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Abstract: High-resolution three-dimensional (3D) images can be acquired by the planar
Multiple-Input Multiple-Output (MIMO) array radar making future work like detection and tracking
easier. However, regarding portability and to save the costs of radar system, MIMO radar array adopts
sparse type with limited number of antennas, so the imaging performance of a MIMO radar system
is limited. In this paper, the 3D back projection imaging algorithm is verified by the experimental
results of planar MIMO array for human body and an enhanced radar imaging method is proposed.
The Lucy-Richardson (LR) algorithm based on deconvolution that is normally used for optical images
is applied in radar images. Since the LR algorithm can amplify the noise level in a noise-contaminated
system, a regularization method based on the Total Variation constraint is further incorporated in
the LR algorithm to suppress the ill-posed characteristics. The proposed method shows a higher
image Signal-to-Noise Ratio, a faster rate of convergence, a higher structure similarity and a smaller
relative error compared to some similar methods. In the meantime, it also reduces the loss of image
information after image enhancement and improves the radar image quality (get less grating lobe
and clearer human limbs). The proposed method overcomes the disadvantages mentioned above
and is verified by simulation experiment and real data measurement.

Keywords: 3D; enhanced imaging; ultra-wideband; MIMO radar; ill-posed characteristic

1. Introduction

Radar imaging technology is an important field in the development of radar techniques [1,2].
Radar imaging technology can work in all-weather and all-day conditions with a high resolution
and anti-inference capability, while the optical imaging technology can be seriously affected by
weather, visible light and other environmental disturbances. With the high-resolution ultra-wideband
radar or sensor radar network have become some new tools of target detection, indoor localization,
positioning applications and imaging [3–8]. More information can be obtained as radar imaging is
gradually expanding the scenes from two-dimensional (2-D) (range-azimuth) to three-dimensional
(3-D) (range-azimuth-height) [9]. Radar imaging can recognize the human body and various targets
in free space of invisible light, so it plays a significant role in many applications, such as military,
anti-terrorism, security [8], disaster relief, etc.

Multiple-Input Multiple-Output (MIMO) radar imaging is widely applied in scenes where
real-time data acquisition is needed as it has a high data obtaining acquisition rate [10,11].
Multi-antenna structure is adopted for both receiving and transmitting terminals of MIMO radar to
obtain observation channels that is much more than the number of the real receiving and transmitting
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array elements [12,13]. MIMO radar can obtain more information in parallel multi-channels so it
shows the capacity to collect real-time information with different amplitudes, time delays and phases.
Reasonable arrangement of the MIMO radar antenna can reduce the complexity of imaging processing
and save the cost of hardware implementation [14]. Radar imaging algorithm can reconstruct
the image of targets. At present, widely-applied imaging algorithms include Range Doppler [15],
Chirp Scaling [16], ωK [17], Back projection (BP)[18], etc. Another direction for the radar imaging
that is a hybrid of the Kirchhoff migration and Stolt’s frequency-wavenumber (F-K) migration [19].
The inter-element spacing is larger than a wavelength and thus grating lobes will occur inevitably.
The Coherence Factor (CF) weighted method [20] can suppress the grating lobe though the suppression
performance is not that acceptable when the target energy is weak. From the perspective of signal
processing, the output of a MIMO radar imaging system is a low-pass filtered result of original image
due to the low-pass property of the antenna system. Hence, information beyond the cut-off frequency is
lost. From the perspective of image processing, the output of an imaging system is a convolution of the
original image and the system function. This convolution process is referred to as image degeneration.

Radar imaging resolution is limited by the Rayleigh criterion [21]. Some super-resolution methods
are used to increase the image resolution, such as Multiple Signal Classification [22], Capon [23], etc.
These methods can estimate the high-resolution details of the original signal and apply them to the
location and direction-finding of target while the complexity is high. Compressed Sensing (CS) [8]
has the potential of higher resolution than classical imaging methods. Due to the signal process
in CS radar imaging, in which the 2D radar image is taken as one-dimensional signal, the sensing
matrix is very large, taking so much memory and leading to the problem that the matrix-vector
multiplication in recovery algorithms is very time-consuming [24]. The recently proposed enhanced
imaging method based on wavelet transform has a simple process, however, the edge of the texture
area has no self-similarity and the enhanced imaging method based on neural network has a good
performance despite of the huge computational cost, the long-time training process and the lack of
real-time property [25,26].

