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Abstract: According to the advantages of integrating wireless sensors networks (WSN) and radio
frequency identification (RFID), this paper proposes a novel method for methane gas density
monitoring and predicting based on a passive RFID sensor tag and a convolutional neural networks
(CNN) algorithm. The proposed wireless sensor is based on electronic product code (EPC) generation2
(G2) protocol and the sensor data is embedded into the identification (ID) information of the RFID
chip. The wireless sensor consists of a communication section, radio-frequency (RF) front-end
section, and digital section. The communication section is used to perform the transmission and
reception of wireless signals, modulation, and demodulation. The RF front-end section is adopted to
provide the stable supply voltage for other parts. The digital section is employed to achieve sensor
data and control the overall operation of the wireless sensor based on EPC protocol. Because the
miscellaneous noises will decrease the accuracy during the process of data wireless transmission, the
CNN algorithm is adopted to extract the robust feature from raw data. The measurement results
show that the exploited RFID sensor can realize a maximum communication distance of 10.3 m and
can accurately measure and predict the methane gas density in an underground mine. The RFID
sensor technology is a beneficial supplement to the current underground WSN monitoring system.

Keywords: methane gas density; RFID sensor tag; CNN algorithm

1. Introduction

Because of the existence of methane and other toxic gases, underground mines have proved to
be dangerous [1–3]. For example, 33.8% of accidents in underground mines are caused by methane
gas density exceeding the normal range [4]. Generally speaking, these underground mine accidents
are difficult to eliminate because human beings always work underground. In all accidents, methane
exposure is the most common and the most serious [5,6]. The minimum explosion percentage of
methane gas is 5%. However, when exposed to low methane gas density for a long time, the human
body will still be severely damaged [7–9].

The methane gas density is traditionally measured by human beings [1,3]; however, this method
is not only time-consuming and laborious, but dangerous to these people in underground mines. A
search-and-rescue robot system was introduced for the remote sensing of the underground coal mine
environment [10]. It can achieve environment sensing and rescue automatically. However, it is still
not a real-time monitoring system. In the past few decades, the cable monitoring system (CMS) has
been widely employed in underground mines for real-time environment monitoring [2]. Still, due to
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the complex situation of underground mines, the CMS requires high installation and maintenance
costs. Therefore, the environmental monitoring of underground mines urgently needs a flexible and
economic method.

In recent years, due to their advantages of fast deployment and low cost, wireless sensor network
(WSN) technologies have been wildly applied in industry [11–13]. In particular, ZigBee technology has
become the mainstream technology for underground environment monitoring [14–16]. Nevertheless,
the WSN network does not care about the location of the sensor node; so, when an abnormal situation
happens, the abnormal node cannot be identified quickly. Hence, the research on integrating WSN
with radio frequency identification (RFID) arouses great interest [17–19]. Each RFID tag has a
unique identification (ID) number. The integration of these two technologies is beneficial for the
WSN network to concentrate on the data transmission. When the information of a specific node
is considered, this node can be quickly located by using the RFID function. Furthermore, because
the RFID sensor employs a backscattering communication scheme, it can work in passive mode for
long-term application. Hence, RFID sensor technology is a beneficial supplement to the current WSN
technology. While there are always several research projects focusing on the combination of RFID
and WSN technology [20–22], this paper studied the feasibility of monitoring methane gas density
in an underground mine environment by using a wireless sensor based on RFID technology for the
first time.

RFID sensors can be classified into two categories, the chipless group [17,23] and chip-based group.
Chipless RFID sensors adopt a sensor’s signal to directly modulate the backscattering performances
of the antenna. They have the advantage of being ultra-low cost; however, they are not suitable for
composing the sensor network due to the lack of digital blocks. Chip-based RFID sensors can also
be divided into two groups, integrated circuit (IC)-based RFID sensors [18,19] and printed circuit
board (PCB)-based RFID sensors [24,25]. IC-based RFID sensors integrate the sensors with an RFID
tag chip, resulting in small circuit area and high stability. However, these sensors require a long design
period. Moreover, only several kinds of sensor can be fabricated by the complementary metal oxide
semiconductor (CMOS) process. PCB-based RFID sensors incorporate an RFID chip, sensors, and
digital blocks on the same board. These sensors show the advantages of short design period, high
extension capability, and low cost.

Besides real-time monitoring, gas density prediction is also important for mine safety. Due to
the harsh underground environment, the data measured by the passive wireless sensor contains
miscellaneous noises, which makes it difficult to extract robust features from the raw signal by using
traditional methods [26–28]. In recent years, deep learning technology with autonomous learning
ability has been widely researched and has made surprising progress in feature learning [29–32].
Deep belief networks (DBNs) [33], stacked denoising auto-encoders (SDAs) [32], and convolutional
neural networks (CNNs) [34] are three widely employed deep learning approaches. CNN shows
priority in feature extraction and data compression [35]. Therefore, in this paper CNN is employed for
feature extraction.

