vector ri is the i-th column of R. Since
all the columns of the rotation matrix are orthonormal to each other, r3 can be determined from r1 × r2.
However, the data noise causes the resulting matrix to not satisfy the orthonormality condition, and
SVD is used to form a new optimal rotation matrix that is fully orthonormal.

With this, −R−1t, R−1 represents the position and the orientation of the onboard camera in the
3D coordinate system of the RQRLP. As a result, the UAV’s pose can also be determined since the
camera is fixed on the body.
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4. A Hierarchical Vision-Based Localization Framework

Except for the algorithm of object detection and pose recovery, as the limited image resolution
and the fixed focal-length the employed vision system would have an effect on localization precision
specially when the UAV is at different height. To solve the problem, a hierarchical vision-based
localization framework is proposed, which can extract different scaled features for the corresponding
detection phases, as shown in Figure 3. In this section, how to achieve a vision solution for the three
phases and how to achieve the UAV pose by integrating the pose solutions is described.
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4.1. Hierarchical Localization

Considering an open landing, there are three phases—“Approaching”, “Adjustment”, and
“Touchdown”—defined in the hierarchical framework. A different vision solution is employed in
each phase.

At the beginning, the UAV is remote from the landing object RQRLP so that it cannot see the
details of the RQRLP clearly. At this point, the outline and dimensions of the RQRLP are detected
by the onboard vision system. Hence, a simple matching-based method is used to find the landing
object from the scene. By tracking the four corners from the rectangular landing object, it is possible
to calculate the relative pose of the UAV. But since the localization is rough, only the 3D position
remains for guiding the vehicle towards the landing. By detecting and tracking the visual information,
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it is thought that the UAV can approach the RQRLP and more vision details can be acquired. This
phase is therefore called “Approaching”. In detail, the image dimensions and coordinates of the
RQRLP are used to provide the relative 3D position for the UAV movement. It is noted that the image
projection of an object implies the relative distance between current view and the object when the
camera parameters are fixed.

For the next “Adjustment” phase of the landing, it is assumed that the flying vehicle is sufficiently
close to the RQRLP so that the detail of the RQRLP can be detected as the visual information for
localization. Using image corners from the location markers of the RQRLP, the relative position
and orientation of the UAV can be calculated exactly by the pose recovery method presented in the
previous section. As a result, a 6-DOF pose of the UAV can be acquired in the “Adjustment” phase.
The obtained real-time pose is used to adjust the UAV to an appropriate state for landing. In particular,
the movement of a landing object (surface or ground vehicle) can be also observed when the UAV is
hovering over the object.

When the UAV is near the end of a landing, the view of the onboard vision system is limited and
the image of the RQRLP can only be captured in part. This phase is called “Touchdown” in our work.
Either one of the two visual features for the last two phases is out of work in this phase, and an optical
flow-based pose tracker is designed to infer the current pose by calculating the optic-flow between
current and previous image frames. Rich textures distributed in the RQRLP can provide vast traceable
feature points. In detail, these points from the planer RQRLP are matched successfully by a nearest
neighbor method and the matched point-pairs are used to calculate the homography Hi+1

i between
current frame i + 1 and last frame i. Then, the UAV 6-DOF pose at the current time can be obtained by
Equation (3). Such a pose tracking method is feasible as certain good corners in the RQRLP enable
convenient tracking and the process is sufficiently short that accumulative error is negligible.

Hi+1
w = H0

wH1
0H2

1 · · ·Hi+1
i (3)

The visual information at different scales are detected in three defined landing phases for UAV
localization with respect to the RQRLP. All of the vision-based feature detection and pose calculations
constitute a hierarchical localization framework. The framework is practical and can guarantee a
consecutive pose solution for a UAV relative landing, such as landing on a maritime vehicle.

4.2. Pose Integration

It should be noted that vision-based solutions for the three landing phases are not strictly separated
and no less than one solution can be acquired during overlapping. To obtain an optimal localization
by integrating these solutions, a federated filter that involves only three local filters is customized.
The federated filter enables the final estimated localization to be consecutive and smooth.

The total structure of the customized federated filter is described in Figure 4. Three local filters
are customized for the three vision solutions, Z1, Z2 and Z3, respectively. Each local filter is a typical
extended Kalman filter that involves prediction and update modules, and takes the localization solution
from the vision nodes as the measurement input. The integration part is in charge of calculating the
optimal pose solution and the allocation coefficient βi. Moreover, an Inertial Measurement Unit (IMU)
is used as the reference system of the federated filter and provides real-time angular velocities and
accelerations for the UAV state prediction. In detail, the estimated state of each local filter Xi is a
7-dimensional vector, which involves the UAV position and orientation, as in Equation (4). In such
a local filter, the state Xi is predicted by the IMU, and then is updated by the visual measurement.
As is known from the above, the measurements Zi (i = 1, 2, 3) from the three phases are absolute or
relative pose, as shown in Equation (5),

