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Abstract: This paper presents the design and measuring of a 6-bit SiGe BiCMOS digital step attenuator,
with a maximum attenuation of 31.5 dB, and with 0.5 dB steps (64 states) that have the lowest RMS
amplitude error and a low phase variation. To alleviate the large phase variation of the conventional
attenuator at a higher frequency, the proposed attenuator utilizes a phase compensation circuit.
The phase compensation circuit consists of a 2nd order low pass phase correction network, stacked
in parallel to the switched π/T structure of each attenuation module. An attenuator with a phase
compensation network shows a root mean square (RMS) amplitude error less than 0.43 dB, and the
RMS insertion phase deviation varying from 1.6◦ to 4.2◦ over 20–24 GHz. The measured insertion
loss is 21.9 dB and the input P1dB is 14.03 dBm at 22 GHz. Our confidence regarding the obtained
results stems from a comparison of simulations, carried out using Cadence Virtuoso, and physical
measurements using a network analyzer (also presented). The proposed attenuator’s design has
a 0.13 µm SiGe BiCMOS process, with an approximate occupied area of 1.92 × 0.4 mm2 including
chip pads.
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1. Introduction

In modern communication systems, a digital step attenuator is an essential part of the transceiver
modules of phased array antenna and beamforming systems [1–3]. In phased-array systems, typically,
attenuators are developed with low insertion phase variations over different attenuation states.
In addition, the incoming signal arriving at the attenuators is usually very large, and the attenuator
must have high enough linearity to handle the large signal, as well as a low insertion phase variation.
For the systems to provide low insertion phase and get the desired amplitude, the phase and amplitude
of the incoming signal must be accurately set. Particularly, in the case where several Transmit/Receive
(T/R) modules are integrated, the exact phase and amplitude values are required [4–7].

Conventionally, Variable Gain Amplifiers (VGAs) were used to produce variable gain outputs
at the expense of high power consumption and poor linearity. In addition, these approaches were
not suitable for mm-Wave applications. An attenuator can overcome these problems and potentially
provide better performance for wide-band applications, such as mobile and vehicular communications.
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Furthermore, the improved scaling of CMOS and SiGe technologies can guarantee the design of
high-performance attenuators that are appropriate for high-frequency applications [8–10].

The stringent parameters are, to design an attenuator with high linearity, low phase and amplitude
error, wideband and larger attenuation range. Various attenuator topologies are reported before
for mm-Wave applications, such as switched path attenuators [11], switched π/T attenuators [12]
and distributed step attenuators [13,14]. Although the topology reported by Sjogren et al. [11] is
an appropriate choice for a system that provides low phase variation, Single Pole Double Throw
(SPDT) switches experience high insertion losses at the reference state, due to their cumulative losses.
In addition, the implementation of SPDT switches, when implemented for multi-bit designs, required
more area. A distributed step attenuator on the other hand, may offer optimal source/load matching
with a lower insertion loss. However, it is not an area or cost-effective solution and thus its application
is limited. Switched π/T attenuators are a series and shunt resistive combination, using switches for
attenuation. However, in the K-band frequency, it is very challenging to achieve the desired attenuation
and low phase/amplitude error simultaneously [14].

This work presents a 6-bit digital step attenuator designed in a 0.13 µm SiGe BiCMOS process
for low insertion phase variations, higher attenuation and larger bandwidth, employing 2nd order
capacitive phase correction network. The proposed attenuator design consists of six attenuation
modules with weighted attenuation of 0.5, 1, 2, 4, 8 and 16 dB. Bridge-T configuration is used for
lower attenuation bits i.e., 0.5, 1, 2 and 4 dB, while π-topology is used for higher attenuation bits, i.e.,
8 and 16 dB. Section 2 analyzes the proposed circuit design and explains that how the limitations
in the conventional design are removed, using the proposed phase correction network. Results and
comparison of the proposed attenuator, with various other, previously published attenuators are
discussed in Sections 3 and 4, respectively. Finally, this work is concluded in Section 5.

