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Abstract: The data converters’ nonlinearity, which is mainly caused by random mismatch, reflects the
performance deviation between the actual realization and an ideal situation. The interpretation of the
numerical relationship between the nonlinearity and matching precision for a hybrid digital-to-analog
converter (DAC) consisting of a k-bit resistor-string and an m-bit current-steering array (R-I DAC) is a
challenging task. In this article, we propose a method to predict the nonlinearity by the segmentation
and matching-precision of an R-I DAC. First, we propose a mathematical model that focuses on
the output and mismatches of an R-I DAC. The model shows that nonlinearity gets worse when
the segmentation ratio (k/m) increases. Second, we derive theoretical expressions for the static
nonlinearity and matching precision. It is shown that the resolution number of resistor (k) has more
influence on nonlinearity than the resolution number of current steering (m). Designers can quickly
determine the segmentation strategy and matching precision from the derived equations. Finally,
we achieve a nonlinearity that is smaller than half the least significant bit (LSB) when the matching
resolution in the bits of the resistors and current sources are k + 4 and m + 2k + 2, respectively. For the
verification of the study proposed, three test groups of prototypes with different matching precisions
are fabricated and measured. The measured static and dynamic performance of the designed DACs
support our proposal expressions.
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1. Introduction

The data converters’ nonlinearity, which is mainly caused by random mismatch, reflects the
performance deviation between an actual realization and an ideal situation. The data converters’
nonlinearity can be categorized into static nonlinearity and dynamic nonlinearity [1–3]. Static
nonlinearity includes the differential nonlinearity (DNL) and integrated nonlinearity (INL). Dynamic
nonlinearity mainly includes the spurious-free dynamic range (SFDR) and the effective number
of bits (ENOB). The static nonlinearity is fundamental, and it sets an upper limit of the dynamic
nonlinearity [2]. So, the static nonlinearity is addressed.

Static nonlinearity is mainly caused by mismatches that may be random, systematic, or a
combination of both. While systematic mismatches can usually be compensated with layout skills and
a choice of circuit architecture and calibration, the random mismatches due to the stochastic nature of
physical geometry and doping cannot be avoided [4–6]. In such a case, random mismatches are the
main cause of static nonlinearity. So, research on the mechanisms of random mismatches’ effects on
static nonlinearity has been a focus [4,6–12].
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The static nonlinearity mechanism of traditional segmented cascade digital-to-analog converters
(DACs) and two-step analog-to-digital converters (ADCs) have been fully understood [13].
A segmented DAC consists of several segments containing corresponding matching units. The static
nonlinearity of a traditional segmented DAC is a linear combination of mismatches of different segments.
Specifically, for traditional segmented cascade DACs consisting of two segmented parts, the part with
the most significant bits (MSBs) mainly determines the accuracy of the overall converter, and the
part with the least significant bits (LSBs) is required for the accuracy of the LSBs as a standalone
converter [13]. For example, for an n-bit (m-bit MSBs and k-bit LSBs) traditional segment cascade
DAC, the MSBs are required to have n-bit matching accuracy, while the LSBs are required to have k-bit
matching accuracy.

A hybrid DAC consisting of a k-bit resistor string and an m-bit current-steering array (R-I DAC)
was first proposed in the IEEE international system-on-chip conference (SOCC) 2015 [14]. The R-I
DAC is a kind of segmented DAC, using a resistor string as the LSBs part for low-power consumption,
and using a current-steering array as the MSBs part for high speed. So, it provides an alternative
for medium-speed, low-power applications. Since it adopts an R-I hybrid segmented architecture,
its voltage output is generated by multiplying the resistance with the current. The voltage-output
linearity is ensured by the matching in resistor units, together with the matching in current source
units. Since the output voltage is obtained by the multiplication of the resistance current, the output
mismatch is generated by the mismatches of resistors and of current sources. The multiplication
itself is a nonlinear operation that makes the accuracy analysis of R-I DAC more difficult than that of
traditional segmented DACs. To get the insight of R-I accuracy, this article aims at analyzing the effect
of the R-I DAC on the mismatch of the resistors and the current source.

As discussed before, the static nonlinearity of traditional segmented cascade DACs is a linear
combination of mismatches of the different segments. In contrast, the static nonlinearity of the R-I DAC
is a nonlinear combination of mismatches of the resistor-array segment and the current-array segment.
As a result, the nonlinearity performance of the R-I DAC is worse than expected if the matching
precision is designed with the conventional segment method [14]. As a practical example, although
the accuracy is designed for 1-LSB DNL/INL based on a conventional segment design experience, the
measured DNL/INL in Reference [14] is 6.38/7.55 LSB. To solve this problem of worse DNL/INL,
this article explores the numerical relationship between nonlinearity and matching precision and
segmentation for the R-I DAC, and gives equations to guide parameter design.

The major contributions of this article are summarized as follows. (1) We propose a mathematical
model to describe the output of the R-I DAC with segmentation and matching precision. To visualize
the nonlinearity mechanism of the R-I DAC, we present an algorithm for Monte Carlo simulation
to illustrate the effect of segmentation and matching precision on nonlinearity, which shows that
nonlinearity gets worse when the segmentation ratio (k/m) increases. (2) We mathematically derived
the expressions of DNL/INL and matching precision. In addition, the mechanism of how the
segmentation and matching precision affect dynamic performance is also explored. (3) With the
derived equations, designers can quickly determine the segmentation strategy and matching precision.
We achieve nonlinearity that is smaller than half the least significant bit (LSB) when the matching
resolution in bits of resistors and current sources are k + 4 and m + 2k + 2, respectively. The proposed
theory is verified with the measurement results of three test groups with different matching precisions.

The remainder of this paper is organized as follows. Section 2 introduces the architecture of the
R-I DAC. Section 3 proposes a mathematical model of the output of the R-I DAC and discusses the
variation regularity of the nonlinearity. Section 4 derives the mathematical expression of nonlinearity
affected by segmentation and matching precision. Section 5 derives the mathematical expression of the
matching precision of a given nonlinearity. Section 6 discusses the dynamic performance. Section 7
designs the prototypes and performs the measurements. Section 8 concludes our work.
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2. The Architecture of the R-I Hybrid DAC

Resistor-string digital-to-analog converters (R-DACs) are mostly adopted in low-power,
low-speed applications while current-steering DACs (I-DACs) are used in high-power, high-speed
applications [2,5,15–18]. To make a trade-off between speed and power, a resistor-string and
current-steering-array hybrid DAC (R-I DAC) was proposed [14].