This paper presents a novel wireless sensor based on RFID technology for methane gas monitoring
in the long term. It is a beneficial supplement to the current underground WSN monitoring system.
Considering the environment interruption on data wireless transmission, CNN is adopted to extract
robust and discriminative features from the raw signal.

2. RFID Sensor Design

2.1. Communication Mechanism

The RFID system generally consists of an RFID tag and an RFID reader. Figure 1 shows the basic
communication flow based on the electronic product code (EPC) generation2 (G2) protocol [36]. Within
the communication distance, the reader first sends the Select instruction by carrier wave (CW) to the
tag to change the tag’s status. The reader then sends the Query instruction to the tag and the tag
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responds with its RN16. After that, the reader sends the ACK instruction to obtain the ID information
and CRC code of the tag. Finally, Req_RN is sent by reader to acquire the Handle response of the tag.
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Figure 1. Schematic diagram of radio frequency communication.

From the information discussed above, we found that there is no direct instruction for processing
sensor information; hence, we have to adjust this communication flow. In general, the sensor data are
stored in the non-volatile memory of the tag chip, but it exhibits long response time and high power
consumption during the read/write process [20]. Thus, in this paper the sensor data is embedded
into the identification (ID) information of the RFID tag. In this way, the time for reading and writing
the sensor data into the non-volatile memory can be avoided, resulting in lower power consumption
and response time compared with the traditional method. Figure 2 shows the comparison of the ID
information between the traditional method and the proposed method.
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Figure 2. Comparison of sensor data storage method; (a) traditional method; (b) proposed method.

Anti-collision technology is common in the field of RFID systems. However, in the field
of environment monitoring of underground mines, the position of the RFID sensor tag is fixed.
The number of the RFID sensor tag and the density of the RFID reader are not as much as in the field
of supply chain or health monitoring. Hence the anti-collision problem is not a serious issue in the
application of underground mine monitoring. As for our design, we propose the Q algorithm in EPC
Gen2 protocol [36] for RFID tag anti-collision and the reader-coverage collision avoidance arrangement
(RCCAA) method [37,38] for RFID reader anti-collision.

2.2. Wireless Sensor Design

The block diagram of the proposed wireless sensor is illustrated in Figure 3a. It consists of three
parts: a communication section, an RF front-end section, and a digital section. The communication
section contains the antenna and RFID tag chip, which are employed to perform the transmission and
reception of wireless signals, modulation, and demodulation. The RF front-end section, composed of a
matching network, a four-stage rectifier, and a low dropout (LDO) voltage regulator, is adopted to
provide the stable supply voltage for other parts. The matching network, containing an RF inductor
(Lm) and an adjustable ceramic trimmer capacitor (Cm), is employed to realize the maximum energy
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transferring efficiency. The power harvested by the antenna is an ultra-high frequency signal, which
cannot be used to power the remaining part of the RFID sensor directly. Therefore, as shown in
Figure 3b, a four-stage rectifier is introduced to rectify and boost the harvested power to the required
direct current (DC) voltage. The LDO voltage regulator is then used to generate a stable DC voltage
for other parts. The digital section, consisting of a micro-controller unit (MCU) and a methane gas
density sensor, is employed to achieve sensor data and control the overall operation of the wireless
sensor based on EPC G2 protocol.
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Figure 3. Proposed radio frequency identification (RFID) sensor tag: (a) architecture of the RFID sensor
tag; (b) proposed four-stage rectifier.

Figure 4 shows the prototype of the exploited RFID sensor tag. Aiming at the low-cost application,
a dipole antenna is adopted for both communicating and energy harvesting. The antenna is etched
on the FR4 substrate, the dielectric constant and thickness of which are 4.5 and 1.5 mm, respectively.
The RFID chip chosen is Monza X-8K, with an impedance at 915 MHz of 19–172 Ω. The rectifier adopts
a zero-bias Schottky diode SMS7630 as the switch diode for high rectifying efficiency. The NCP583 is
selected as the LDO voltage regulator, which can generate 1.8 V output voltage within the input range
from 1.65 to 1.83 V. The MCU adopts MSP430FR6964, which can provide 2526 kB FRAM and a 12-bit
200-ksps Analog-to-Digital Converter (ADC). This MCU only consumes 118 µA/MHz at 1.8 V supply
voltage in the measurement mode. The employed methane gas density sensor is MQ-4, which can
detect the methane gas density within the range of 300–10,000 ppm.
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Figure 5 shows the whole procedure of monitoring and predicting methane gas density.
The proposed RFID sensor tag is adopted to collect the methane gas density data, and the CNN
is employed to extract robust features from the raw data. After that, the least squares support vector
regression (LS-SVR) is established based on the extracted features. Then, the established LS-SVR is
used to predict the methane gas density.
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3. Proposed Algorithm