2. Design of the Attenuator

2.1. NMOS Switch

The conventional design of the switched π-type attenuators consists of switches and resistors,
connected in series and parallel. The nMOS transistor, as one of the key components of a digital step
attenuator, can be typically used as a switch. It contributes series on resistance when it is turned on and
series off-capacitance when it is off, while passing the incoming signal from input to output. When the
switch is ON, as shown by the equivalent circuit model in Figure 1a, it works like a resistor, and its R
on can be estimated using Equation (1) [15,16]. The off-capacitance of the switch is also demonstrated
using its equivalent circuit model in Figure 1b.

Ron =
1

µnCox
W
L (VGS − VTH)

(1)
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Note that on-resistance changes with varying the size of a transistor. For example, when
a transistor with a large gate-width is used, it contributes less resistance and the R_on works as
a short path, if a sufficiently large gate width transistor is used for the signal passing from input to the
output. However, in a switched-off state, the switch behaves like a capacitive network and provides
a leakage path to the signal. The parasitic-like gate-Source/Drain (CGS, CGD) makes a forward path
to the signal and results in a phase lead. In addition, the junction capacitances, as shown in Figure 1,
provide the leakage path to the body. These parasitics cause phase differences due to the phase-lead
characteristics of the capacitor. In addition, the undesirable junction capacitances may also be the
part of input/output matching networks that affect overall system matching. Consequently, a poor
matching results in a large insertion loss. These leakage paths waste the signal power when the signal
is transmitted from input to output. This event, in turn, increases the insertion loss of the attenuator.
To overcome these losses, a large resistor to the gate of the nMOS switch is connected.

Due to the combination of series and shunt resistance, each attenuator’s amplitude will be
switched between the minimum and maximum attenuation states. The desired attenuation can be
achieved by choosing an appropriate value of a resistor in each attenuator, to realize the desired
attenuation amplitude of each respective attenuator. The value of each resistor can be calculated using
two-port network analysis [17].

2.2. Conventional Attenuator Design

Figure 2a depicts the traditional π-attenuator, and parts (b) and (c) of the figure represent the
reference and attenuation states comprising equivalent series and shunt resistances. As the width
of M1 in Figure 2a scales up, the ON-resistance decreases as suggested by Equation (1). Likewise,
transistor sizing additionally affects the performance of the attenuator. Consider the simulation
results shown in Figure 3 for an 8-dB attenuator of the conventional structure: As the gate width of
M1 increases, the insertion phase increases, while insertion loss decreases, making it impossible to
optimize both simultaneously.
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It is important to satisfy Equation (2) in order to minimize the phase difference between
the attenuator’s two states, where ∅R is the transmission phase at reference state and ∅A is the
transmission phase at attenuation state [17].

∆∅ = ∅A −∅R = 0, (2)

To have zero phase difference, the switch-off capacitances C1 and C2 of series and shunt transistors
respectively shown in Figure 2 must ideally be zero. However, it is challenging in that these capacitance
contribute zero value at high frequencies since the capacitive part is very significant at K-band.
This event is why the observed phase difference is large, as depicted in Figure 4.
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2.3. Proposed an Attenuator Design

We believe a low pass filter, with phase lag characteristics can be used to minimize the transmission
phase difference [4,17,18], which essentially depends on series capacitances Ca and Cb of the proposed
phase correction network within the π-type attenuator, shown in Figure 5.
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Figure 5. The proposed structure of π-type attenuator.

Figure 6a presents behavior of the phase difference in response to variations in the
two capacitances, between 0 and 130 fF. By carefully selecting these capacitances with appropriate
transistor sizing, we can obtain a minimal insertion phase at the desired frequency. This achievement
can also be verified for an 8-dB attenuator using simulations, shown in Figure 6b, where the phase
difference between reference and attenuation approaches almost zero.
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To attain confidence in this phase correction structure, we augmented it with the conventionally
used attenuator. Although the transmission phase difference was indeed optimized, the attenuation
level was reduced as well. The desired attenuation level was then achieved by connecting Rs in series
with the proposed network, as shown in Figure 7 [17]. Note that parts (a) and (b) of the figure show
the reference and attenuation states, respectively.
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Figure 7. Proposed design (a) Reference State; (b) Attenuation State.

