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Abstract: An infrared sensor is a commonly used imaging device. Unmanned aerial vehicles, the most
promising moving platform, each play a vital role in their own field, respectively. However, the two
devices are seldom combined in automatic ground vehicle detection tasks. Therefore, how to make
full use of them—especially in ground vehicle detection based on aerial imagery–has aroused wide
academic concern. However, due to the aerial imagery’s low-resolution and the vehicle detection’s
complexity, how to extract remarkable features and handle pose variations, view changes as well
as surrounding radiation remains a challenge. In fact, these typical abstract features extracted
by convolutional neural networks are more recognizable than the engineering features, and those
complex conditions involved can be learned and memorized before. In this paper, a novel approach
towards ground vehicle detection in aerial infrared images based on a convolutional neural network
is proposed. The UAV and the infrared sensor used in this application are firstly introduced. Then,
a novel aerial moving platform is built and an aerial infrared vehicle dataset is unprecedentedly
constructed. We publicly release this dataset (NPU_CS_UAV_IR_DATA), which can be used for
the following research in this field. Next, an end-to-end convolutional neural network is built.
With large amounts of recognized features being iteratively learned, a real-time ground vehicle model
is constructed. It has the unique ability to detect both the stationary vehicles and moving vehicles in
real urban environments. We evaluate the proposed algorithm on some low–resolution aerial infrared
images. Experiments on the NPU_CS_UAV_IR_DATA dataset demonstrate that the proposed method
is effective and efficient to recognize the ground vehicles. Moreover it can accomplish the task in
real-time while achieving superior performances in leak and false alarm ratio.

Keywords: aerial infrared imagery; real-time ground vehicle detection ; convolutional neural network;
unmanned aerial vehicle

1. Introduction

Vehicle detection is an essential and pivotal role in several applications like intelligent video
surveillance [1–4], car crash analysis [5], autonomous vehicle driving [6]. Most traditional approaches
adopt the way that the camera is installed on a low-altitude pole or mounted on the vehicle itself.
For instance, Sun and Zehang [7] present a method which jointly uses Gabor filters and Support Vector
Machines for on-road vehicle detection. The Gabor filters are for feature extraction and these extracted
features are used to train a classifier for detection. The authors in [8] propose a method to detect
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vehicles from stationary images using colors and edges. Zhou, Jie and Gao [9] propose a moving
vehicle detection method based on example-learning. With regard to these approaches, the coverage
of camera is limited despite rotating in multiple directions, they only detect vehicles on a small scale.

Given the installed camera’s limited coverage, researchers turn to other moving platforms.
Satellites [10,11], aircrafts, helicopters and unmanned aerial vehicles have been used to solve the
bottleneck. The cost of images collected by the satellites, aircrafts and helicopters is remarkably
high, and this equipment isn’t able to make a quick response according to the time and weather.
With the rapid development of the unmanned aerial vehicles industry, the price of small drones
has dropped in recent years. The UAVs(unmanned aerial vehicles) have been the research focus.
It seems easily accessible for the general public to obtain it, so all kinds of cameras including optical
and infrared, have started to be installed on it. In this way, the unmanned aerial vehicle can be
used as a height–adjustable moving camera platform on a large scale. Many researchers have made
great efforts in this field. For example, Luo and Liu [12] propose an efficient static vehicle detection
framework on aerial range data provided by the unmanned aerial vehicle, which is composed of three
modules–moving vehicle detection, road area detection and post processing. The authors in [13] put
forward a vehicle detection method from UAVs, which is integrated with Scalar Invariant Feature
Transform and Implicit Shape Model. Another work [14], a hybrid vehicle detection method that
integrates the Viola–Jones (V–J) and linear SVM classifier with HOG(Histogram of Oriented Gradient)
features, is proposed for vehicle detection for aerial vehicle images obtained in low-altitude. It is not
able to choose a robust feature to aim at the small size vehicles. Besides, some researchers in [15–17]
have adopted the other sensors (e.g., depth sensors, RGB-D imagery) into the object detection area.

Another vehicle detection methods are accomplished by background modeling or foreground
segmentation. The authors in [18] put forward with a method of moving object detection on
non–stationary cameras and bring it to vehicle detection on mobile device. They model the background
through dual-mode single Gaussian Model with life–cycle model and compensate the motion of the
camera via mixing neighboring models. The authors in [19,20] propose a method of detecting and
locating moving object under realistic condition based on the motion history images representation,
which incorporates the timed–MHI for motion trajectory representation. Afterwards, a spatio–temporal
segmentation procedure is employed to label motion regions by estimating density gradient. However
these methods might cause a great number false alarms and fail to detect the stationary vehicles.