The R-I DAC hybrid architecture is a form of segment technique. An n-bit R-I hybrid DAC
is implemented using an m-bit current-steering sub-DAC (I-subDAC) as the most significant bits
(MSBs), and a k-bit resistor-string sub-DAC (R-subDAC) as the least significant bits (LSBs). An output
operational amplifier (OP) combines MSBs and LSBs. The OP is used in the summer amplifier, which
is configured to generate the output voltage. The architecture of the k + m bit resistor-string and
current-steering-array hybrid DAC (R-I DAC) with the mismatches between the resistors and currents
shown in Figure 1. The mismatch variation of each unit element of the R-subDAC and I-subDAC is
modeled as normally distributed random variables, ∆R and ∆I respectively, with a relative variance δ2

and ξ2.
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Figure 1. The k + m bits resistor-string and current-steering-array hybrid DAC (R-I DAC) with the
resistor’s and current’s mismatches.

The R-subDAC uses uniform resistors in the series to produce linear node voltages, where
VREF-R is the reference voltage. The linear node voltages are connected to the output node VP by
the multiplexer. The multiplexer consists of the R-subDAC decoder and its switches group. There
are three most common types of resistor string multiplexer architecture: two-dimensional address
architecture, full decode architecture, and tree decode architecture [19]. They are different in decoder
logic complexity, multiplexer resistance, and junction capacitances. The resolution number is a major
consideration to select multiplexer schemes. The resolution number of R-subDAC in Reference [14] is
six, and the two-dimensional address architecture is adopted. The R-subDAC resolution number of the
prototypes in this article is four, and the tree decode architecture is adopted. The current IR through
the resistor string is provided by the matching current source array. The output node VP of R-subDAC
connects to the positive input of the output amplifier.

The I-subDAC adopts a glitchless scheme, which is the unary selection with a thermometer
decoder [2]. Since the I-subDAC forms MSBs, which have greater weight than LSBs, the glitches
generated by the MSBs affect the output more seriously. Since unary selection has less glitch distortion,
as well as better DNL and INL than other architectures such as binary structure or segmentation [2],
unary selection with a thermometer decoder is adopted. The unit of the current source array is

Figure 1. The k + m bits resistor-string and current-steering-array hybrid DAC (R-I DAC) with the
resistor’s and current’s mismatches.

The R-subDAC uses uniform resistors in the series to produce linear node voltages, where
VREF-R is the reference voltage. The linear node voltages are connected to the output node VP by
the multiplexer. The multiplexer consists of the R-subDAC decoder and its switches group. There
are three most common types of resistor string multiplexer architecture: two-dimensional address
architecture, full decode architecture, and tree decode architecture [19]. They are different in decoder
logic complexity, multiplexer resistance, and junction capacitances. The resolution number is a major
consideration to select multiplexer schemes. The resolution number of R-subDAC in Reference [14] is
six, and the two-dimensional address architecture is adopted. The R-subDAC resolution number of the
prototypes in this article is four, and the tree decode architecture is adopted. The current IR through
the resistor string is provided by the matching current source array. The output node VP of R-subDAC
connects to the positive input of the output amplifier.

The I-subDAC adopts a glitchless scheme, which is the unary selection with a thermometer
decoder [2]. Since the I-subDAC forms MSBs, which have greater weight than LSBs, the glitches
generated by the MSBs affect the output more seriously. Since unary selection has less glitch distortion,
as well as better DNL and INL than other architectures such as binary structure or segmentation [2],
unary selection with a thermometer decoder is adopted. The unit of the current source array is
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implemented by a sooch cascode current mirror to increase the equivalent resistance and reduce the
overdrive voltage [2]. In the I-subDAC, dummy paths are used to keep the unity current generators in
the saturation region. As a result, the output signal maintains a high response speed and low noise.

The output amplifier OP adopts a two-stage scheme: a folded cascode input stage and a class-AB
output stage to achieve a large open-loop gain A0 [13]. The larger open-loop gain A0 is crucial for the
precision of the R-I DAC output voltage. This is because the OP is used in a summer configuration,
basing it on the feedback principle. Due to feedback theory, the actual output is (VP + IO × RFB) ×
A0/(1 + A0) [13]. So, the error between the actual and ideal output voltage VOUT is 1/(1 + A0) × VOUT.
The error voltage is required to be less than 1 LSB, so the A0 is required to be greater than 2n, that
is, greater than 60.2 dB for a 10-bit DAC. The OP in this article achieves a gain of 83 dB, which is
enough for a 13-bit resolution. For a 10-bit R-I DAC, the open-loop gain of the OP in this article is large
enough. So, the remaining discussions ignore the error voltage and use the ideal expression for the
output voltage.

Assuming the open-loop gain of OP is large enough, Equation (1) is the output expression of
the k + m bits R-I DAC, where IU, IR, RFB, and RU are the unity current of the current source array,
the current through the resistor string, feedback resistance, and the unit resistance of the resistor string,
respectively. They are designed as IU·RFB = 2k·IR·RU, IU = IR, RFB = 2k·RU, n = m + k. The bx represents
one bit of the digital input code, where a higher x indicates the more significant value of the bit.

VOUT = IU · (2m−1bk+m−1 + 2m−2bk+m−2 + . . . + 2bk+1 + bk) · RFB + IR · RU · (2k−1bk−1 + 2k−2bk−2 + . . . + 2b1 + b0) (1)

A (6 + 6)-bit R-I DAC prototype was implemented in Reference [14]. To find the reasons for the
worse DNL/INL than measured one in Reference [14], we started with numeric simulations for the
nonlinearity of the R-I DAC. The following simulations and analysis contain some variables which are
summarized in the appendix as variable notations.

3. Variation Regularity of the Nonlinearity Affected by Segmentation and Matching Precision of
the R-I DAC

The R-I DAC consists of an R-subDAC and an I-subDAC. To connect them together, two pairs
of matching elements are designed. One pair is IU and IR; and the other is RFB and RU, as shown in
Figure 1. It is vital to find out the variation regularity of the nonlinearity affected by the segment ratio
and matching precision of the R-I DAC.