Enhanced imaging methods based on deconvolution have the merits of understandable principle,
easy derivation process, low computational complexity and less information loss during processing.
Deconvolution is mainly implemented by two main categories of methods. The first category is linear
methods: Classic inverse filtering can enhance an image but it is only applicable in noise-free scenes [27].
Wiener filtering need to assume that an image satisfies the generalized stationary process [28]. Kalman
filtering has been applied in [29] which has a low adaptive degree and a high computational cost when
partial features are complex. Pseudo-inverse algorithm of singular value decomposition has been
reported in [30], however, this method is very unstable when noise is involved. The second class of
enhanced methods is named nonlinear methods which mainly include two methods—Lucy-Richardson
(LR) algorithm [31,32] and regularization algorithm [33–39]. The former is based on Bayesian analysis
but can amplify the noise level and the latter [33] suppresses the ill-posedness of deconvolution by
introducing restraint conditions. Nonlinear iterative technique has become increasingly accepted
as a tool for image enhancement, which often performs better than linear methods. In many cases,
images need to be modeled by the Poisson random field, such as astronomical images, confocal
microscope images, CT images and PET images, etc. These images are results of lots of photons that
follow the Poisson random process in a certain time. LR algorithm can fully consider the statistical
fluctuation of signal [40] and have the ability of frequency spectrum extrapolation [31,32]. In Boutet de
Monvel et al. [41,42]. The authors use a LR algorithm with maximum entropy regularization (LRMER)
(which is clearly explained in [41]) to improve the limits of deconvolution. LR algorithm performs
well in radar image enhancement [43]. The regularization method is a mathematical approach to
transform ill-posed problem into a well-posed problem. The Tikhonov regularization [44] and the
Tikhonov-Miller (TM) regularization [45,46] restrains the noise efficiently during image enhancement
but can result in over-smoothing. An improved image deconvolution enhancement model is proposed
but the algorithm blurs details and edges since it cannot distinguish noise in radar image.
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The TV regularization method overcomes the problem of amplified noise which is brought by the
LR algorithm and ensure the existence, uniqueness and continuity of the solution [46]. In this paper,
the object of our research is human body, we can get clearer imaging result (recognize the human
body part) by some class of the deconvolution method. We present the deconvolution method we are
using: the LR algorithm. Since it does not converge to a noise-free solution, we regularize it using a
functional derived from a Total-Variation (TV) [46]. The modified method obtains a high-resolution
radar image while maintaining edges of the radar image and solving the ill-posed problem that
deconvolution amplifies noise easily. Meanwhile, the modified method transforms an ill-posed
problem to a well-posed one and then a good enhanced image is obtained.

The rest of the paper is organized as follows. Section 2 presents the echo signal model, the antenna
array model and the imaging algorithm. Section 3 presents the image enhancement method, the TV
regularization method based on LR algorithm and the Point Spread Function (PSF) model. Meanwhile,
several criterions for the algorithm are proposed and the rationalities are also analyzed. Section 4
presents comparison results between the proposed algorithm and some other algorithms by using
simulation experiment and real data measurement, respectively. Finally, conclusions are drawn in
Section 5.

2. MIMO Radar Imaging Model

In this section, we mainly describe the model of the MIMO radar imaging system. The working
process of a MIMO radar system is shown in Figure 1a. Since signals can be transmitted from multiple
antennas and observed from different angles at the receiving terminal, MIMO radar can achieve a
better ability of redundant data processing from multichannel at the receiving terminal. According to
the above characteristics, MIMO radar can effectively improve the performance of measurement about
the target parameters [13].
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Figure 1. (a) Diagram of Multiple-Input Multiple-Output (MIMO) radar system and geometric
schematic diagram of back projection (BP) imaging; (b) Diagram of the stepped-frequency signal.