All these adaptive detection methods above are same in essentials while differing in minor
points. They employ the similar strategy: manual designed features (e.g., SIFT, SURF, HOG, Edge,
Color or their combinations) [21–23], background modeling or foreground segmentation, common
classifiers (e.g., SVM, Adaboost) and sliding window search. These manual features might not hold the
diversity of vehicles’ shapes, illumination variations and background changes. The sliding window
is an exhaustive traversal, which is time–consuming, not purposeful. This might cause too many
redundant bounding boxes and has a bad influence on the following extraction and classification’s
speed and efficiency.

However, deep learning [24–29] establishes convolutional neural network that could automatically
extract abundant representative features from the vast training samples. It has an outstanding
performance on diverse data. Lars et al. [25] propose a network for vehicle detection in aerial
images, which has overcome the shortcoming of original approach in case of handling small
instances. Deng et al. [26] propose a fast and accurate vehicle detection framework, they develop an
accurate–vehicle– proposal–network based on hyper feature map and put forward with a coupled
R-CNN(convolutional neural network) method. A novel double focal loss convolutional neural
network is proposed in [27]. In this paper, the skip connection is used in the CNN structure to enhance
the feature learning and the focal loss function is used to substitute for conventional cross entropy
loss function in both the region proposed network and the final classifier. They [27,30,31] all adopt
the same framework, Region Proposal plus Convolutional Neural Network. By virtue of the CNN’s
strong feature extraction capacity, it achieves a higher detection ratio. Inspired by these work above,
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the authors in [29,32] introduce the elementary framework on aerial vehicle detection and recognition.
As described in [29], a deep convolutional neural network is adopted to mine highly descriptive
features from candidate bounding boxes, then a linear support vector machine is employed to classify
the region into “car” or “no–car” labels. The authors in [32] propose a hyper region proposal network
to extract potential vehicles with a combination of hierarchical feature maps, then a cascade of boosted
classifiers are employed to verify the candidate regions, false alarm ratio is further reduced.

All these work above have achieved tremendous advances in vehicle detection [33,34]. For object
detection, images matching plays a vital role in searching part. The authors in [33] propose a novel
visible-infrared image matching algorithm, and they construct a co–occuring feature by cross-domain
image database and feature extraction. Jing et al. [34] extend the visible–infrared matching to
photo-to-sketch matching by constructing visual vocabulary translator. The authors in [15] extract
object silhouettes from the noisy background by a sequence of depth maps captured by a RGB-D
sensor and track it using temporal motion information from each frame. The authors in [17] present a
novel framework of 3D object detection, tracking and recognition from depth video sequences using
spatiotemporal features and modified HMM. They use spatial depth shape features and temporal
joints features to improve object classification performance. However, those approaches are not
suitable for aerial infrared vehicle detection. The vehicle detections based on deep neural network
and classification can’t reach the real-time demands. The vehicle detections based on these manual
designed features’ matching have poor performances on the detection ratio measurement, for the
aerial infrared images are low resolution and fuzzy and the manually extracted features are rare.

Considering the trade-off between the real-time demand and quantified index–Precision, Recall
and F1-score, we adopt the convolutional neural network (the number of layers is not deep) to extract
abundant features in the aerial infrared images, treat the vehicle detection as a typical regressive
problem to accelerate the bounding boxes generations. Some detection results are illustrated in
Figure 1. The majority of vehicles are detected, and these bounding boxes approximately cover the
vehicles. The proposed method unexpectedly runs at a sampling frequency of 10 fps. The real-time
vehicle detection is demanding. In the detection system, we might not demand an extremely accurate
vehicle position, but an approximate position obtained in time is more necessary. Once detection
speed falls behind the sample frequency, the information provided is lagged. This might mislead
surveillance system.

The main contributions of this paper can be summarized as follows:

• We propose a method of detecting ground vehicles in aerial imagery based on convolutional
neural network. Firstly, we combine the UAV and infrared sensor to the real-time system. There
exist some great challenges like scale, view changes and scene’s complexity in ground vehicle
detection. In addition, the aerial imagery is always low-resolution, fuzzy and low-contrast, which
adds difficulties to this problem. However, the proposed method adopts a convolutional neural
network instead of traditional feature extraction, and uses the more recognized abstract features to
search the vehicle, which have the unique ability to detect both the stationary and moving vehicles.
It can work in real urban environments at 10 fps, which has a better real-time performance.
Compared to the mainstream background model methods, it gets double performances in the
Precision and Recall index.

