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Abstract: In this paper, an adhesion control strategy based on the wheel-rail adhesion state
observation is proposed for high-speed trains. First, the high-speed train single axle dynamics
model is established. Then, a modified adhesion control method is proposed. The scheme observes
the tangential force coefficient between wheel and rail through full dimension observer and forecasts
the slope of the adhesion-slip curve by the recursive least squares method with forgetting factor.
Meanwhile, a feasibility analysis of the method and the control parameters tuning is conducted.
Afterwards, the experimental study of the proposed adhesion control is carried out based on a 5.5 kW
induction motor drag platform using dSPACE simulation technology. The experimental results
confirm the feasibility of the adhesion control method proposed in this paper. Using the proposed
adhesion control method can achieve high wheel-rail adhesion performance under variable complex
road conditions.

Keywords: adhesion control; tangential force coefficient; adhesion-slip slope; load simulation;
high-speed train

1. Introduction

Wheel-rail adhesion is one of the important factors affecting the normal traction-braking
performance of high-speed trains. Wheel-rail adhesion force is restricted by road adhesion capacity.
When traction-braking torque on the wheel over the maximum adhesion that wheel-rail can provide,
idling-sliding phenomenon happens. This kind of phenomenon can lead to bad effects, such as a
decline in passenger comfort, wheel-rail abrasion, train traction-braking performance degradation and
so on [1]. Therefore, high speed trains are equipped with adhesion control devices to suppress the
occurrence of idling-sliding, in order to ensure the normal operation of the train.

In the field of high-speed train adhesion control, a main way is adopting the logic threshold
control such as speed difference, creepage rate, acceleration/deceleration threshold, etc. But the
method is a kind of control that acts after the occurrence of idling-sliding. So it cannot obtain the
best use of adhesion, and it is affected by road surface conditions. Based on a zero order observer;
literature [2,3] put forward a new torque adjustment control algorithm triggered by idling-sliding
detection. Where, the control effect is better, but the utilization rate of adhesion remains need to be
improved. Literature [4–6] present a fuzzy adhesion control method based on a zero order observer
and achieves good results, but due to the complex fuzzy logic and programming difficulty, there
are certain limitations in practical application. Literature [7] analyzes the performance influence
of full dimension observer to re-adhesion optimization control system emphatically. Literature [8]
proposes a torque feedback adhesion control method based on a zero order observer. The control
in adhesion-slip stable region is effective, but in unstable region this control will fail. Literature [9]
proposes a reduced-order observer, and adds an extra open-loop torque command C(t) to the output of
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torque regulator in literature [8]. Then literature [9] solves the failure problem in adhesion-slip unstable
region of literature [8], but literature [9] does not give a reasonable method for judging whether the
operation state is in the unstable region or not. The extra open loop torque command C(t) is obtained
by experience instead of calculation.

To suppress the occurrence of idling-sliding and get better use of adhesion, this paper proposes
a modified algorithm of optimized adhesion control, on the basis of literature [8,9]. By building
the full dimension observation of wheel-rail tangential force coefficient µ and Recursive Least
Squares (RLS) estimation of adhesion-slip slope dµ/dvs with forgetting factor, the method uses
torque feedback control to quickly implement train running near the adhesion peak point in complex
road conditions and maintains high adhesion performance between wheel and rail. To confirm the
feasibility of the proposed adhesion control method, based on adhesion control experimental research
in literature [10–12], the experimental study is carried out based on a 5.5 kW induction motor drag
platform using dSPACE simulation technology. The experimental results have confirm the feasibility
of the proposed adhesion control method.

2. Model Analysis

2.1. Adhesion-Slip Characteristic

The wheel-rail adhesion-slip phenomenon of high-speed trains is essentially a kind of elastic
contact interaction. Under the effect of axle load Wg, elastic deformation occurs in the contact area
between the wheel-rail and leads to the formation of elliptical contact zone. When the wheel rolls
forward by the drive torque T, tangential force can be produced between wheel-rail due to the relative
motion or motion trend. The tangential force causes the movement of the wheel-rail contact surface;
as a result, the train forward velocity will be smaller than the wheel line velocity and this phenomenon
is slip. Figure 1 briefly shows the slip phenomenon.
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Figure 1. Adhesion-slip phenomenon and adhesion-slip characteristic curve. 
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Figure 2. The simplified traction force transferring model for single axle. 
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Figure 1. Adhesion-slip phenomenon and adhesion-slip characteristic curve.