The proposed model of a 6-bit digital step attenuator is an extended version of our previously
designed 4-bit digital step attenuator, simulated in the range of 31–33 GHz [18]. In contrast, the 6-bit
attenuator is designed for systems that require higher attenuation, i.e., 31.5 dB with a minimum phase
error, and is simulated in the range of 20–24 GHz, consisting of 64 attenuation states and cascaded
in the sequence of 8, 2, 1, 0.5, 4 and 16 dB, as shown in Figure 8. Note that for larger attenuations,
we have adopted Pi configuration, whereas Bridged-T configuration is chosen for smaller ones, as
depicted in Figure 9. Conversely, the 4-bit attenuator merely exploits the bridge-T type attenuator [18].
Furthermore, the 6-bit attenuator which is an extension of our previous work is to implement a higher
bit mm-Wave digital step attenuator on silicon-based technology.

The component values of each attenuator module are summarized in Table 1.
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Table 1. Component values of 6-bit attenuators.

Atten. (dB) Topology R1 = R2 (Ω) RP (Ω) W1 (µm) W2 (µm) Ca = Cb (F)

0.5 Bridge-T 3 211 10 20 17
1 Bridge-T 6 134 10 20 17
2 Bridge-T 10 236 65 20 17
4 Bridge-T 34 78 60 15 70
8 π-Type 60 124 25 15 37
16 π-Type 47 29 15 20 29

To acquire good impedance matching, an LC matching network is used between every
two attenuators. As mentioned earlier, for the desired attenuation level and returns losses, careful
transistor sizing, and selection of appropriate components values are essential so that every bit should
attain the corresponding attenuation value—once the latter changes from the reference to the maximum
states. Moreover, proper matching of the input-output reflection coefficient is essential for an acceptable
accuracy of attenuation results.

3. Measured Results

Figure 10 depicts a micro photograph of the proposed 6-bit digital step attenuator, including
matching network between every two blocks. The prototypes input and output ports are indicated
as RF_IN and RF_OUT respectively. The controlling terminal of each attenuator bit is denoted as
VC1-6. The attenuator was fabricated using 0.13 µm SiGe BiCMOS process, and the total chip size
including pad was 1.92 × 0.4 mm2. The simulation of the circuit was carried out using a tool, Cadence
Virtuoso, while Peak View EM tool (Lorentz Solution, Santa Clara, CA, USA) was used for the EM
simulations of the interconnects and major RF lines. The testing of a chip was executed, using Cascade
Microtech’s GSG probe (Beaverton, OR, USA) and Agilent’s network analyzer (Santa Rosa, CA, USA).
A DC voltage of 1.2 V was used for the gate control.

Figure 11 depicts the insertion loss against the applied frequency of the proposed 6-bit digital step
attenuator, which was 20.9–21.95 dB in the range of 20–24 GHz. The measured return losses for both
input and output of all the attenuation states were terminated with 50 Ω load impedance, as shown in
Figure 12. The input return losses were lower than −9 dB, while the output return losses were less
than −7 dB for the 20–24 GHz range.
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Figure 13a,b demonstrates the normalized attenuation and phase plots, relative to their respective
reference states, attaining a maximum attenuation of 31.5 ± 0.5 dB in the targeted frequency range of
20–24 GHz. The measured RMS amplitude and phase errors were then plotted against the simulation
results in Figure 14 for comparison purposes. The measured root mean square (RMS) amplitude error
deviation was less than 0.43 dB over 20–24 GHz, which is in close agreement with the simulated
results. However, the measured RMS phase error was a little more off from the simulation results and
shows about a 1–5-degree difference between simulation and measured results. This may be due to
the following possible reasons.

1. Process variations can cause a phase difference between the measured and simulated results
because each process has its own resistance and capacitance variations up to the order of ±10%.
Therefore, a cumulative effect of the process variation results in the form of overall capacitance
of the system, which leads to a large phase error. The capacitance effect on the phase is also
illustrated in Figure 6a,b.

2. As mentioned in Section 2.3, the optimum component values of the capacitive phase correction
network are very important to get the minimum phase error. Therefore, a minor contribution of
parasitics (due to the testing hardware, external environment, etc.) can cause significant deviation
from the targeted results and consequently, it appears in the form of large phase error.