• We construct a real-time ground vehicle detection system in aerial imagery, which includes
the DJI M-100 UAV (Shenzhen, China), the FLIR TAU2 infrared camera (Beijing, China.), the
remote controls and iPad (Apple, California, US). The system is built to collect large amounts of
training samples and test images. These images are captured on different scenes includes road and
multi-scenes. Additionally, this dataset is more complex and diversified in vehicle number, shape
and surroundings. The aerial infrared vehicle dataset (The dataset (NPU_CS_UAV_IR_DATA) is
online at [35],) which is convenient for the future research in this field.
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Figure 1. The detection method’s performances on four tests, from top to bottom: VIVID_pktest1 [36],
NPU_DJM100_1, NPU_DJM100_2, Scenes Change [35].

2. Aerial Infrared Ground Vehicle Detection

The proposed method is illustrated in Figure 2. It can be mainly divided into three steps. First,
we manually segment vehicles by the help of a labelimg toolbox [37]. The labeled results are shown in
Figure 3. This labeling step is pivotal to training [38]. The second step is devoted to sample region
feature extraction in a convolutional neural network. We use data augmentations like rotation, crops,
exposure shifts and more to expand samples. For training, we adopt a pre-trained classification
network on ImageNet [39], and then fine-tune this. The pre-trained model on the ImageNet has many
optimization parameters. On the basis of this, the loss function can be convergent rapidly in the
training process. We add a region proposal layer to predict vehicles’ coordinates (x, y, width, height)
and corresponding confidence. These outputs contain many false alarms and redundant bounding
boxes. We remove false alarms by confidence threshold. Finally, non-maximum suppression is adopted
to eliminate redundant bounding boxes.
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Figure 2. Flowchart of the proposed vehicle detection method in infrared images. Before training,
we manually label vehicles in images via labelimg tool. In the label, we rectangle the vehicle by locating
the top left corner and down right corner, and then keep these location and label information as a
xml file. Afterwards, it is necessary to expand the sample by the operations—rotation, crop and shift.
We load a pre-trained classification network for training. The Pre-Trained Network: classification
network pre-trained on ImageNet [39].

2.1. Label Train Samples

Before labeling, it is necessary to construct an aerial infrared system to capture images for training
samples. The aerial infrared system is mainly composed of the DJI Matrice 100 and the FLIR TAU2
camera. The DJI Matrice 100’s major components are made of carbon fiber, which makes it light and
solid, in order to guarantee it flies smoothly. The infrared sensor possesses the ability of temperature
measurement and various color models’ conversion, which meets the rigorous demands in several
environments. In the capture, an intersection filled with a large volume of traffic is chosen as a flight
place. Aerial images are captured at five different times alone. Images chosen from the first four times
are train samples. Furthermore, aerial infrared vehicle samples from the public data VIVID_pktest
are added.

Before training, it is necessary to label large amounts of training samples. These green rectangular
regions rectangled in Figure 3 are some labeled samples. Partial vehicles appear in the image due to
the limited view of infrared sensors, especially when it turns a corner, passes through the road or starts
to enter into view, so we may catch the front or rear of some vehicles. These pieces of information
are helpful because the vehicles often pass through an intersection or make a turn. This information
mentioned above can ensure sample integrity. The information captured is crucial for vehicle detection.
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In the label process, we obtain some vehicle patches in the infrared images. This guarantees that
more training samples are captured and more situations are collected as much as possible. Although
this operation is time-consuming and implemented offline, it insures vehicle samples’ integrity [38].
This can avoid rough sample segmentation. We could observe some part vehicles in the left in 1–3
(row-col) in Figure 3. This is because the vehicle starts to come into view. There are some moving
vehicles close to each other in (3–4) and (2–3). Once roughly segmented, the neighborhoods could be
mistaken for just one, but there are two or more vehicles in practice.

All the vehicles are labeled in the training sample, then each image and vehicle position are made
into a xml format as the voc [40].

Figure 3. The labeled vehicle samples captured by the unmanned aerial vehicle DJI MATRICE-100.
The manual label process is accomplished by the labelimg toolbox, which is a widely used tool in the
sample label. Firstly, the label "vehicle" is written in this tool before label process. Then, we put green
rectangles around the vehicles in images by searching the two locations: the left-top corner and the
right-bottom corner. Finally, we keep this position and label information in a xml format like the voc.

2.2. Convolutional Neural Network

With respect to vehicle detection in aerial infrared images, we apply a convolutional neural
network to the full image. It is based on the regressive idea to accomplish the object (vehicles)
detection, rather than a typical classification problem. The network designed extracts features and
trains on the full images, not the local positive and negative samples. The neural network’s architecture
is shown in Figure 4. Firstly, we resize the input image into 416 × 416, and utilize the convolutional
layer and pooling layer by turning to an extract feature. Inspired by the fact that the Faster R-CNN [31]
predicts offset and confidence for bounding boxes using the region proposal, we adopt a region
proposal layer to predict bounding boxes. A lot of bounding boxes are obtained this way. We remove
some false bounding boxes with low confidence by a threshold filter, and then eliminate redundant
boxes using the non maximum suppression.
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Figure 4. The architecture: The detection network is composed of nine convolutional layers, six pooling
layers and a region proposal layer. Input image : 416 × 416 × 3. Output feature map: 13 × 13 × 30.
The convolutional layers: 3 × 3 filters; The pooling layers: max pooling (2 × 2 with 2 stride). After
each pool, filter channels double. We add a region proposal layer following the feature map, which
is designed to generate bounding boxes, and then carry out threshold and NMS (Non Maximum
Suppression) disposal.