In order to evaluate the degree of slip and the value of adhesion force, the slip velocity vs and
tangential force coefficient µ are defined as follows:

vs = ωw · R − vt (1)

µ = Fµ/Wg (2)

where, R is the radius of the wheel; ωw expresses the wheel angular velocity; vt is the velocity of the
train; W is the axls weight; g is the gravity acceleration; and Fµ is the tangential force.
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Numerous theoretical analyses and experimental tests have confirmed that the adhesion-slip
character between wheel and rail can be expressed by the relationship between tangential force
coefficient µ and the slip velocity vs. The relationship is called the adhesion-slip characteristic,
and Figure 1 shows the typical adhesion-slip curve. The adhesion-slip curve has a peak point
(µmax, vsopt). The tangential force coefficient µmax at this point is called the adhesion coefficient.
The corresponding slip velocity vsopt at this point is called the optimal slip velocity. The curve is
divided into two areas by the vsopt. One is the stable area and the other is unstable area. The curve
shows a positive slope of the adhesion-slip curve (dµ/dvs ≥ 0) in the stable area while a negative slope
(dµ/dvs < 0) in the unstable area.

When wheel-rail operates in the unstable region, the idling-sliding phenomenon happens easily.
In order to avoid idling-sliding and use the maximum adhesion between the wheel-rail, optimized
adhesion controls must be able to achieve wheel-rail running in the adhesion stable region and near
the peak point (µmax, vsopt) under the variable condition of complex roads.

2.2. Train Single Axle Dynamics Model

Due to the complex dynamic characteristics of high-speed train running, it is difficult to build
complex dynamic models considering various factors. In this paper, the adhesion control study mainly
aimed at the single axle dynamic model as shown in Figure 2.
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Figure 2. The simplified traction force transferring model for single axle.

According to the wheel-rail adhesion characteristic, driving system characteristic and the
mechanical model of the train, the mathematical Equation (3) is gained as follows:

Tm − Twm − Bm · ωm = Jm
dωm

dt
ig =

rg2
rg1

Tmw = ηgear · ig · Twm

Tmw − Fµ · R − Bw · ωw = Jw
dωw

dt
Fµ − Fd(vt) =

M
NM

dvt
dt

Fµ = u(vs) · Wg
Fd(vt) =

M
NM

· (a + bvt + cvt
2)

(3)

where, M is train mass (including equipment and passenger quality, which is the load of motor
coaches); NM is the number of motor axle; Jm is the traction motor rotor moment of inertia; Twm is
the torque exerted to motor axle through the gear box by driven axle; Tmw is the torque exerted to
driven axle through the gear box by motor axle; Jw is the driven axle moment of inertia; ig is the gear
transmission ratio; rg1 and rg2 are the radius of driving gear and driven gear respectively; ηgear is the
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gear transmission efficiency; R is the radius of the wheel; Bm, Bw are motor and driven axle rotational
viscosity coefficient; Tm is the traction motor torque; ωm is motor angular speed; Fd is basic resistance
of train, a, b and c are coefficients of resistance equation.

Traction motor output side equivalent equation can be obtained by (3):

Tm − R
ig · ηgear

· Fµ − (Bm +
Bw

ig2 · ηgear
) · ωm =

dωm

dt
(Jm +

Jw

ig2 · ηgear
) (4)

Making

Jequ = Jm +
Jw

ig2 · ηgear
(5)

TL =
R

ig · ηgear
· Fµ (6)

and ignoring the Bm and Bw. Bm and Bw represent the internal rotational friction of the train drive
system, which is relatively smaller than load torque and system moment of inertia torque. So Bm and
Bw are often ignored in modelling [8,9]. Then Formula (4) can be represented as:

Tm − TL =
dωm

dt
Jequ (7)

3. The Modified Adhesion Control Method

3.1. Method Implementation Principle

Literature [8,9] carry out torque feedback adhesion control based on the tangential force coefficient
µ and dµ/dt. The key regulator function is:

TA = K1 · dµ/dt + K2 · µ (8)

where, TA is the torque command output by adhesion control, K1 and K2 are the control parameters.
The essence of this regulator is a PI controller with dµ/dt as input. dµ/dt = 0 is the control objective
with a suppose that dµ/dt = 0 is equivalent to dµ/dvs = 0. And dµ/dt is use to judge the operation
area is stable or unstable in literature [9]. However, as shown in Figure 1, the operation area of the
adhesion-slip characteristic is determined by dµ/dvs, not dµ/dt. dµ/dt isn’t equivalent to dµ/dvs

as the criterion of operation area. This may cause inaccurate judgment of unstable areas, so that the
torque command will get smaller and smaller as it moves along the stable parts of the adhesion-slip
characteristic curve in Figure 1, and the train cannot run.

As shown in Figure 1, f (µ, dµ/dvs) can truly reflect the status of wheel-rail adhesion. So in
this paper, based on the literature [8,9], replacing dµ/dt by dµ/dvs, torque feedback adhesion
optimized control is proposed based on the tangential force coefficient µ and adhesion-slip slope
dµ/dvs. The modified torque regulator function is shown in (9).

TA = K1 · dµ/dvs + K2 · µ (9)

Figure 3 shows the diagram of the modified adhesion control algorithm. The inputs in Figure 3 are
drivers handle instruction T*, vehicle velocity vt, motor speed ωm and motor torque Tm. The output is
the motor torque instruction T∗

m Motor load torque TL is got through the state observer. Then combined
with (2), (3), the wheel-rail tangential force coefficient µ and its differential value dµ/dt is calculated.
Slip velocity vs is known by Formula (1), then the differential value dvs/dt can be calculated. Inputting
dvs/dt and dµ/dt into the RLS module with forgetting factor, the estimated value of dµ/dvs can be got.
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According to torque regulator function (9), the adhesion control torque command TA is output.
Comparing TA with T* and choosing the smaller one as the motor vector control torque instruction
value T∗

m. Formula (10) is the full dimension asymptotic state observer of TL [13,14]. Formula (11) is
the principle of RLS estimation with forgetting factor [15].

[ .
ω̂m
.
T̂L

]
=

[
p1 + p2 − 1

Jequ

Jequ p1 p2 0

]
×
[

ω̂m

T̂L

]
+

[
−(p1 + p2)− B

Jequ
0

−Jequ p1 p2 0

]
×
[

ωm

TL

]
+

[
1

Jequ

0

]
Tm

T̂L =
∫

Jm p1 p2(ω̂m − ωm)dt

(10)

where, p1 and p2 are the poles of full dimension observer.

y[k] = θ̂T [k]φ[k]
θ̂[k] = θ̂[k − 1]− P[k−1]φ[k]

1+φT [k]P[k−1]φ[k] × (θ̂[k − 1]φ[k]− y[k])

P[k] = 1
κ [P[k − 1]− P[k−1]φ[k]φT [k]P[k−1]

1+φT [k]P[k−1]φ[k] ]

κ = 1
1+γφ[k]2

(11)

where, γ is the exponential weighting factor, P is the error covariance matrix.
Making 

y[k] = dµ/dt
θ̂[k] = dµ/dvs

φ[k] = dvs/dt
(12)

The adhesion-slip slope
β = θ̂[k] (13)

can be estimated accurately.

3.2. Theoretical Analysis and Parameter Setting of the Control Method

Combined with the Formula (3), and ignoring Bm and Bw, adhesion state equation can be written
as follows:

dvs

dt
=

R
ig Jequ

· Tm − µ(vs) ·
[

R2

ig2 Jequηg
W · g +

NM
M

W · g
]
+

NM
M

Fd(vt) (14)

Because of the great inertia of the actual train, the variation of vehicle speed vt is very small in a
adhesion controller response action interval. So the NM