Xi = [x y z q1 q2 q3 q4]
T, i = 1, 2, 3 (4)

Z1 = Z2 = [x y z q1 q2 q3 q4]
T; Z3 = [∆x ∆y ∆z ∆q1 ∆q2 ∆q3 ∆q4]

T (5)
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Acquired from these local filters, these estimated state X̂i with the corresponding covariance Pi
that is a 7 × 7 matrix, are passed to the integration module. It is noted that the covariance Pi can imply
the performance of the filter i, which means the current detection or measurement precision for the
vision node i can be reflected by Pi. By summing all available X̂i weighted with the corresponding
covariances Pi from the local filters, the global process noise Q̂g, state variance P̂g and state X̂g are
calculated as Equations (6)–(8),

Q̂g = (
N

∑
i=1

Q−1
i )

−1

(6)

P̂g = (
N

∑
i=1

P−1
i )

−1

(7)

X̂g = P̂g ×
N

∑
i=1

P−1
i X̂i (8)
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In addition, it is necessary for a federated filter to introduce a coefficient βi (∑N
i=1 βi = 1), which

can be used to allocate the prediction noise Qi and the state covariance Pi for the local filters at next
time. In general, βi is fixed for a typical Carlson federated filter. However, the detection precision of the
vision measurements is changing for different landing phases. Thus the allocation coefficient βi should
also be set to dynamical. As a result, βi is defined to be related with Pi, and the calculation is shown in
Equation (9). It can be thought that βi is inversely proportional to Pi. By such a dynamical allocation,
some disastrous influence could be reduced to output on other filters while one measurement of the
vision localizations is out of work or unreliable. At the same time, the recovery capability for the failed
filter can be also enhanced.

βi,k =
trace

(
P−1

i,k

)
trace

(
∑N

i=1 P−1
i,k

) =
trace

(
P−1

i,k

)
trace

(
P−1

g,k

) , i = 1, 2, 3 (9)

5. Field Experiments and Results

The results of our hierarchical vision-based localization field experiments are presented in this
section. In these experiments, a motion camera GOPRO4 with a resolution of 1080 p is installed to look
downwards relative to the UAV. The camera is assumed to be calibrated correctly in advance, and the
intrinsic parameters are known. The employed UAV is a six-rotor aircraft with an arm length of 1.6 m,
which is armed by a Global Positioning System (GPS) and an IMU. The UAV rotors can have a manual
or autonomous flight depending on the GPS & IMU system. A XSENS product (MTi-G-700) [28] is used
as the IMU module, which can output high-precision angular and accelerated velocities at 100~400 Hz
and has a low latency (<2 ms). The details of the employed UAV and onboard sensors are shown in
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Table 1. In addition, a base station is set on the ground and Differential GPS is employed to provide
a centimeter level accuracy for UAV position. Figure 5 shows the employed aircraft with onboard
sensors and the landing object. All calculations are programed as nodes and the flight data is recorded
from onboard sensors and considered as the ground truth for comparisons. The designed RQRLP is
placed on the ground and the relative height is approximately zero m. The experiments begin when
the landing object can be detected by the flying vehicle. The position and size of the three location
markers in the RQRLP object are assumed to be known in advance.
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Table 1. Specification of the devices in the experiment.

Device Specification

UAV frame six rotors, arm length 1.6 m, total weight 3.2 kg

GOPRO camera 1080 p, 50 fps, focal length 1280 pixels, principal point: (948.9, 543.2), distortion
factor (−0.00908, −0.03128, 0.00109, −0.00198, 0)

Xsens IMU
100~400 Hz, Gyroscope: full range 450 deg/s, noise density 0.01 deg/s/

√
Hz;

Acceleration: full range 50 m/s2, noise density 80 µg/
√

Hz.

5.1. RQRLP-Based Localization

In the first experiment, the UAV is required to perform a series of typical movements, such as
forward, backward, left, right, up and down, and several 360◦ spins. These movements involve all
possibilities of a general UAV flight, and could be recovered by the onboard vision. The localization
result and the ground truth from the onboard inertial sensors are shown with time in Figure 6.
The corresponding errors have been also calculated: there is a small error with a RMSE (Root Mean
Square Error) of 0.0239 m in the 3D position, while the RMSE in the orientation is 0.0818 rad.
The results show good performance for the proposed vision-based pose recovery method with our
designed RQRLP.
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5.2. Hierarchical Localization for an Open Landing