The stepped-frequency signal is considered in this paper, which is widely used in radar imaging.
When compared to pulse signal, the stepped-frequency signal can easily achieve a higher transmission
power and expand the bandwidth. In comparison to the chirp signal, the stepped-frequency
signal weakens the limit of minimum detection distance to reduce the complexity of the receiver.
The stepped-frequency signal considered here consists of ℵ frequency points with an impulse width
of tτ and a frequency interval of ∆ f . Suppose the initial frequency point corresponding to the first
impulse is f0, then the transmitted impulse string can constitute the ultra-wideband signal with a
frequency scope of f0 ∼ f0 +ℵ∆ f and a bandwidth of B = ℵ∆ f ; Tp denotes the pulse repetition period,
Tτ denotes the pulse repetition interval and fi denotes the i-th pulse, where fi = f0 + i∆ f . Figure 1b
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shows the diagram of the stepped-frequency signal. Combined with Figure 1b, the stepped-frequency
signal can be written as:

p(t) =
ℵ−1

∑
i=0

exp(j2π( fo + i∆ f )t)rect
(

t− tτ/2− iTp

tτ

)
(1)

where rect(·) denotes rectangular window function.
In this paper, a BP algorithm based on stepped-frequency signal is used for MIMO radar imaging.

The BP algorithm, a precise imaging algorithm based on time-domain processing, is derived from
computer tomography [47]. The BP algorithm firstly meshes the imaging area and calculates the
distance of arbitrary pixel to the scattering source and then the time delay of propagation is obtained.
Finally, the radar echo signal corresponding to each scattering source is searched according to the
time delay and the superposition processing is carried out. When a pixel point is at the real location
of the scattering source, the superposition processing results in a large value. When a pixel point
is not at the target position, a small value is obtained. The final imaging result is obtained when
the focusing process of all pixel points in the entire imaging region is completed. It shows a good
robustness and has no special limit for the system configuration [48]. Furthermore, it has a precise
imaging result and does not require an approximation and it is suitable for arbitrary transmitting and
receiving antenna arrays.

Figure 1a shows the working process of MIMO radar imaging system. Let us use Γt,m, m =

1, 2, . . . , MT to represent the coordinates of transmitting array elements and Γr,n, n = 1, 2, . . . , NR to
represent the coordinates of receiving array elements. The array transmits a stepped-frequency signal
p(t) and there is a scattering source P at Γ with a reflectivity of A(Γ). The propagation delay τm,n can
be denoted as:

τm,n =
d(Γ, Γt,m) + d(Γ, Γr,n)

c
(2)

where d(·, ·) denotes the distance between the coordinates. Without considering the attenuation of
signal in propagation process, the signal transmitted by the m-th transmitting array element and
received by the n-th receiving array element can be written as:

Sm,n(t) = A(Γ)p(t− τm,n) (3)

The delay of pixel Γ′ relative to Γt,m and Γr,n in imaging scene can be written as:

τ′m,n =
d(Γ′, Γt,m) + d(Γ′, Γr,n)

c
(4)

The imaging result of single-input single-output (SISO) radar obtained by the m-th transmitting
array element and the n-th receiving array element can be written as:

Gm,n(Γ′) = A(Γ)p(τ′m,n − τm,n) (5)

When τ′m,n = τm,n, pixel point Γ′ is just at scattering source Γ. The coherent superposition of
SISO radar image obtained by MT transmitting array elements and NR receiving array elements is a
MIMO radar imaging result at P can be written as:

G(Γ′) =
MT

∑
m=1

NR

∑
n=1

A(Γ)p(τ′m,n − τm,n) (6)

The BP imaging result which is the coherent superposition of images at all frequency points using
stepped-frequency signal can be written as:
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G(Γ′) =
ℵ−1

∑
i=0

MT

∑
m=1

NR

∑
n=1

A(Γ)exp[j2π( fo + i∆ f )(τ′m,n − τm,n)] · rect
(

τ′m,n − τm,n − tτ/2− iTp

tτ

)
(7)

The radar image can be obtained through the process above. In a radar system, however, due to
several reasons such as the degradation caused by the antenna aperture diffraction, the influence of
noise and clutter in surroundings and the limitation of hardware, the imaging performance is degraded
severely. Therefore, image enhancement is needed.