M Fd(vt) in Formula (14) can be regarded as a
constant disturbance C. Discretization of Formula (14) is:

vs[k]− vs[k − 1]
Ts

=
R

ig · Jequ
Tm[k]−

[
R2

ig2 Jequ · ηg
W · g +

NM
M

W · g
]
· µ[k] + C (15)
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By adhesion control algorithm block diagram shown in Figure 3, under good road conditions,
the controller normally outputs driver instruction value T* (TA > T*). Under poor road conditions,
the controller outputs adhesion control torque values TA (TA < T*). So in such condition, discretizing
TA and putting the result into the Formula (15):

vs [k]−vs [k−1]
Ts

= R
ig ·Jequ

· K1
µ[k−1]−µ[k−2]

vs [k−1]−vs [k−2] +
R

ig ·Jequ
· K2µ[k − 1]

−
[

R2

ig2 Jequ ·ηg
W · g + NM

M W · g
]
· µ[k] + C

(16)

Within a control interval Ts, µ[k − 1] ≈ µ[k]. C is decided by vt and its value is still very small
(C = ±0.198) when vtmax = 380 km/h. The proportion of C is very small during the process of adhesion
control, so that it can be ignored. Therefore, further approximate processing of Formula (16) is:

vs[k]− vs[k − 1]
Ts

≈ R
ig · Jequ

· K1
µ[k − 1]− µ[k − 2]

vs[k − 1]− vs[k − 2]︸ ︷︷ ︸
A

+

[
R

ig · Jequ
· K2 −

R2

ig2 Jequ · ηg
W · g +

NM
M

W · g
]
· µ[k]︸ ︷︷ ︸

B

(17)

Based on Formula (17), we perform the feasibility analysis of the adhesion control method
proposed in this paper and parameter setting of K1 and K2.

To realize running on the adhesion peak point (dvs/dt ≈ 0), the first requirement is A = 0, as a
result B = 0, then we get the ideal K2:

K2 =
R

ig · ηg
W · g +

ig · Jequ

R
NM
M

W · g (18)

At this time, K2 decided by system structure parameters is called its critical value K2TH.
Determining the ideal K2 = K2TH, then B = 0, and A (decided by K1) plays the role of dynamic

torque adjustment. The specific effect of K1 is to dynamically correct motor torque with small amplitude
when road conditions change suddenly, and then to make the slip speed increase or decrease for rapid
convergence to the peak point. Finally, to improve the utilization rate of adhesion.

In actual control, in order to ensure the stability of adhesion control near the adhesion peak
requires further analysis to the K2. When K2 < K2TH and close to the K2TH, because of B < 0 and A + B
= 0, so A ≈ 0 and A > 0. At this time, the operation point is in the left stable area and near the adhesion
peak. When K2 > K2TH and close to the K2TH, because of B > 0 and A + B = 0, so A ≈ 0 and A < 0.
At this time, the operation point is in the right unstable area and near the adhesion peak. Thus, K2

bounded by K2TH determines the final effect of adhesion control that wheel-rail operates in the stable
area or in the unstable area near adhesion-slip peak point.

In terms of adhesion control objectives, K2 actual value shall be the K2 = K2TH − K∆ < K2TH (K∆
is stability margin) to ensure that wheel-rail runs in stable area on the left side of the adhesion peak
point. The value of K∆ must take into account both the adhesion control system stability and adhesion
utilization. The value of K1 should be appropriately large (excessive K1 will lead to severe fluctuation
of torque) to ensure the response speed and adhesion utilization.

4. Experimental Verification

4.1. The Load Simulation Test Platform Introduction

According to the traction motor equivalent mechanical Equation (7), and using the scaling
principle [16], the adhesion load simulation platform can be built with a motor drag platform [17].
The traction motor is simulated by a motor and the operation load is simulated by another motor.
The two coaxial motors are dragged by each other. Therefore, this paper set up a 5.5 kW adhesion load
simulation platform shown in Figures 4 and 5. Where, the dSPACE system controls the load motor and
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the Myway system controls the traction motor. The traction motor and the load motor both employ
vector control. The train dynamics parameters refer to the CRH2A parameters [18].
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As shown in Figure 4, the dSPACE control system mainly completes the train single axle dynamics
and the wheel-rail adhesion road conditions simulation, adhesion control, load torque control and
traction instruction calculation. Specifically, by calculation of the load torque, the dSPACE control
system gets the load motor torque instruction value T∗

L and controls the load motor to simulate the
traction motor equivalent load during train operation. In addition, traction torque instruction T∗

m
calculated by dSPACE is sent to Myway platform through the CAN communication. Myway control
system mainly realizes receiving T∗

m and completing traction motor vector control. The 5.5kW platform
physical structure is shown in Figure 5.