However, in our targeted frequency range—i.e., from 20–24 GHz, the measured RMS phase
error—and by comparing with other state-of-the-art reported articles listed in Table 2, the proposed
technique achieved the least phase errors. The measurement results show that the proposed designed
attenuator can be efficiently used for K-band applications, having the frequency range of 20–24 GHz
for a controlled amplitude and phase.
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Table 2. Proposed digital step attenuator performance summary.

References [6] [8] [9] [12] [17] [18] [19] This Work

Frequency
(GHz) 8–15 0.1–20 Dc-18 Dc-20 3–22 31–33 22–29 20–24 GHz

Attenuation
Range (dB)

23.5 (6-Bit)
(LSB = 0.5

dB)

23 (5-Bit)
(LSB = 0.5

dB)

27.9 (5-Bit)
(LSB = 0.9 dB

23.5 (5-Bit)
(LSB = 0.5 dB

31 (5-Bit)
(LSB = 1 dB)

16 (4-Bit)
(LSB = 0.5

dB)

16 (4-Bit)
(LSB = 1 dB)

31.5 (6-Bit)
(LSB = 0.5 dB

Insertion Loss
(dB) <4.5 3–5 3–7 <5 5.53–13.7 <19 5.4–7.9 20.9–21.95

Return Loss (dB) >8 >15 >17 >13 >11 >12.7 N/A >9

RMS
Attenuation
Error (dB)

<0.45 <1 <0.5 <0.5 <0.53 <0.8 <0.51 <0.43

RMS Phase
Error (Degree◦) N/A 0.1–20 0–18 N/A 6.3 2.8–5.8 1–4.7 1.6–4.2

Input P1dB
(dBm) N/A 26 24 24 18.4 N/A 14 14

Structure Switched
π/T N/A Switched T Switched T Switched

π/T Switched T Switched
π/T

Switched
π/T Bridge

Technology GaAs GaAs GaAs GaAs 0.18 µm
CMOS

0.13 µm SiGe
BiCMOS

0.18 µm
CMOS

0.13 µm SiGe
BiCMOS

Size (mm2) 3 × 2 2.34 × 1.5 2.4 × 1.6 2.6 × 1.6 1.28 × 0.5 1.92 × 0.4 1.8 × 0.52 1.92 × 0.4

4. Comparison with Other Technology Attenuators

Table 2 compares the performance of attenuators reported in the most recently published articles
[6,8,9,12,17–19]. Compared with the GaAs attenuators [6,8,9,12], the proposed attenuator has the
highest attenuation of 31.5 dB and the best resolution of 0.5 dB. Additionally, the proposed model has
the lowest phase variation along with the smallest chip size, at the frequency range of 20–24 GHz.
In addition, if we compare our work with Sarfraz et al. [18], more bits were accommodated in the same
die area with improved RMS amplitude and phase error. The insertion losses were higher and P1dB
values were lower than those of the GaAs attenuators, due to the relatively poor performance of the
CMOS transistor. To the best of our knowledge, we believe the proposed design is the first of its kind
that uses 0.13 µm SiGe BiCMOS attenuator for K-band applications.

5. Conclusions

In this brief, we have designed and measured the 6-bit digital step attenuator for K-band
application. The attenuator is implemented with a second-order phase correction network, to mitigate
the insertion phase that previously occurred in the conventional design. The attenuator with proposed
method shows less than 0.43 dB/1.6–4.2◦ RMS amplitude/phase error over 20–24 GHz. The 6-bit digital
step attenuator with a phase correction network was fabricated in 0.13 µm SiGe BiCMOS technology.
The attenuator has the highest attenuation range of 31.5 dB over 20–24 GHz with the highest resolution
of 0.5 dB. The return losses are lower than −9 dB and −7 dB at 20–24 GHz. The insertion loss is
20.9–21.95 dB for the said frequency range. Chip size is 1.92 × 0.4 mm2. The results show that the
attenuator has good performance when compared to the listed GaAs attenuators in Table 2 for 20–24
GHz applications with higher attenuation range, phase accuracy, and compact chip area.
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