3. Enhanced Imaging Method

Image enhancement must satisfy the imaging degradation model. In a real radar imaging system,
the imaging result is a convolution of the original image and the system function. The enhancement
process is the deconvolution of degraded imaging [49]. The system function of the imaging degradation
model can be written as:

g = f⊗H + n (8)

where ⊗ denotes the convolution operation. f denotes the original image, g denotes the degraded
image, H the denotes imaging system function and n denotes the noise.

In this section, the imaging degradation model is introduced and then the Point Spread Function
(PSF) model is briefly described. Finally, the LR algorithm is introduced and a modified algorithm
is proposed.

3.1. PSF Model

PSF is the response of the imaging system to an ideal point target, which reflects the basic
properties of the imaging system [50]. The system function H is the PSF. The features in azimuth of
PSF provide an accurate measurement of the beamforming and the main lobe of PSF can measure
resolution, while the position and amplitude of the grating lobe of the PSF decide the fuzzy area in
imaging result. Then the system imaging performance can be evaluated with the PSF of the MIMO
radar system.

Suppose P denotes an ideal point target at Γ. Let us use p(t) to represent the transmitted
stepped-frequency signal. The frequency of p(t) is discretized to obtain the stepped-frequency
waveform. Suppose the bandwidth of the spectrum of p(t) is [ f0, fi−1], then the approximate form of
the stepped-frequency signal can be written as:

p(t) =
ℵ−1

∑
i=0

P( fi)exp(j2π fit) (9)

where P( fi) denotes the weighted function corresponding to the stepped-frequency signal. To simplify
the analysis, P( fi) is set as 1. The two-way Green’s function of the m-th transmitting array element
and the n-th receiving array element corresponding to the i-th segment frequency can be written as:

Green(Γt,m, Γr,n, Γ, fi) =
[

1
4π|Γt,m−Γ| exp(−jki|Γt,m − Γ|)

]
·
[

1
4π|Γr,n−Γ| exp(−jki|Γr,n − Γ|)

]
= 1

16π2|Γt,m−Γ||Γr,n−Γ| exp[−jki(|Γt,m − Γ|+ |Γr,n − Γ|)]
(10)

where ki = 2π/λi denotes the wave numbers and λi = c/ fi. After the PSF scans the point target
region r, according to Equations (10) and (7), the PSF can be written as:
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PSF(r, Γ) =

∣∣∣∣∣MT−1
∑

m=0

NR−1
∑

n=0

ℵ−1
∑

i=0
Green(Γt,m, Γr,n, Γ, fi)Green−1(Γt,m, Γr,n, r, fi)

∣∣∣∣∣
=

∣∣∣∣∣MT−1
∑

m=0

NR−1
∑

n=0

ℵ−1
∑

i=0

|Γt,m−r||Γr,n−r|
|Γt,m−Γ||Γr,n−Γ| exp[−jki(|Γt,m − Γ|+ |Γr,n − Γ| − |Γt,m − r| − |Γr,n − r|)]

∣∣∣∣∣
(11)

3.2. TV Regularization Method Based on LR Algorithm

LR algorithm is an image enhancement technique based on Bayesian iteration, which adds some
prior knowledge of images as constraints. Let the degraded image subject to Poisson distribution
and the maximum likelihood estimation method is used to perform iterative operation according to
Bayesian formula [51].