The variation of each unit of the R-subDAC and I-subDAC are modeled as independent normal
random variables, ∆R and ∆I, with a zero expected value and a relative variance δ2 and ξ2, respectively.
The unit values IU (RU) are represented by the mismatch value ∆Ii (∆Ri) and the expected value IU
(RU), as shown in Equation (2)

IU = IU + ∆Ii = IU · (1 + ξi) RU = RU + ∆Ri = RU · (1 + δi) (2)

The controlling codes for the R-subDAC and I-subDAC are represented by BL and BH for a digital
input with a decimal value of i, respectively, as shown in Equation (3). In Equation (3), B = floor(A)
rounds the elements of A to the nearest integers that are less than or equal to A. M = mod (X, Y) returns
the modulus after the division of X by Y.

BHi = 2m−1bk+m−1 + 2m−2bk+m−2 + . . . + 2bk+1 + bk = floor(i/2k)

BLi = 2k−1bk−1 + 2k−2bk−2 + . . . + 2b1 + b0 = mod(i, 2k)
(3)

By using Equations (2) and (3), Equation (1) can be re-written as Equation (4)

VOUT(i) = IU · RU · (BHi · 2k + BLi) + IU · RU · (2k ·
BHi
∑

j=1
ξ j + BHi ·

2k

∑
f=1

δ f + BLi · ξR +
BLi
∑

j=1
δj + ξR ·

BLi
∑

j=1
δj) (4)
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The physical implications of the mismatching components in Equation (4) are explained as follows.
The ξj is a random relative mismatch of a current source unit in the current-steering array, so the
component represents the accumulated nonlinearity in the I-subDAC. The δf is a random relative
mismatch of a resistor unit in the feedback resistor, so the component represents the accumulated
nonlinearity in the feedback resistor, which consists of 2k RU. The ξR is a random relative mismatch of
the current source unit biasing the R-subDAC, so BL·ξR represents the variation of current that flows
through the resistor string. The δj is a random relative mismatch of a resistor unit in the resistor divider,
so the component represents the accumulated nonlinearity in the R-subDAC. With the expression of
nonlinear output in Equation (4), the differential nonlinearity (DNL) and integrated nonlinearity (INL)
can be expressed mathematically.

The DNL is the deviation of the difference between two adjacent analog output voltages from
the ideal step size. INL describes the deviation between the actual output of DAC and an ideal one.
The end-point fit line is used as the ideal one. The DNL and INL can be expressed as Equations (5) and
(6), respectively [2]:

DNL(i) =
(VOUT(i)−VOUT(i− 1))

IU · RU
− 1 (5)

INL(i) =
VOUT(i)− i

2k+m−1
(VOUT(2k+m − 1)−VOUT(0))

IU · RU
(6)

To evaluate the quantity of DNL and INL caused by the mismatch, a Monte Carlo (MC) simulation
is performed based on Equations (4)–(6). The algorithm for a MC simulation is described in Figure 2
and as follows. First, (2m − 1) and one normally distributed unit current source are generated for the
current-steering array and the current unit biasing the resistor divider, respectively. The normally
distributed unit resistors are generated for the resistor divider and the feedback resistor, respectively.
Second, using Equations (4)–(6) with the normally distributed units, we calculate the DNL and INL.
Third, the first and second steps are repeated 1000 times.
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Figure 2. The algorithm of simulation.

Figure 3 shows the calculated standard deviation (STD) of the simulation results. To study the
relationship between DNL/INL and the resolution number of k and m, in Figure 3a–c, we set the
resistor units and current source units as normally distributed variables with an identical mean of
1 LSB and an identical STD, δ = ξ = 0.02 LSBs. At the same time, Figure 3a–c explores four sets
of different values of k and m, (a1) k = 0, m = 10, (a2) k = 10, m = 0, (b) k = 4, m = 6, and (c) k = 8,
m = 2. The results of (a1) and (a2) are the same, so they are plotted in Figure 3a. To study the impact
of differences in the mismatch between the two device types (current sources and resistors) on the
DNL/INL, Figure 3d explores three sets of different values of δ and ξ when k = 4 and m = 6. Figure 3
shows four variation phenomena of nonlinearity when the segmentation ratio k/m or (δ, ξ) vary.
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(1) For k = 0 or m = 0, as shown in Figure 3a, the maximum DNL and INL are the smallest compared
with the other two sets of k and m. When k or m is zero, the DAC becomes a traditional R-DAC
or I-DAC, not an R-I hybrid DAC, so the nonlinearity complies with the characteristic of the
monotonic n-bit DAC, that is DNL = σ, INL = 0.5·

√
2n · σ [13].

(2) For nonzero k and m, as shown in Figure 3b,c, the maximum DNL happens at the transition
when k bits of LSBs switch from 1 to 0 and add 1 to the MSBs, and happens 2m − 1 times.
This phenomenon is caused by the segmented nature of the R-I DAC because the decoders for
the R-subDAC and I-subDAC both adopt unary weighty control schemes.

(3) For nonzero k and m, as shown in Figure 3b,c, the maximum DNL and INL increase with the
increase of the segmentation ratio k/m. The reason will be discussed in the following section.

(4) For (k, m) = (4, 6) and varying (δ, ξ), as shown in Figure 3d, the mismatch ξ in the current
sources has more of an impact on the DNL/INL than the mismatch δ in the resisters. Specifically,
the DNL/INL increases a little when (δ, ξ) varies from (0.02, 0.02) to (0.04, 0.02). The DNL/INL
almost doubles when (δ, ξ) varies from (0.02, 0.02) to (0.02, 0.04). The reason will be discussed in
the following section.
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(INL) of 1000 Monte Carlo MATLAB simulations. (a–c) show the results when δ = ξ = 0.02 and
segmentation (k/m) varies: (a) k = 0, m = 10 or k = 10, m = 0, (b) k = 4, m = 6, (c) k = 8, m = 2. (d) is the
maximum STD of DNL and INL when k = 4, m = 6, and (δ, ξ) varies.

4. Theoretical Expressions to Depict the Nonlinearity Affected by Segmentation and the
Matching Precision of the R-I DAC

Section 3 studied the nonlinearity mechanism by numeric simulation. In this section,
the nonlinearities—DNL/INL—are theoretically derived.