Feature Map Generation

The detection framework can be mainly divided into two parts: feature map generation
and candidate bounding boxes generation. The details of feature map are illustrated in Table 1.
The process is composed of 15 layers: nine convolutional layers and six max pooling layers. Table 1
illustrates the filters channel, size, input and output of each layer. The original image is resized into
416 × 416 as the input. The convolutional layers downsample it by a factor 32, and the output size is
13 × 13. After this, there exists a single center cell in the feature map. The location prediction is based
on the center location mechanism.

We carry out 16 filters (3 × 3) convolution operation on the input (416 × 416 × 3), followed by
a 2 × 2 with two strides. Subsequently, the number of filers doubles, but the number of strides for
pooling layer remains unchanged. Executing the above operations until the number of filters increases
to 512, then the channel of stride on pooling layer is set as 1. This disposal wouldn’t change the
channel of the input (13 × 13 × 512). Based on this, we add two 3 × 3 convolutional layers with 1024
filters, following a 1 × 1 convolutional layer with 30 filters. Finally, the original image is turned into
13 × 13 × 30.
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Table 1. Feature Map Generation includes the input and output of each layer.

Number Layer Filters Size/Stride Input Output
0 convolutional 16 3×3/1 416 × 416 × 3 416 × 416 × 16
1 max pooling 2 × 2/2 416 × 416 × 16 208 × 208 × 16
2 convolutional 32 3 × 3/1 208 × 208 × 16 208 × 208 × 32
3 max pooling 2 × 2/2 208 × 208 × 32 104 × 104 × 32
4 convolutional 64 3 × 3/1 104 × 104 × 32 104 × 104 × 64
5 max pooling 2 × 2/2 104 × 104 × 64 52 × 52 × 64
6 convolutional 128 3 × 3/1 52 × 52 × 64 52 × 52 × 128
7 max pooling 2 × 2/2 52 × 52 × 128 26 × 26 × 128
8 convolutional 256 3 × 3/1 26 × 26 × 128 26 × 26 × 256
9 max pooling 2 × 2/2 26 × 26 × 256 13 × 13 × 256
10 convolutional 512 3 × 3/1 13 × 13 × 256 13 × 13 × 512
11 max pooling 2 × 2/1 13 × 13 × 512 13 × 13 × 512
12 convolutional 1024 3 × 3/1 13 × 13 × 512 13 × 13 × 1024
13 convolutional 1024 3 × 3/1 13 × 13 × 1024 13 × 13 × 1024
14 convolutional 30 1 × 1/1 13 × 13 × 1024 13 × 13 × 30

2.3. Bounding Boxes Generation

After convolutional and pooling operations, the final output is a 13 × 13 × 30 feature map.
We add a region proposal layer following the feature map to predict the vehicle’s location. Inspired by
the RPN (region proposal network) of Faster-RCNN [31], we adopt a region proposal layer to service
for vehicle border regression. The core purpose of the region proposal layer is to directly generate
region proposals by the convolutional neural network. To generate region proposals, we slide a small
network over the feature map output by the last shared convolutional layer. The small network takes a
3 × 3 spatial window as input on the feature map. The sliding window is mapped to a 30-dimensional
feature vector. The feature is fed into a box-regression layer this way.

At each sliding-window, we simultaneously obtain a great deal of region proposals. Supposing
the number of the proposals for each location is R, the output of region proposal layer is 4R coordinates,
which are the R boxes’ parametric expressions. The five classes about the proposals’ percentages of
width and height are (1.08, 1.09), (3.42, 4.41) , (6.63, 11.38) , (9.42, 5.11), (16.62, 10.52).

2.3.1. Vehicle Prediction on Bounding Boxes

The detection network is an end-to-end neural network. The vehicle’s bounding boxes are
accomplished directly by the network, The bounding boxes are achieved in the bounding boxes
generation section. The confidence is computed as Equation (1):

C = Pvehicle ∗ Itruth
pred , (1)

where Pvehicle indicates whether there exists a vehicle in the current prediction box, the Itruth
pred is the

intersection over union between the predicted box and the ground truth. If no vehicle, the Pvehicle is 0,
1, otherwise.