The iteration expression of the LR algorithm can be written as:

fk+1 = fk �
[

HT ⊗
(

g
H⊗ fk

)]
(12)

where � denotes the point-wise multiplication, f denotes the solution of the enhanced iterative
equation and f → f k when k→ ∞ . When noise n exists, the iterative expression can be written as:

fk+1 = fk �
[

HT ⊗
(

g + n
H⊗ fk

)]
(13)

where f does not always converge to fk when k→ ∞ . It will amplify the noise level.
We can use this algorithm to enhance radar image. The LR algorithm is not just an inversion of

the degraded image but the optimal solution of a step-by-step iteration. To prevent the amplification
of noise during iterations, we introduce a regularization term as a constraint condition into the LR
algorithm. When processing in the image domain, the TV regularization method can maintain
the boundary better and suppress the noise amplification at the same time [52]. In this paper,
the regularization processing is done during the iteration expression of the LR algorithm and rational
constraint condition is constructed by priori knowledge of the degraded image. The following part is
the core of the proposed method.

The cost function of TV regularization can be written as:

E = E f + Ereg = HT ⊗
[

1− g
H⊗ f

]
+ γ · <(f) (14)

where E f = HT ⊗
[
1− g

H⊗f

]
is the fidelity term that reflects the degree of the approximation of

the degraded image to the enhanced image. Ereg = γ · <(f) is the regularization term, <(f) = ∇f
is the regularization function, ∇ denotes the gradient of an image, γ denotes the regularization
coefficient that adjusts the proportion between the fidelity and the regularization terms. Suppose that
the k-th iteration has been carried out, the iteration expression can be written as below when the TV
regularization is applied to the LR algorithm:

fk+1 =

{[
HT ⊗ g(

fk ⊗H
)]}� fk

1− γ · div
(
∇fk

‖∇fk‖

) (15)

where ‖ · ‖ denotes the computation of 2-norm. When noise n exists, the iterative expression can be
expressed as:
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fk+1 =

{[
HT ⊗ g + n(

fk ⊗H
)]}� fk

1− γ · div
(
∇fk

‖∇fk‖

) (16)

The curvature of the iterative result is: div
(
∇<
‖∇<‖

)
=

[<2
x+<2

y−2<xy]
‖∇<‖2 , where ∇< denotes the

gradient of <, div(·) denotes the divergence operator, <x,<y denotes the first-order difference and
<2

x,<2
y,<xy denotes the second-order difference. We named the proposed method the LRTV algorithm.

Table 1 shows the detail of the LRTV algorithm.

Table 1. The detail implementation steps of the LRTV algorithm.

LRTV Algorithm

Input: g Degraded image & iterative initial value
H PSF
n White Gaussian noise
k Number of iterations
γ TV regularized coefficient

Output: f Solution of enhanced iterative equation
Begin

Step 1 Plug g and H into the degradation model of imaging system.

Step 2 Plug g = H⊗ f + n into the probability density function of Poisson distribution.

Step 3 Calculate the logarithm on both sides of the result in Step 2.

Step 4 Let Eo(f) denotes the result of Step 3.

Step 5 Let fML denotes Maximum likelihood estimation of the Eo(f) about f. Calculate fML and then find the
extremum according to the equation: fML = argminEo(f).

Step 6 From the function in Step 5, calculate the partial derivatives of Eo(f) about f to obtain the extremum.

Step 7 Let E f be the fidelity term, which is equal to the iterative expression obtained by Step 6.

Step 8 Calculate the image curvature of the iterative initial value.

Step 9 Construct a regularized cost function.

Step 10 Add the regularization term to the iteration expression in Step 7 to get the iterative expression.