We obtain Equation (7) by neglecting the product of the small variables ξR ·
BL
∑

j=1
δj in Equation (4)

VOUT(i) ≈ IU · RU

[
i + (2k ·

BHi

∑
j=1

ξ j + BHi ·
2k

∑
f=1

δ f + BLi · ξR +
BLi

∑
j=1

δj)

]
(7)



Electronics 2018, 7, 91 7 of 20

4.1. DNL Analysis

Combining Equations (5) and (7), we can obtain Equation (8). Due to the segmented nature of
the R-I DAC, the worst-case DNL occurs at the transition when k bits of LSBs switch from 1 to 0 and
add 1 to the MSBs; for example, changing 00 . . . 00_11 . . . 11 to 00 . . . 01_00 . . . 00. By simplifying
Equation (8), we can obtain Equation (9):

DNL(i) = 2k · (
BHi

∑
j=1

ξ j−
BHi−1

∑
j=1

ξ j) + (BLi − BLi−1) · ξR + (BHi − BHi−1) ·
2k

∑
f=1

δ f + (
BLi

∑
j=1

δj−
BLi−1

∑
j=1

δj) (8)

DNLMAX(i) = 2k · ξBHi − (2k − 1) · ξR +
2k

∑
f=1

δ f −
2k−1

∑
j=1

δj (9)

The DNL analysis aims to find the expected maximum DNL. Based on the extreme value
theory, for the samples that are independent and identically distributed random variables, the largest
individual from the samples of size S increases with size S [20]. Since samples X1, X2, . . . , XS are
standard normal random variables, the expected value of maximum Xi (i from 1 to S, and S = 2m) is
shown as C in Figure 4. Figure 4 is the result of a simulation as follows. First, we set the value of m and
generate the 2m standard normal random samples. Second, we find their maximum and note it as Xi.
Third, we repeat the previous two steps 10,000 times to get Xi (i from 1 to 10,000) for size 2m. Finally,
we calculate the mean of Xi (i from 1 to 10,000); then, we note this mean as the expected maximum
individual value C for samples of size 2m.
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Figure 4. The expected value C of the maximum individual from samples of size S = 2m, in which the
samples are standard normal random variables.

Since there are 2m samples of ξBHi in DNLMAX for BHi varying from 1 to 2m, the expected
maximum ξBHi increases with 2m. So, the variance of ξBHi increases with m. Factor C describes the
impact of m on the variance of the expected maximum value of ξBHi [18]. Factor C ranges from 1.02 to
3.25 when m varies from 2 to 10, and C = 2.3 for m = 6, as shown in Figure 4.

We get Equation (10) as the variance estimation of DNL in Equation (9):

σ2
DNL = σ2

DNL1 + σ2
DNL2 =

[
22k · C2 · ξ2 + (2k − 1)

2 · ξ2
]
+

[
2k · δ2 + (2k − 1) · δ2

]
(10)

In Equation (10), the σ2
DNL1 is the variance estimation of DNL generated by the mismatches of

the current units; the σ2
DNL2 is the variance of DNL generated by the mismatches of the resistor units.

The variance of DNL in Equation (10) increasing with the k explains the third variation phenomenon
of nonlinearity in Figure 3 by theory. The factor in σ2

DNL1 is greater than 2k times the factor in σ2
DNL2,

which indicates that the mismatch in the current array has a much greater effect on DNL than that in
the resistors.

4.2. INL Analysis

With the approximation 2k − 1 ≈ 2k, 2m − 1 ≈ 2m, 2m+k − 1 ≈ 2m+k, the INL can be expressed as
Equation (11), where INL1, INL2, INL3, and INL4 are the nonlinearities generated by the mismatches
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of the current-steering array, the feedback resistor, the resistor-divider biasing current, and the
resistor-divider string, respectively.

INL(i) = INL1 + INL2 + INL3 + INL4

= (2k ·
BHi
∑

j=1
ξ j − BHi ·2k+BLi

2m ·
2m

∑
j=1

ξ j) + (BHi ·
2k

∑
f=1

δ f − BHi ·2k+BLi
2k ·

2k

∑
f=1

δ f )

+(BLi · ξR − BHi ·2k+BLi
2m · ξR) + (

BLi
∑

j=1
δj − BHi ·2k+BLi

2k+m ·
2k

∑
j=1

δj)

(11)

Since the terms of INL are uncorrelated, the variance of INL is derived as Equation (12):

σ2
INL = σ2

INL1 + σ2
INL2 + σ2

INL3 + σ2
INL4

σ2
INL1 = ξ2 · (22k · BHi − 22k−m · BHi

2 + 2−m · BLi
2)

σ2
INL2 = ξ2 · ((1− 2−m)2 · BLi

2 + 22k−2m · BHi
2 + 2k+1−m · (2−m − 1) · BHi · BLi)

σ2
INL3 = δ2 · 2−k · BLi

2

σ2
INL4 = δ2 · (BLi + (21−2m − 21−m) · BHi · BLi + (2−(1−m) − 1) · 21−m−k · BLi

2 + 2k−2m · BHi
2)

(12)

It is too complicated to derive the mathematical expression of the maximum variance of the total
INL. However, it can be upper bounded by taking the worst case of each component. The maximum
variance of the total INL is less than or equal to the sum of the maximum variance of each INL
components, as shown in Equations (12)–(14). The approximation is valid only when an input that
almost causes the max of all of the INL components exists. The approximation error is less than 0.3 LSB
when k + m = 10 and k is smaller than 8, as shown in Figure 4.

σ2
INL_MAX ≤ σ2

INL_MAX_SUM (13)

σ2
INL_MAX_SUM = σ2

INL1_MAX + σ2
INL2_MAX + σ2

INL3_MAX + σ2
INL4_MAX σ2

INL1_MAX ≈ ξ2 ·
[
22k+m−2 + 2−m · (2k − 1)

2
]

σ2
INL2_MAX ≈ ξ2 ·

[
2k−m · (2m − 1)

]2

σ2
INL3_MAX = δ2 · 2−k · (2k − 1)2 σ2

INL4_MAX ≈ δ2 · 2k−2m · (2m − 1)2

(14)

where the maximum of each component in Equation (12) is derived as Equation (14).
Expressions (10) and (14) indicate that the nonlinearity roughly scales up by 22k + m of ξ2 and 2k of

δ2. To directly understand its quantity level, the coefficients of theoretical variance of the differential
nonlinearity (DNL) and integrated nonlinearity (INL) are calculated by using Equations (10) and (14),
respectively, as shown in Table 1. The coefficient of DNL and INL both reach 100,000 when k increases
to 8. The factor of ξ2 is approximately greater than 2k times of the factor of δ2. It indicates that the
mismatch in the current array has a much greater effect on the nonlinearity than that in the resistors.