The confidence reflects the confidence level if the box contains a vehicle. A new parameter:
con f idence is added, and each bounding box can be parameterized by x, y, w, h, con f idence.

During the practical evaluating process, these above values are normalized to the range of [0, 1].
The con f idence reflects the probability of predicted boxes belonging to the vehicle. The Pvehicle is
defined as follows:

Pvehicle =

{
1, vehicle,

0, no vehicle.
(2)
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2.3.2. Non Maximum Suppression

In order to eliminate redundant bounding boxes, we use non maximum suppression to find the
best bounding box for each object. It is used to suppress non-maxima elements and search the local
maxima value. The NMS [41,42] is for selecting high score detections and skipping windows covered
by a previously selected detection.

The left-top corner (Xmin,Ymin), right-bottom corner (Xmax,Ymax), and con f idence of detection
boxes are the inputs in the NMS. The (Xmin,Ymin) and (Xmax,Ymax) are calculated by the following
equations:

Xmin = x− w, (3)

Xmax = x + w, (4)

Ymin = y− h, (5)

Ymax = y + h. (6)

The area of each bounding box is calculated by Equation (7):

area = (Xmax − Xmin + 1) ∗ (Ymax −Ymin + 1). (7)

Then, the bounding boxes are sorted by confidence, and the overlap area of box i and j is computed
by Equation (12):

Xcross1 = max(Xmin(i), Xmin(j)), (8)

Ycross1 = max(Ymin(i), Ymin(j)), (9)

Xcross2 = min(Xmax(i), Xmax(j)), (10)

Ycross2 = min(Ymax(i), Ymax(j)), (11)

cover(i,j) =
(Xcross2 − Xcross1 + 1) ∗ (Ycross2 −Ycross1 + 1)

min(area(i), area(j))
. (12)

Once the cover(i,j) is over the suppression threshold, the bounding box with lower confidence
would be discarded and the bounding box with highest confidence would be finally kept.

We unconditionally retain the box with higher confidence in each iteration, then calculate the
overlap percentage between the box with the highest confidence and the other boxes. If the overlap
percentage is bigger than 0.3, the current iteration terminates. The best box is determined until all the
regions have been traversed.

3. Aerial Infrared System and Dataset

How we obtain the aerial infrared images (equipments and flight height) and prepare training
samples and test images will be demonstrated in this section. In the test, we verify the method on
the VIVID_pktest1 [36], which has a pretty outstanding performance. However, these images in
VIVID_pktest1 can not represent the aerial infrared images in the actual flight.

We capture the actual aerial infrared images (five different times) at an intersection. Experiments
are implemented based on the Darknet [43] framework and run on a graphics mobile workstation with
Intel core i7-3770 CPU (Santa Clara, California, US), a Quard K1100M of 2 GB video memory, and 8 GB
of memory. The operating system is Ubuntu 14.04 (Canonical company, London, UK).

3.1. Aerial Infrared System

To evaluate the proposed vehicle detection approach, we have constructed an aerial infrared
system, which is composed of the DJI Matrice 100 and the FLIR TAU2 camera.
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Experiments are conducted by using aerial infrared images with 640 × 512 resolution, which are
captured by a camera mounted on a quad rotor with a flight altitude of about 120 m above the ground.
Figure 5 shows the basic components of the system, its referenced parameters are illustrated in Table 2.
The dataset is online at [35].

Table 2. The equipment and parameters.

Camera and UAV Specification Parameter

aircraft DJI-MATRICE 100
infrared sensor FLIR TAU2

capture solution 640× 512
capture frame rate 10 fps

focal length 19 mm
head rotation 32◦ × 26◦

DJI M-100

FLIR TAU2

Vehicle Detection

Moving Platform

Basic Components

Figure 5. The real-time detection system is mainly composed of the DJI M-100, the FLIR TAU2 camera,
the color model remote control, the flight remote control unit and iPad. The sensor installed on the
UAV can capture the ground vehicles in real time, then transmit this information to the processor,
and finally the processor shows the real-time detector on the screen.

3.2. Dataset

3.2.1. Training Samples

VIVID_pktest Sample: As we all know, the VIVID is a public data set for object tracking, which
is composed of three subparts. The second part(VIVID_pktest2) [44] is a training sample. The image
sequences are continuous in time, and the adjacent frames are similar to each other. If all images are
put into training, the samples are filled with redundancy, so we only choose a set of 151, but which
cover all vehicles appearing in VIVID_pktest2.