3.1. Convolutional Neural Network

The basic structure of the CNN is shown in Figure 6. Each sample data is input in two-dimensional
form, and then the hidden layer is input by kernel function. The hidden layer is mainly composed
of alternately repeated convolution layer and pool layer, and the output of this layer is sampled as
the next layer. The structure has a higher fault tolerance to the input samples, and can realize the
hierarchical expression of data more accurately. The convolution layer is used to extract the local
features of input data and consists of multiple feature matrices. Each characteristic matrix can be
regarded as a plane (the same convolution kernel on the same plane), so it has the characteristics of
parallel computation and greatly reduces the number of free parameters. Different planes correspond
to different convolution kernels so that the extracted features are more fully demonstrated.
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The calculation process of the convolution layer is shown in Figure 7a. The calculation method is
as follows:

Yl = f
(

∑ Xl−1 × Kl + Bl
)

(1)

In the formula, l represents the number of layers, f is the activation function, K is the convolution
kernel, B is the bias, X is the input value, and Y is the output value.
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The pool layer is used to compress data on the results of the stacked layer to reduce data
dimensions. The feature extracted by the pool layer has no deformation at scale and prevents over
fitting. The pooling process is shown in Figure 7b, and the calculation is as follows:

Yl = f
(

1
k ∑ Xl + Bl

)
(2)

A fully-connected layer is connected after the combination of some convolutional and pooling
layers. The fully-connected layer shows similar function to the traditional multilayer neural network
and can be applied through different classification models. The softmax regression, which can achieve
fast computation and an accurate result, is the most popular output layer. The output of the softmax
regression can be obtained as follows:

O =
1

n
∑

j=1
exp

(
X× Kj + Bj

)


exp(X× K1 + B1)

exp(X× K2 + B2)

. . .
exp(X× Kn + Bn)

 (3)
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In the learning process, the back-propagation algorithm is adopted, that is, the weight matrix is
adjusted by reducing the mean square error (MSE) of the ideal output and the actual output. The MSE
is calculated as follows:

MSE =
1
2∑

j

(
yj − oj

)2 (4)

Here, yj is the actual output and oj is the ideal output.
The essence of the convolution neural network is to learn a number of filters that can extract

the characteristics of the input data, extract the topological features hidden in the data through
layer-by-layer convolution and pooling, and finally obtain the input data with translation, rotation,
and scaling, the characteristics of the nature of change. This method can learn the features implicitly
from the data, avoid explicit feature extraction, and achieve higher accuracy and efficiency than
traditional neural networks.
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3.2. Least Squares Support Vector Regression

For a training dataset {(xi, yi)|i = 1, 2, . . . , n}, xi ∈ RN , yi ∈ R, (n is the elements number in the
data set and N is the dimension of x), the LS-SVR model is defined as [39]:

f (x) = wT · ϕ(x) + b (5)

where w is the coefficient matrix, b is the bias term, and ϕ(x) is employed to project the data x into
a higher dimensional space. The LS-SVR is determined by w and b, so the target is to search for the
parameters which can acquire a satisfactory generalization performance. This target can be achieved
by minimizing:

1
2‖w‖

2 + C
2

n
∑

i=1
e2

i

s.t. yi = wTx + b + ei, i = 1, 2, · · · , n
(6)

where ei is used to minimize the deviations of the regression function, and C is used to control the
compromise between the complexity and the fitness to the data. The Lagrange multiplier approach is
employed to solve the optimization problem:[

b
α

]
=

[
0
1

1T

K + I/c

]−1[
0
y

]
(7)

where 1 = [1, 1, . . . , 1], α = [α1, α2, . . . , αn]T, y = [y1, y2, . . . , yn]T, and K = k(xi, xj) is the kernel function.
It can be obtained by the kernel trick: k(xi, xj) = ϕ(xi)× (xj).

Finally, the LS-SVR model is equivalent to [36]:

f (x) =
n

∑
i=1

αik(xi, x) + b (8)

The kernel function significantly influences the performance of the LS-SVR model. Since the raw
signal is characterized as non-linear and non-stationary, the radial basis function (RBF) is used as the
kernel function [40]:

K(xi, x) = exp
{
−‖x− xi‖2/σ2

}
(9)

where σ is the bandwidth of the kernel.
For a series of observations Xt = [xt−(n−1)s, xt−(n−2)s, . . . , xt], s is the interval of measurement and

n is the series length. The goal of prediction is to estimate xt+r based on Xt. The estimated value can be
calculated by:

∧
xt+r = f (xt, xt−p, xt−2p, · · · , xt−np) (10)

where
∧

xt+r is the estimated value, and f (x) is the trained LS-SVR.