Table 1. The quantity comparison of theoretical variance of DNL and INL for different sets of k and m
for a 10-bit R-I DAC.

Variance k = 2, m = 8 k = 4, m = 6 k = 6, m = 4 k = 8, m = 2

σ2
DNL 139ξ2 + 7δ2 1629ξ2 + 31δ2 16735ξ2 + 127δ2 134608ξ2 + 511δ2

σ2
INL 1040ξ2 + 6.2δ2 4348ξ2 + 30δ2 20232ξ2 + 118δ2 118656ξ2 + 398δ2

To verify the accuracy of the theoretical deviation, a comparison between the nonlinearity
from the numeric simulation and the theoretical prediction equation is made, as shown in Figure 5.
The nonlinearity by numeric simulation is obtained from Figure 3. The maximum nonlinearity by
theory is calculated by Equations (10) and (14) with ξ and δ both being 0.02 LSBs. In Figure 5, except
the INL difference when k is 8 and m is 2, other differences between the simulation and theory are less
than 0.5 LSBs. Since the nonlinearity increases as a k exponent of two, a k of less than 6 is recommended
for the matching consideration.
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Figure 5. A comparison between the maximum nonlinearity from the numerical simulation and
theoretical prediction equation. (a) DNL, (b) INL.

Previous analyses of DNL and INL gave the mathematical expressions to evaluate the nonlinearity
with a specified matching resolution. The nonlinearity variance was approximately scaled up by 22k+m

of ξ2 and 2k of δ2. In the actual design, the mismatching resolution is usually calculated from a given
DNL and INL. Section 5 derives the expressions of matching resolution with a given worst nonlinearity.

5. Determination of the Segmentation and Matching Precision of the R-I DAC

The goal of this section is to derive the matching resolution of each mismatched component with a
given worst DNL and INL that is smaller than half an LSB. Assuming that each component contributes
equally to the nonlinearity, that is:

σ2
DNL1 = σ2

DNL2 =
(1/2)2

2
(15)

σ2
INL1_MAX = σ2

INL2_MAX = σ2
INL3_MAX = σ2

INL4_MAX =
(1/2)2

4
(16)

By simplifying Equation (15), we can obtain Equation (17). Similarly, by simplifying Equation (16),
we can obtain Equation (18):

ξ2
DNL =

1

22k+3 · C2 + 23 · (2k − 1)2 δ2
DNL =

1
2k+4 − 8

(17)

ξ2
INL1 = 1

22k+m+2+22k−m+4·(1−2−k)
2 ξ2

INL2 = 1
22k+4·(1−2−m)2

δ2
INL1 = 1

2k+4·(1−2−k)
2 δ2

INL2 = 1
2k+4·(1−2−m)2

(18)

Combining Equations (17) and (18), the mismatching resolution can be expressed as Equations (19)
and (20):

ξ2 = min(ξ2
DNL1, ξ2

INL1) =
1

22k+m+2 + 22k−m+4 · (1− 2−k)
2 , for (m ∈ [2, 10], k ∈ [1, 10]) (19)

δ2 = min(δ2
DNL1, δ2

INL1, δ2
INL2)

=

{ 1
2k+4−8

, for (m ∈ [2, k + 1], k ∈ [1, 10])
1

2k+4·(1−2−m)2 , for (m ∈ [k + 2, 10], k ∈ [1, 10])
(20)

The expressions of matching resolution are obtained by ignoring some insignificant factors, such as

the product of small variables ξR ·
BL
∑

j=1
δj in Equation (7). To verify its prediction accuracy of nonlinearity,



Electronics 2018, 7, 91 10 of 20

the Monte Carlo simulation is performed in a similar way to that in Figure 3. The simulations are
carried out by MATLAB using the normal random distribution for the unit variation of I-subDAC and
R-subDAC. The variation has zero mean and a relative variance of ξ2 and δ2, respectively, as defined
by equations (19) and (20). By repeating the previous Monte Carlo simulation 100,000 times, we obtain
the standard deviation (STD) of the DNL_max and INL for different combinations of k and m. All of
the standard deviations are calculated after 100,000 Monte Carlo runs except k = 8 and m = 8, where the
number of runs is 1000. The STD of nonlinearity varies between 0.18–0.42 LSB, as shown in Figure 6.
For all of the combinations of k and m, the maximum of STD nonlinearity is smaller than 0.5 LSB. This
conforms to our matching resolution analysis.
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Figure 6. The predicted standard deviation (STD) of DNL and INL for different combinations of k and
m for 100,000 Monte Carlo runs, using the matching resolution defined by Equations (19) and (20).
(a) The (k + m = 10) bit resolution of the R-I DAC. (b) k = m and K + M ranging from 4 to 16.

For the convenience of the description, the n(σ2) is defined as the matching resolution in bits,
as a function of variance σ2 of matching precision, n(σ2) = log2(1/σ2). Using Equations (19) and (20),
we can plot Figure 7.
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Figure 7. The matching resolution in bits for the different combinations of k and m for n = k + m = 10 by
assuming that each component contributes equally to the nonlinearity.

When k + m = 10, we obtain n(ξ2) = 2k + m + 2 = n + k + 2 and n(δ2) = k + 4 approximately from
Equations (19) and (20) and Figure 7, by assuming an equal contribution of the resistor and current
source mismatching to nonlinearity. The expressions provide a criterion to design the mismatching
precision of the I-subDAC and R-subDAC. The k is very influential on the matching resolution in bits
for the I-subDAC. Since n(ξ2) is proportional to 2k, n(ξ2) increases greatly when k increases. To avoid
too stringent matching requirements, it is recommended that k is less than 6.
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6. Dynamic Performance Affected by the Segmentation and Matching Precision of R-I DAC

In previous sections, we discussed the relationship between the static nonlinearity DNL/INL and
the segmentation, as well as the matching precision of the R-I DAC. The focus of this section is on how
the segmentation and matching precision of the R-I DAC affects the dynamic nonlinearity.