The authentical infrared sample: For the actual aerial infrared images, an intersection filled with
large traffic volume is chosen as a flight place. We capture vehicle samples at five different times alone
and choose sample images from the the first four times. The sampling frequency is 10 fps. Finally,
we select 368 images, each of which is different in vehicle number, shape and color, as training samples
considering redundant samples.
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3.2.2. Test Images

As for evaluating the proposed method, we prepare four aerial infrared test image groups.
The NPU_DJM100_1, NPU_DJM100_2 and Scenes Change are all captured over Xi’an, China.
Four scenes with different backgrounds, flying altitudes, recording times and outside temperatures
are used for testing (seen Table 3).

Table 3. Basic information of four test image groups.

Test Size Flying Altitude Scenario Date/Time Temperature
VIVID_pktest1 320 × 240 80 m Multi-scene Unknown Unknown
NPU_DJM100_1 640 × 512 120 m Road 18 May 2017/16:00 pm 29◦ C
NPU_DJM100_1 640 × 512 120 m Road 18 May 2017/16:30 pm 29◦ C
Scenes Change 640 × 512 80 m Road 14 April 2017/10:30 pm 18◦ C

• VIVID_pktest1: The VIVID_pktest1 [36] is the first test image group, which is used for testing
the detection network trained by the sample from the VIVID_pktest2 [44]. The VIVID_pktest1
is captured at an 80 m high altitude, which contains 100 images and 446 vehicles. The size is
320 × 240.

• NPU_DJM100_1: The sample chosen and their adjacent images from the aerial infrared images
captured in the first four times is removed, then the remaining is used as the second test
image group.

• NPU_DJM100_2: The images captured at the fifth time are the third test image group. There are
few connections with images belonging to the previous four times.

• Scenes Change: The images are captured at earlier times and 80 m flight height. There is not a
lot of traffic. This scene is totally different from all of the above. It is used to eliminate scenario
training possibilities.

3.3. Training

In training, we use a batch size of 32, a max batch of 5000, a momentum of 0.9 and a decay of 0.0005.
Through the training, the learning rate is set as 0.01. In each convolutional layer, we implement a batch
normalized disposal except for the final layer before the feature map. With respect to the exquisitely
prepared sample images, we divide them at a ratio of 7:3. Seventy percent were used for training,
the remaining is for validation.

Loss function: In the objective module, we use the Mean Squared Error (MSE) for training.

Loss =
S2

∑
i=0

coordError + iouError + classError, (13)

where S is the dimension’s number of the network’s output, coordError is the error of coordinates
between the predicted and the labeled, iouError is the overlap’s error, and classError is the category of
error (vehicle or non-vehicle). In the experiment, we amend Equation (13) by the following:

(1) The coordinates and the IOU (intersection over union) have different contribution degrees to
the Loss, so we set the λcoord = 5 to amend the coordError.

(2) For the IOU’s error, the gridding includes the vehicle and the gridding having no vehicle
should make various contributions to Loss. We use the λnoobj = 0.5 to amend the iouError.

(3) As for the equal error, these large objects’ impacts should be lower than small ones on vehicle
detection because the percentage of error belonging to large objects is far less than those belonging to
small ones. We square the w, h to improve it. The final Loss is as Equation (14):
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Loss = λcoord

S2

∑
i=0

B

∑
j=0

∏obj
ij [(xi − x̂i)

2 + (yi − ŷi)
2 + (

√
wi −

√
ŵi)

2 + (
√

hi −
√

ĥi)
2]

+
S2

∑
i=0

B

∑
j=0

∏obj
ij [(Ci − Ĉi)

2] + λnoobj

S2

∑
i=0

B

∑
j=0

∏noobj
ij [(Ci − Ĉi)

2]

+
S2

∑
i=0

∏obj
ij ∑
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where the x,y,w,h,C,p are the predicted, and the x̂, ŷ,ŵ,ĥ,Ĉ,p̂ are the labeled. The ∏
obj
ij and the ∏

noobj
ij

reflect that the probability of that object is in, and not in, the j bounding boxes, respectively.

4. Experimental Results and Discussion

The method’s performances on four test image groups are respectively shown in Figures 6–9.
We rectangle the vehicles with red color. Some representative detection results will be demonstrated in
achievement exposition section. The concert efficiency is given in the statistical information section.

4.1. Achievement Exposition

As seen in Figure 6, almost all of the vehicles have been detected by the proposed method.
There exist many shadows of trees in the 2-3 (row-col) of Figure 6. This would cause great disturbances
to vehicle detection tasks. This problem can be solved by storing and learning the similar cases
before. In (2-2) of Figure 6, when the vehicle abruptly turns in the intersection, it might escape from
surveillance. However, the method could catch the tendency and locate it in time. The test images are
of good quality in the VIVID_pktest1 [36] and they haven’t yet involved more complicated conditions
like large illuminations. The test images of VIVID_pktest1 [36] are much simpler than the real aerial
images in both the number of vehicles and the conditions’ complexity. The performances of the
VIVID_pktest1 [36] were not sufficiently convincing, hence the actual aerial infrared images obtained
by the DJI Matrice 100 are used to test the method.