4. Experimental Results and Discussion

In this paper, compared with the conventional sensor data stored in non-volatile memory (NVM),
the identification (ID) organization is optimized to achieve less communication time delay and longer
communication distance. Therefore, the time delay and maximum communication distance of both the
traditional method and the proposed method were experimentally measured. The exploited wireless
sensor operates at 915 MHz, and the radiation power of the reader is 4 W. The operating distance
between the wireless sensor and the reader was set to 1.5 m. The measured results are listed in Table 1.
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Table 1. Time delay comparison.

Method Data Location Operation Time (ms)

Traditional NVM Inventory and Read 7.45 ± 3.92
Proposed ID Inventory 22.13 ± 3.31

Since the supply voltage to the sensor tag is fixed at 1.8 V, the whole power consumption of the
RFID sensor tag is determined by the consumed current. The proposed sensor is powered by a DC
power supply PMX-35A (Kikusui, Yokohama, Japan), and the consumed current is measured by a
digital multimeter Keithley 2010 (Tektronix, Shanghai, China). The developed sensor tag is activated
every 30 ms by an RFID reader. Figure 8 illustrates the current waves of the RFID sensor, employing
these two different sensor data storage methods. The measured currents of the proposed method and
the traditional method are 207 µA and 478 µA, respectively. The proposed sensor tag still has a current
consumption of 4.2 µA in sleep mode.
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The intensity of the received signal strength indication (RSSI) is one aspect with which to evaluate
the performance of the proposed wireless sensor. The RSSI can be calculated by:

YR = 10 log X (11)

where YR is the RSSI (dBm) and X is the received signal power (mW). As shown in Figure 9a, the RSSI
performance of the proposed wireless sensor was performed in the underground mine. The experiment
results are illustrated in Figure 9b. It can be seen that within the distance of 10.3 m, the RSSI is higher
than −60 dBm. We know from Reference [41] that this result is acceptable.

The proposed RFID communication protocol requires a bit error rate (BER) less than 0.001 and
signal to noise ratio (SNR) higher than 25 dB [36]. The BER performance is determined by the
communication environment and SNR, therefore the SNR over distance and the BER under different
SNRs should be measured. Figure 10a shows the measured SNR under different distances; it can
be seen that within the communication distance of 10.3 m, the measured SNR is higher than 26 dB.
Figure 10b shows the measured BER under different SNR. As seen in the figure, when the SNR is
higher than 25 dB, the measured BER is less than 0.001. Therefore, the proposed wireless sensor works
well in the test scenario.
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In order to verify the estimated performances of the proposed method, we tested the wireless
sensor at the underground mine site. Meanwhile, a commercial gas concentration detector was put
in the same spot as a reference. The proposed approach was employed to predict the methane gas
density, and the measurement results are shown in Figure 11. As can be seen, the predicted results are
consistent with the measured results and the maximum error is 0.42 ppm within 100 min.

In general, the available historical data is also one of the factors that affect the prediction accuracy.
Therefore, we measured the prediction error under different available historical data and the measured
results are shown in Figure 12. At the beginning of prediction, the LS-SVR model is trained by little
historical data, which leads to big prediction error. With the increase of available historical data,
the error is quickly decreased to 0.00012. Thus, it can be deduced that the proposed method can
achieve high prediction accuracy with sufficient historical data.
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To better verify the priorities of the proposed method, its performance is compared with several
wireless sensors which are introduced for methane gas density measurement. Table 2 shows the
comparison results. As can be seen, the exploited wireless sensor shows the advantages including
low cost, additional ID information, additional predicting ability, longer communication distance, and
higher accuracy compared with the other reported wireless sensors.

Table 2. Performances comparison of different wireless sensors.

Reported Method Cost Memory Function Range (m) Accuracy

[8] high methane gas density monitoring / high
[9] high methane gas density monitoring / medium

[15] high methane gas density monitoring / high
This work low methane gas density and ID message monitoring and predicting 17 high

5. Conclusions

Considering the advantages of integrating RFID and WSN, a novel monitoring and predicting
method for underground methane gas density is introduced in this paper. The proposed wireless
sensor is based on passive RFID technology and consists of a communication section, RF front-end
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section, and digital section. The data transmitted by the wireless sensor contains miscellaneous noises,
which makes it difficult to realize accurate monitoring and prediction. Hence, a deep learning approach
is employ to extract robust features from the raw data. The experimental results demonstrate that the
introduced wireless sensor achieves a maximum communication distance of 10.3 m and can accurately
measure and predict the underground methane gas density.
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