One of the major factors in the dynamic performance is the static nonlinearities of DNL/INL.
Besides the static nonlinearity, the other factors are glitches, timing mismatch errors, and some
high-frequency parasitic parameters [21]. At a low frequency, the dynamic performance is mainly
determined by the static nonlinearity, which does not scale with frequency. With the frequency
increases, the glitches, timing mismatch errors, and some high-frequency parasitic parameters become
more visible and dominant. So, the dynamic performance gets worse. Therefore, the static nonlinearity
set an upper limit for the dynamic nonlinearity.

To evaluate the dynamic performance affected by segmentation and matching precision, a Monte
Carlo simulation is performed in a similar way to that in Figure 3. Firstly, the matching accuracy of the
resistor units and current-source units is set; then, the R-I DAC’s output is calculated by Equation (4).
This output is used to generate a sine-wave, and its spurious-free dynamic range (SFDR) and the
effective number of bits (ENOB) are calculated. At last, the simulations are repeated 1000 times, and
the SFDR and ENOB are plotted using a “boxplot” [22]. Boxplot: on each box, the central mark is the
median, the edges of the box are the 25th and 75th percentiles, and the highest and lowest whiskers
correspond to approximately ±2.7σ and 99.3 coverage if the data are normally distributed. The results
are shown in Figure 8.
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Figure 8. With the different matching accuracy among the resistor units and among the current-source
units, the boxplot of spurious-free dynamic range (SFDR) (a,b) and the effective number of bits (ENOB)
(c,d) of a 1000 Monte Carlo MATLAB simulations when k and m vary. In (a,c), δ = ξ = 0.02. In (b,d),
δ =
√

2k+4 and ξ =
√

22k+m+2, respectively.

In Figure 8a,c, the matching accuracy of the resistor units (δ) and current-source units (ξ) are
set as constant values, both at 0.02. As a result, their SFDR and ENOB get worse, which is similar
to the DNL/INL in Figure 3, when k increases and m decreases. In Figure 8a,c, the SFDR decreases
from 65 dB to 48 dB, and the ENOB decreases from 9.5 bit to 7 bit, when k increases from 2 to 8 and
m decreases from 8 to 2. The trend of the dynamic and static performance conform to the dynamic
performance being limited by the static nonlinearity.
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In contrast, SFDR and ENOB in Figure 8b,d remain constant, closing to the best theoretical
achievable value with an increasing k and decreasing m. The SFDR is around 73 dB, and the ENOB is
around 9.8 bits. The main reason is that in Figure 8b,d, the matching accuracy of resistor units and
current-source units are set respectively as

√
2k+4 and

√
22k+m+2. They are derived in Section 5, with a

design goal of DNL/INL smaller than half an LSB. From Figure 8b,d, we can reach the conclusion that,
with the proposed theoretical matching accuracy, the designed R-I DAC can not only achieve the static
nonlinearity smaller than half an LSB, it can also assure the upper limit of the dynamic performance
by being close to the best theoretically achievable value.

7. Implementation and Measurement for Verification

In the previous sections, simulations and theoretical derivation were used to analyze the
nonlinearity affected by segmentation and mismatches. In this section, we discuss the design of
the test chips using the proposed methodology.

Three test groups of prototypes of 10-bit (k = 4, m = 6) R-I DACs were implemented using the
180-nm standard complementary metal–oxide–semiconductor (CMOS) technology. These test chips
groups only differed on the matching precision among the resistors and current sources in order to
highlight the relationship between the matching precision and nonlinearity. Each test group had seven
samples, and a total of 21 samples were under test.

To attenuate the gradient-mismatch effects on nonlinearity, the common centroid and Q random
layout skills were used in the resistors matching and current-sources matching, respectively, as shown
in Figure 9 [5,23]. Similar to Reference [5], Q is referred to as one unit in every quadrant (A/B/C/D in
Figure 9b), which altogether composed one current source in the layout. For example, current source 1
implemented by A1, B1, C1, and D1 in parallel. DM is the dummy unit. RSi and RFi are the unary
resistor of the resistor-string (R-subDAC) and feedback resistor (RFB), respectively, where i is from 1
to 16. The “random” is not in the column or row sequence that was optimized to compensate for the
quadratic-like residual errors.

In addition to the common-centroid layout, the sizing is another implementation consideration
for matching precision [6,23]. Sizing the matching transistors (resistors) is a process of determining the
value and the matching precision of the current (resistance). The value of the current (resistance) is
a function of the width-to-length ratio (W/L), and the matching precision of the current (resistance)
is a function of unary device size (W*L). So, the unary device shape, that is, the width and length,
are determined by the value and the matching precision of the current (resistance). For resistors,
the matching precision δ is provided by the proposed Equation (20), and the resistor size W*L
is determined by the function W*L = aref/δ2, where aref is the reference resistor area provided
by the foundry document for a 1% target precision [14]. The resistor length-to-width ratio is
L/W = R/RS, where R is the designed resistance and RS is the sheet resistance. For the current source
transistor, the matching precision ξ is provided by the proposed Equation (19), and the transistor

size W*L is determined by the function W ∗ L = [A2
β +

4A2
VT

(VGS−VT)
2 ]/2ξ2, where VGS and VT are the

gate-source voltage and the threshold voltage of a metal-oxide-semiconductor (MOS) transistor,
respectively, and the mismatch of the technology parameters AVT

2 and Aβ
2 are 22 mV2 * µm2 and

0.04%* µm2 respectively, from the foundry document [6,14]. The transistor width to the length ratio
is W

L = 2I
µnCox(VGS−VT)

2 , where I and µnCox are the designed unary current and the I-V coefficient,

respectively. The required resistor and transistor sizes of the R-I DAC are larger than that of the
conventional segmented DAC architectures, because the requirement of the matching in the R-I DAC
is more stringent.
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Figure 9. The common-centroid layout of (a) matching resistors, unary resistor RSi (RFi) implemented
as two units in red—RSiA (RFiA), and RSiB (RFiB)—in series, where the background color of RSiA
(RSiB) and RFiA (RFiB) are gray and yellow, respectively, and (b) matching the current sources, unary
current sources implemented as four units (A, B, C, and D with background color of yellow, gray,
orange and green, respectively) in parallel. For example, current source 1 consists of A1, B1, C1 and D1
in red. DM is the dummy unit.