Figure 6. The performances of the method on part of the images of VIVID_pktest1 [36].

As Figure 7 shows, the NPU_DJM100_1 is more challenging in vehicle’s quantity and environmental
complexity. There exist distinct illumination variations in the (1-1) and (2-1) of Figure 7. The traffic flow
is very large in the intersection and the vehicles shuttling back and forth is very common. There are
two detection boxes on the same vehicle in (2-2). There are two rectangles put around the same vehicle
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on the right but little overlap. The suppression threshold can not be set as a very small value, as this
would have a bad influence on eliminating redundant rectangles. There still exist several false alarms
in (2-4) of Figure 7.

Figure 7. The performances of the method on part images of NPU_DJM100_1 [35].

According to the analysis above, the method based on the neural network is able to accomplish
vehicle detection in aerial infrared images, even in some harsh environments. The NPU_DJM100_1 and
all the training samples are captured at the same time. Although we choose the NPU_DJM100_1, which
is far from the the training sample in time, someone may suspect that the method may be achieved
by scenario training. To remove this suspicion, we prepare additional test images (NPU_DJM100_2)
captured in a scene, which are different from the scenes of the fourth times. The partial detection
results are shown in Figure 8.

Figure 8. The performances of the method on part images of NPU_DJM100_2 [35].

At first glance, the scenes of NPU_DJM100_2 are similar to NPU_DJM100_1 when comparing
Figures 7 and 8. However, they are partly different from each other. A vehicle in the center of Figure 8
(1-4) is much brighter than all the vehicles in Figure 7 because of the blazing sunlight. The method
locates the vehicle from being partly in the camera’s view (1-3) to being completely in the camera’s
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view. Figure 7 concentrates on a crossing road, but Figure 8 focuses on the one-way traffic, especially in
(2-1, 2-2, 2-3) of Figure 8. These scenarios of (2-1, 2-2, 2-3) are different from Figure 7, but the proposed
method locates these vehicles appearing in those images.

Scenes Change: To further validate the expansibility of the method, we test it on some infrared
images captured 80 m above the ground. The road of Scenes Change is two-way traffic. The lamp
post can be clearly seen on the ground. The guard bars on the two sides of the road are exposed to
high temperatures for the long term, which are similar to vehicles in brightness. This causes great
disturbances for detection in the aerial infrared images.

As can be seen from Figure 9, the proposed method is capable of detecting the vehicles that run in
the same or opposite directions, locating the vehicle partially when it starts to come into or escape from
the view in changed scenes. This evidence above proves that the method is feasible and dependable
for aerial infrared vehicle detection.

Figure 9. The performances of the method on partial images of Scenes Change [35].

4.2. Assessment Method

To evaluate the capability of the methodology on vehicle detection in aerial infrared images,
we adopt these measurements: Precision, Recall and F1-Score defined as follows:

Precision =
TP

TP + FP
. (15)

The Precision is the percentage of the correctly-detected vehicles’ number over the total
detected vehicles:

Recall =
TP

TP + FN
. (16)
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The Recall is the percentage of the correctly-detected vehicles number over the total true vehicles:

F1− score =
2× Recall × Precision

Recall + Precision
. (17)

The F1-Score is a trade-off between Recall and Precision, where TP is the true positives (i.e., the
number of vehicles correctly detected), FP is the false positives (i.e., the number of vehicles incorrectly
detected), and FN is the false negatives (i.e., the number of other objects are wrongly regarded
as vehicles).

4.3. Statistical Information

Figures 6–9 show some detection results, and then we conduct a statistical analysis about the
method’s performance. The details (quantitative results) are shown in Table 4.

Table 4. The performances on the test images. FP: false positive; TP: true positive; FN: false negative.

Test Images Vehicles TP FP FN Precision Recall F1-Score Time(s)
VIVID_pktest1 100 446 388 58 7 87.00% 98.23% 92.27% 4.50
NPU_DJM100_1 189 642 612 30 22 95.33% 96.53% 95.93% 16.07
NPU_DJM100_2 190 922 903 19 30 97.94% 96.78% 97.36% 17.48
Scenes Change 100 85 79 6 0 92.94% 100% 96.34% 9.20

Total 2095 1982 113 59 94.61% 97.11% 95.84%

On the whole, the majority of the vehicles have been detected by the method. In total, the mean
of Precision is 94.61%. The average of Recall is 97.11%. The F1-Score is basically flat . This measured
information sufficiently demonstrates that the method is available for the ground vehicle detection in
aerial infrared images.