To test the presented hierarchical vision-based framework in the previous section, another flight
experiment has been carried out. The employed aircraft starts to decline at a of height 20 m. At the
beginning, the object RQRLP is so small in the field-of-view of the UAV that the detailed detection
for the RQRLP is inaccurate and the recovered pose based on the vision “Adjustment” node has a
large error. Alternatively, a rough outline of the RQRLP could be segmented from the background,
and is used in the “Approaching” node to provide the relative position and orientation information,
as shown in Figure 7a. As the UAV is declining below the height of 10 m, as shown in Figure 7b,
the location markers in the RQRLP can be recognized and the calculated pose solution from the
“Adjustment” node tends to stabilize gradually. In the end of the landing, the UAV is so close with the
landing object that the RQRLP is almost out of the view of the onboard vision, as shown in Figure 7c.
At this moment, the optic-flow tracker in the “Touchdown” node is able to calculate the relative pose
continuously by tracking the feature points between image frames and to ensure the final landing
pose. The corresponding detection process of these three vision nodes are also shown in Figure 7d–f,
respectively. The localization result from the hierarchical vision framework and the independent
solutions from the three vision nodes have been displayed in Figure 8. To enable a smooth visual
localization, all available solutions are used as the measurements of the federated EKF framework and
contribute to the final estimation. As a result, an optimal estimation could be acquired by the proposed
hierarchical vision-based framework. In addition, the optimal estimation is compared with the 3D
flight trajectory based on DGPS (Differential Global Positioning System) in Figure 9.
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5.3. Performance Analysis and Comparison

It can be noted that detection or localization precision would be affected when the object feature
is almost out of view. During such a landing process, from a height of 20 m, the onboard camera kept
detecting the landing object RQRLP to calculate the relative pose by using the three vision nodes in
the proposed hierarchical framework. The height measurements with timestamp were acquired and
have been shown in Figure 10a. It is found to be true that the localization is unstable or failed when
the feature is too small to detect in the view. In other words, the detection or localization precision
is dynamically changing as the detecting range. As shown in Figure 6b, the absolute errors on three
measurements have been calculated and can illustrate this point. In our work, it is of great importance
to fuse no less than two measurements in the overlaps in Figure 6a. For example, in the region of
Overlap 1, the allocation parameter βi(i = 1, 2) is updated according to the posterior covariance Pi of
each local filter , calculated in Figure 10c, and these can be used to trade off either measurement or
local filter, whichever is be more credible. Depending on the real-time acquired βi, the final height
estimation is available in Figure 10d. By the comparison with the ground truth, the height RMSE of
local or global estimations have been calculated to be 0.065 m, 0.0835 m, and 0.037 m, respectively.
It can be observed that localization is improved by such a federated fusing strategy.
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In addition, the performance of the proposed hierarchical localization framework is illustrated
by comparison with other typical methods. First, localization precision and range are considered
as two main factors for such a comparison. As mentioned above, the RMSE is used to evaluate the
localization precision. Range refers to relative distance, and these vision-based methods have been
studied in the literature. Some methods could provide a 6-DOF or less pose for the UAV. Moreover,
either the employed camera parameters or the landing object’s size would affect the performance of
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these vision methods. Image resolution and the field-of-view are considered as camera parameters.
Hence, the reference information, involving the landing object size, the full- or semi-orientation, the
employed camera resolution and field-of-view, have been also collected for a scientific comparison.
These detailed characteristics of four vision-based methods and our method are given in Table 2.
The four methods were selected since almost all the information of interest has been provided in
their work. It can be seen that the smaller or narrower the range is from the onboard camera to the
landing object, the better precision is ensured. While a centimeter-level precision has been obtained by
the other referenced methods, our hierarchical vision localization is able to calculate the 6-DOF pose
between a larger range of 0~20 m. This means that, based on such a hierarchical framework, the UAV
pose guidance would be enough and practical for an open landing.

Table 2. Comparisons between other methods from References (Ref) and our method.

Methods Ref [6] Ref [29] Ref [5] Ref [30] Ours

Position RMSE (m) 0.2467 0.015 0.0392 <0.05 ≤0.0639
Orientation RMSE (rad) 0.0653 0.0209 0.0436 <0.0872 ≤0.0818

Range (m) 3~10 0.677~1.741 1 1~1.1 0~20
Pose (DOF) 4-DOF 6-DOF 6-DOF 6-DOF 6-DOF

Object size (m) 0.91 × 1.19 0.01 (diameter) 0.18 (diameter) unknown 0.85 × 0.85
Vision Resolution (pixels) 640 × 480 752 × 480 640 × 480 320 × 240 1920 × 1080

field of view (deg) unknown 90 90 unknown 90

6. Conclusions

In this paper, a hierarchical vision-based localization framework has been presented for UAV
landing. In the hierarchical framework, the landing was defined in three phases: “Approaching”,
“Adjustment”, and “Touchdown”. For the three phases, object features at different scales are able to be
extracted for UAV pose recovery. And the landing object RQRLP has also been designed for hierarchical
vision detection. These original localizations are then integrated as independent measurements into
a costumed federated EKF framework, which enables the final localization to be smooth and robust.
Several typical experiments have been performed in the field and the results were analyzed to display
the performance of our hierarchical vision localization framework. Such a hierarchical vision-based
framework with a centimeter-level precision has a longer localization range and is thought to be
significant for an open landing.
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