The resistors were implemented by the high-sheet-resistance poly resistor, which was
1000 ohm/square. The resistance of the unit resistor is RU = 200 Ω. The matching precision due
to the resistor size follows the guidelines of Reference [23]. The current source was implemented as a
two-transistor cascode type. The matching precision due to the size of current source was determined
with an INL yield model for the unary selection current-steering array [10,24]. The current of the unit
current source was 5 µA. The overdrive voltage VGS-VT was set to 300 mV to compromise the current
matching precision and transistor size [13–15]. The different matching precisions due to the size of
the resistor (res-size) and the current source (cur-size) are listed in Table 2. The OP with an open-loop
gain of 83 dB was adopted in our design. With such a large open-loop gain, the OP does not affect the
precision and nonlinearity according to the analysis in Section 2. The test chips of group 1 and group 2
both used the large cur-size. Their measured nonlinearities are much better than the test group 3, in
which a small cur-size was adopted. The chip bonding photos are shown in Figure 10.

To test the proposed R-I DAC, the input data sequence was generated by a field-programmable
gate array (FPGA) [3,24]. The output voltage was measured by a 6 1

2 -digit performance digital
multimeter (DMM) Keysight-34461A. The output of test group 3, with an input of a full swing
triangle wave, is shown in Figure 11. In Figure 11, the x-axis is time was proportional to the input,
and the y-axis was the measured voltage. The magnified part shows the nonlinearity caused by the
mismatching of the current-source transistors in test group 3.
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Figure 11. (a) The measured output of test group 3 with an input of a full swing triangle wave. (b) The
static nonlinearity DNL/INL of the measured output versus the digital input, a result of Figure 11a.

The output voltage noise spectra density is measured by a spectrum analyzer (Rohde&Schwarz-FSV7),
as shown in Figure 12 [25].
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Table 2. The different sizes of resistors and current-source results in different measured nonlinearities.

Test Chip Group
Size of Matching

(Multiplier × W × L, the
Unit is µm × µm)

Designed Precision
(Absolute Voltage,
Relative Precision

Variance)

Measured Precision
(Absolute Voltage,
Relative Precision

Variance)

Measured Nonlinearity
(DNL and INL in LSB,

Relative Precision)

Test group 1
(large res-size,
large cur-size)

Resistor size (2 × 2 × 29.78) 62.5 µV, 1/28 200 µV, 1/26.3
1.5 and 2.3, 1/29.4 and 1/28.8

Current-source transistor size
(4 × 4.42 × 50) 28 µV, 1/215.1 200 µV, 1/212.3

Test group 2
(small res-size,
large cur-size)

Resistor size (2 × 0.8 × 11.605) 250 µV, 1/26 540 µV, 1/24.9
1.7 and 1.7, 1/29.2 and 1/29.2

Current-source transistor size
(4 × 4.42 × 50) 28 µV, 1/215.1 200 µV, 1/212.3

Test group 3
(large res-size,
small cur-size)

Resistor size (2 × 2 × 29.78) 62.5 µV, 1/28 200 µV, 1/26.3
6.7 and 7.7, 1/27.2 and 1/27.0

Current-source transistor size
(4 × 0.375 × 4.245) 16 mV, 1/26 9 mV, 1/26.8

The DMM measurement precision is 3 µV with a 1.2-V input range. The measured low-frequency
peak-to-peak noise voltage is 200 µV. This measurement of the noise floor determines the minimum
measured absolute voltage, which limits the measured precision in Table 2. Since the measurement
precision is 200 µV, it cannot measure the voltage below 200 µV. Therefore, for the actual measured
voltage possibly less than 200 µV, we use 200 µV (worst-case value) to represent the measured value,
which causes some error, but is acceptable for estimation.

Using the measured relative precision variances in Table 2 and Equations (10) and (14), we can
calculate the STD of nonlinearity. The calculated nonlinearity and the measured nonlinearity are
plotted, as shown in Figure 13. The measured standard deviation of nonlinearity is less than two
times that of the theoretical one, as shown in Figure 13. Since the nonlinearity is modeled as a normal
probability distribution, the probability of one sample being less than two times the standard deviation
is 95% [26]. Therefore, the difference between the measured results and the theoretical one falls within
95% of the normal distribution curve. In other words, our measured results match the theoretical ones
in the statistical sense [26].
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There is a discrepancy between the proposed theoretical STD of DNL/INL and the measured
DNL/INL. The calculated STD of DNL/INL should be worse than the measured DNL/INL because,
for test group 1 in Table 2, the measured precision of the resistors and current source are both worse
than designed. However, the calculated STD of DNL/INL is better than the measured DNL/INL
although their differences are insignificant, shown in Figure 13. The first reason is that if the matching
resolution in bits n(ξ2) and n(δ2) are large enough, the variations of n(ξ2) and n(δ2) have little impact on
the DNL/INL. For example, when n(δ2) is 6.3 and n(ξ2) varies from 12 to 14 and to 16, the DNL/INL
varies from 0.89/1.2 to 0.70/0.80 and to 0.64/0.66. Therefore, the calculated STD of DNL/INL is not
much worse. The second reason is that the measured DNL/INL is subject to the interference of the test
environment, such as the power supply ripple and drifts of the reference voltage or current, especially
when 1 LSB voltage is as small as 1 mV. So, the measured DNL/INL is slightly worse than expected.
Therefore, the discrepancy is reasonable.