4.4. Discussion

Comparison with State-of-the-Art

Figure 10 and Table 5 display a comparison about the method to a state-of-the-art method in [18].
This is a method for detecting moving objects with non-stationary cameras. It models the background
through a dual-modal single Gaussian model (SGM) with age, which prevents the background model
from being contaminated by the foreground pixels while still allowing the model to adapt to changes
in the background, and compensates the motion of the camera by mixing neighboring models, which
reduces the errors arising from motion compensation, in order to achieve rapid vehicle detection.

Table 5 illustrates that the proposed method achieves absolute advantages in Precision, Recall,
and F1-score measurements. The performances of the Scenes Change group of [18] are equal to
the proposed method, but there were very few vehicles in this group. With the vehicle’s number
increasing, the performance generally degrades, but the performance of the proposed is smooth and
steady, maintaining a high level.

As can be seen from Figure 10, the method of [18] locates the running vehicles incorrectly, which
only puts a rectangle around part of the running vehicle part even when the vehicle is completely in
the image. There exist many false alarms (#77,#78) and residual errors (#97,#98,#89,#90). The proposed
method is superior in the location accuracy and detection rate, which is able to detect almost all the
vehicles. The red rectangles are the proposed method’s detection results, the green rectangles belong
to [18]. It is obvious that the detection results of [18] fluctuate drastically, especially in the # 71, #72,
#75,#76 of Scenes Change.
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Table 5. Comparison with the state-of-the art method, the bold value of each row is the best performance.

Test Images Number Vehicles The Proposed Method Method in [18]
Precision Recall F1-Score Precision Recall F1-Score

VIVID_pktest1 1–100 446 87.00% 98.23% 92.27% 42.82% 77.45% 55.15%
NPU_DJM100_1 1–60 38 100% 100% 100% 52.63% 31.75% 39.61%
NPU_DJM100_2 1–100 501 98.20% 97.62% 97.91% 34.35% 40.78% 37.29%
Scenes Change 70–90 20 100% 100% 100% 100% 100% 100%

Total 1005 91.34% 92.08% 91.71% 37.98% 54.44% 44.74%

#71 #72 #75 #76

#69 #70 #179 #180

#77

#69 #70 #89 #90

#78 #97 #98

#06 #07 #55 #56

Figure 10. Comparison with a state-of-the-art method in [18]. The red rectangle is the proposed
method’s detection results, the green rectangles belong to [18]. From top to bottom: VIVID_pktest1,
NPU_DJM100_1, NPU_DJM100_2, Scene Changes [35].

5. Conclusions

This paper proposes an efficient method for real-time ground vehicle detection in infrared imagery
based on a convolutional neural network. In the proposed approach, we exploit a convolutional neural
network to mine the abundant abstract features among the aerial infrared imagery. These features
are more distinguished in ground vehicle detection. For ground vehicle detection, we firstly build
a real-time ground vehicle detection system to capture real scene aerial images. All of the manually
labeled training samples and test images are publicly posted. Then, we construct the convolutional
and pooling layers and region proposal layer to achieve feature extraction. The convolutional and
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pooling layers are adopted to explore the vehicle’s inherent features, and the rear region proposal layer
is exploited to generate candidate vehicle boxes. Finally, on the basis of a labeled sample’s feature,
the method iteratively learns and memorizes these features to generate a real-time ground vehicle
model. It has the unique ability to detect both the stationary vehicles and moving vehicles in real
urban environments. Experiments on the four different scenes demonstrate that the proposed method
is effective and efficient to recognize the ground vehicles. In addition, it can accomplish the task in real
time while achieving superior performances in leak and false alarm ratio. Furthermore, the current
work shows great potential for ground vehicle detection in aerial imagery.

In the real world, the real-time ground vehicle detection can be applied to intelligent surveillance,
traffic safety, wildlife conservation and so on. In the intelligent surveillance, the system can rapidly
give the vehicle’s location in imagery under day and night, which is helpful for traffic monitoring and
traffic flow statistics. Traffic crashes might occur in our daily lives all the time, but it is difficult to
confirm the responsibility for the accident in complex backgrounds. The system can be used to identify
the principal responsible party for its real-time detection capacity. As for the wildlife conservation,
most of the protected animals are caught and killed during the night. The system can locate the
hunter’s vehicle at night, and this helps some regulatory agencies to take countermeasures in time.
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The following abbreviations are used in this manuscript:
SVM Support Vector Machines
UAV Unmanned Aerial Vehicle
SIFT Scalar Invariant Feature Transform
HOG Histogram of Oriented Gradient
ISM Implicit Shape Model
NMS Non Maximum Suppression
CNN Convolutional Neural Network
MHI Motion History Image
HMM Hidden Markov Model
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