4.2. Experimental Results and Analysis

To verify the effectiveness of the proposed adhesion control method, we designed adhesion-slip
characteristics of three different road conditions as shown in Figure 6 [19,20].
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The experimental platform simulates the whole process that a train speeds up from 0 to 130 km/h
(10 level of traction), then uses regenerative braking to 25 km/h. In the traction condition, in the
55~85 km/h section, road conditions rapidly change from 1 (good road condition) to poor road
condition 2; in the 85~110 km/h section, road conditions deteriorate to poor road condition 3. In the
braking condition, in the 105~70 km/h section, road conditions rapidly change from 1 (good road
condition) to poor road condition 2.

Figure 7 is the change process of the wheel speed and vehicle speed during the above operation
under the effect of adhesion control (setting control parameters K1 = 19000, K2 = 7000).
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Figure 7. The changing of train speed and wheel speed.

According to Figure 7, when the road condition became worse, either traction or braking, wheel
speed did not sharply increase or decrease .Idling/sliding is avoided effectively due to rapid action of
adhesion controller. For further analysis, the changes of variables reflecting train running state, such
as motor torque and adhesion state, are shown in Figures 8–12.

Figure 8 shows the torque instructions, and Figure 9 shows the actual value of torque. According
to the figures, when the road conditions become worse, due to a low road adhesion coefficient,
the wheel-rail is unable to perform given adhesion ability. Then, the adhesion controller acts rapidly.
The traction motor torque instruction is adjusted to T∗

m = TA for adapting to the current road adhesion
state and avoiding idling-sliding. In addition, in response to different poor road conditions change
(road conditions 2, 3), the adhesion controller can also achieve rapid adjustment of traction motor
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torque instruction T∗
m (as shown in Figure 8, TA2 = 5.8 N·m and TA3 = 4.9 N·m). The controller has

good dynamic performance.
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Figure 10 shows the results of the tangential force coefficient µ full dimensional observation and
the adhesion-slip slope dµ/dvs RLS estimation. The observed values are in good agreement with the
actual values. The observation method proposed in this paper has a good performance.

Unlike Figures 8 and 9 which verify adhesion control performance by output torque,
Figures 11 and 12 evaluate the performance mainly from the wheel-rail adhesion-slip state in actual
operation. Figure 11 describes the actual running state trajectory of µ and vs. It can be found from the
figure that despite in the bad conditions 2 or 3, the wheel-rail operation area can achieve running near
the peak point in the respective adhesion-slip conditions (A, B, C).

In addition, Figure 12 shows that in the traction condition, at a speed of 85 km/h, when road
conditions deteriorate from poor road condition 2 to lower adhesion road condition 3, excessive
slip velocity vs2 = 5.3 km/h (vs2 close to vsopt2 and bigger than vsopt3 = 4 km/h) can be suppressed
rapidly, and decreased to vs3 = 3.5 km/h close to the peak point vsopt3 (vsopt3 < vsopt2). That means
within a relatively short period of time after the road conditions change, the operation point is located
in the unstable region of condition 3 and the operation point moves to the stable region by the
proposed control. This shows that the proposed adhesion control method is still effective even if the
wheel-rail operation point is in an unsteady area, and the proposed scheme can judge the operation
area accurately.
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5. Conclusions

This paper briefly introduces the wheel-rail adhesion characteristic, and establishes simplified
single axle dynamic mathematical models of the CRH2A EMUs. Then, based on the literature [8,9],
using the tangential force coefficient µ all dimension observation and the adhesion-slip slope dµ/dvs

RSL estimation, this paper proposes the modified torque feedback adhesion control. Besides, this paper
analyzes the feasibility of the proposed method and the setting method of control parameters K1 and K2.
The experimental study of the proposed adhesion control is carried out based on the 5.5 kW induction
motor drag platform using dSPACE simulation technology. According to the experimental results,
the proposed adhesion control method can be achieved in different poor adhesion road conditions.
The wheel-rail operation area stably nears peak point and the adhesion control is still effective in
adhesion-slip unstable areas. The experimental results have confirmed the feasibility of the adhesion
control method proposed in this paper.
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