The measured dynamic performances are shown in Figure 14. The Rohde and Schwarz-FSV7
signal and spectrum analyzer measures the spectrum of the DAC output. The peak-to-peak voltage of
the DAC sine-wave output is 1 V under a 1.35-V supply voltage. To avoid an overload effect on the
spectrum analyzer, the DAC output is connected with the input of a spectrum analyzer through a series
4.7 kΩ resistor. Figure 14 is measured at a medium clock frequency and with a small input tone to stress
the effect of segmentation and matching precision on the nonlinearity. Since the R-I DAC is designed
for low-power applications, a low-power output operational amplifier (OP) is adopted, which limits
the R-I DAC dynamic performance at high frequency. If the high-frequency and large input tones are
used in the measurement, the poor high-frequency dynamic performance of the output OP overrides
the effect of segmentation and matching precision on the nonlinearity. Therefore, the performance is
measured at a medium clock frequency and with a small input tone to stress the focus of this article.
Figure 14a shows the spectrum of the test group 1 with an input of a 40.88-kHz sine-wave at a clock
frequency of 3.125 MHz. Figure 14b shows the dynamic performance, including the spurious-free
dynamic range (SFDR), the total harmonic distortion (THD), the signal-to-noise ratio (SNR), and the
effective number of bits (ENOB), of test groups 1–3. The SFDR of test groups 1–3 are around 65 dB,
and the THD is around 60 dB. The differences of SFDR among test groups 1–3 are not obvious. The
prime reason is the dynamic limitation of the low-power output of OP, which sets an upper limit of
SFDR. Even though there is a limitation in OP, the THD of test group 3 is 2 dB less than that of test
group 1, following the trend predicted in Section 6. The SNR and ENOB in Figure 14 decrease more
obviously when the mismatch increases, as shown in Figure 13. The ENOB of test group 1 is 8.5 bits,
which is 1.3 bits less than the one theoretically predicted by Figure 8d. It is reasonable because as a
general rule, there is a 1-bit degradation in the measurement compared with the theoretical one [27].

In addition to nonlinearity, the sizing and power constraints also impact the choice of
segmentation. When k increases and m decreases by 1 bit, the total resistor size quadruples, because
both the resistor amount and the unary resistor size doubles. Meanwhile, the total size of the matching
current source array stays the same, because the current source amount halves and the unary current
source transistor size doubles. As a result, the total size of the R-I DAC increases dramatically if k
is large. In addition, the large size increases the parasitics and degrades the speed. So, the sizing
constraint limits the choice of a large k. In contrast, the power of the I-subDAC halves when k
increases and m decreases by 1 bit, but the power reduction of the I-subDAC becomes unnecessary
if the I-subDAC consumes a minority of the total power. The I-subDAC consumes less than a third
of the total power in the implemented 10-bit (k = 4, m = 6) prototypes. So, further increasing k
makes little contribution to the power reduction. In conclusion, the choice of segmentation should be
compromised among the matching precision (for nonlinearity), total size, speed, and power, and a
large k is not recommended.
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Figure 14. (a) The measured spectrum of test group 1, with an input of a 40.88 kHz sine-wave at a clock
frequency of 3.125 MHz. (b) The measured dynamic performance including spurious-free dynamic
range (SFDR), the total harmonic distortion (THD), the signal-to-noise ratio (SNR), and the effective
number of bits (ENOB) of test groups 1–3 under the identical test environment, as in Figure 11a.

Setting the values of the unary current and the unary resistor should compromise between the
matching precision, size, and power. Lowering the unary current reduces the total power, but may
result in a poor match, because the value and the matching precision together determine the unary
device shape, that is, the width and length. The shape should follow the reliability guide of the layout
to achieve the designed matching precision. In addition, there is a relationship between the current
and resistor, as higher currents require lower resistors for the same output voltage. Therefore, after
the matching precision specification is determined, the values of the unary current and the unary
resistor should be simultaneously designed under the guidance of device sizing method and the
layout reliability.

To verify the proposed methodology, three test groups differing on the matching precision among
the resistors and current sources have been fabricated and tested. The measured results (Table 2 and
Figure 13) are compared with the theoretical results for static nonlinearity (Equations (10) and (14))
and matching precision (Equations (19) and (20)). The verification supports the proposed prediction of
nonlinearity by segmentation and matching precision. First, the resolution number of resistor (k) has
more influence on the nonlinearity than the resolution number of current steering (m). Second, the
nonlinearity gets worse when the segmentation ratio (k/m) increases. Finally, setting the matching
resolution in bits of the resistors and current sources as k + 4 and m + 2k + 2, respectively, will obtain a
DNL/INL that is smaller than half the LSBs.

8. Conclusions

Since the output of the R-I DAC is generated by the multiplication of the resistance and the
current, the total mismatch gets amplified in a nonlinear way, which makes the accuracy analysis
of the R-I DAC not as easy as that of conventional DACs. So, this article is motivated to interpret
the numerical relationship between the nonlinearity and matching precision for the R-I DAC. In this
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article, we proposed a mathematical model that focused on the output and mismatches of the R-I DAC.
To visualize the nonlinearity mechanism of the R-I DAC, we presented a simulation algorithm and
illustrated the variation regularity of the nonlinearity. The regularity showed that the nonlinearity
gets worse when the segmentation ratio (k/m) increases, and that the resolution number of resistor (k)
has more influence on nonlinearity than the resolution number of current steering (m). In addition,
we derived the theoretical expressions for static nonlinearity and matching precision. The numerical
simulation and theoretical derivation concluded that the nonlinearity variance is proportional to the
sum of 2kδ2 and 2n+kξ2. For a 10-bit R-I DAC, it is recommended that k is less than 6 to avoid matching
requirements that are too stringent. When nonlinearity is required to be smaller than half an LSB,
the matching resolution in bits of resistors and current sources are k + 4 and m + 2k + 2, respectively.
The proposed theory is supported by the measured results of static and dynamic performance.
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Appendix A Variable Notations

Symbol Definition

k A k-bit resistor-string sub-DAC as LSBs
m An m-bit current-steering sub-DAC as MSBs
n An n-bit R-I hybrid DAC, n = k + m

IU, and IR
The unity current of the current source array, and the current through resistor-string, they are
design to match, IU = IR.

RFB, and RU
Feedback resistance, and the unit resistance of resistor string, they are design to match,
RFB = 2k·RU.

∆Ii (∆Ri), A random absolute mismatch value ∆Ii (∆Ri)
IU (RU) IU = IU − ∆Ii (RU = RU − ∆Ri) Expected value

σ, ξ (δ)
The σ defines a general relative mismatch. The ξ(δ) is a specific random relative mismatch
ξi =

∆Ii
IU

(δi =
∆Ri
RU

)

i A digital input for R-I DAC with a decimal value

BLi and BHi

The digital input codes for R-sub DAC and I-sub DAC,
respectivelyBHi = floor(i/2k) , BLi = mod(i, 2k)B = floor(A) rounds the elements of A to the
nearest integers less than or equal to A. M = mod(X, Y) returns the modulus after division of X
by Y.

bx
The bx represents one bit of the digital input code, where a bigger x indicates the more
significant value of the bit.

n(σ2)
The matching precision in bits, as a function of variance σ2 of matching precision,
n(σ2) = log2(1/σ2).
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