Iterative expression: fk+1 =
{[

HT ⊗ g+n
(fk⊗H)

]}
� fk

1−γ·div
(
∇fk

‖∇fk‖

)
End

3.3. Mechanism of Algorithm Evaluation

We can visually judge the algorithm with the enhanced imaging result and the degraded image.
In this section, we discuss the signal-to-noise ratio (SNR) of image, the termination condition of
iteration, the mutual information, the structural similarity (SSIM) and the relative error (RE) between
the enhanced image and degraded image [53]. We use the image SNR to show the changes in the
enhanced imaging results with the LRTV algorithm and some similar algorithms, respectively. And we
draw a curve of termination condition of iteration with the difference between the last enhancement
result and the previous one to illustrate the efficiency of convergence. The mutual information
illustrates how the LRTV algorithm reduces the loss of image information relative to other algorithms
and we use the SSIM to get a quantitative measure for three algorithms between the enhanced image
and the degraded image. The RE performance demonstrate the precision of similar methods in
different noise levels.

Let g denotes the degraded image, g denotes the mean of g and f denotes the enhanced image.
The SNR of an image is defined as follows:

image_SNR = 20 · log10
‖g− g‖2
‖g− f‖2

(17)
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The termination condition of iteration is defined as follows:

Stop_iteration =
‖g− f‖2
‖g‖2

(18)

The RE is defined as follows:

RE =
‖g− f‖2
‖f‖2

(19)

We use the mutual information of image to evaluate the algorithm with an exact numerical value.
Mutual information represents the correlation between two variables and the mutual information
I(X, Y) between X and Y can be written as:

I(X, Y) = Hu(X) + Hu(Y)− Hu(X, Y) (20)

where Hu(X) denotes the entropy of X, Hu(Y) denotes the entropy of Y and Hu(X, Y) denotes the
joint information entropy. In information theory, the more similar the two variables, the greater the
value of mutual information. The value of image’s SSIM is between −1 and 1 and one means fully
identical to the degraded image. It can be say that the closer value of SSIM is to 1, the more the similar
the two images are. The SSIM(X, Y) between X and Y can be written as:

SSIM(X, Y) =
(2µXµY)(2σXY)(

µ2
X + µ2

Y
)(

σ2
X + σ2

Y
) (21)

where µX denotes the mean of X, µY denotes the mean of Y, σXY denotes the covariance between X
and Y, σX denotes the standard deviation of X, σY denotes the standard deviation of Y, σ2

X denotes the
variance of X and σ2

Y denotes the variance of Y. The larger value of SSIM indicates that the algorithm
can retain the structure information of the target in the imaging scene.

4. Experiment

In this section, we carry out a simulation experiment and a real data measurement to evaluate
the method proposed in this paper. In the simulation, the radar echo is obtained by computing the
Radar Cross Section (RCS) of target. In the real data measurement, the radar echo is acquired by the
laboratory’s MIMO radar system. In addition, four quantitative metrics are used.

4.1. Simulation Experiment

The RCS characterizes radar’s scattering ability of electromagnetic waves. We calculate the target’s
RCS as the amplitude of stepped-frequency signal and the BP imaging is performed after the radar
echo is obtained. To represent the scattering strength and calculate the RCS of each part of the human
body, we established an ellipsoid model as follows:(

Θx −Θxc

la

)2
+

(
Θy −Θyc

lb

)2
+

(
Θz −Θzc

lc

)2
= 1 (22)

where (Θxc, Θyc, Θzc) denotes the center point coordinates of the human body joints and (la, lb, lc)

denotes the semi-axial length along the Θx-axis, Θy-axis and Θz-axis. To simplify the ellipsoid model,
let us set la = lb. The approximate RCS of each part of the human is given as [54], for example,
the procedure of getting the RCS of a human torso. The semi-axial length lc of the trunk ellipsoid
along the Θz-axis can be obtained according to root node coordinate and the thoracic node coordinate,
the semi-axial length la along the Θx-axis and Θy-axis can be obtained according to the equation of
ellipsoid volume. Similarly, the ellipsoid parameters in all other human limbs can be obtained. The
ellipsoid’s RCS of all human parts can be written as:
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σ =
4π la

4

lc2

[(
1 + cosθβcosθ

)
cos
(
φ− φβ

)
+ sinθβsinθ

]2[
la2

lc2

(
sin2θ + 2sinθsinθβcos

(
φ− φβ

)
+ sin2θβ

)
+
(
cosθβ + cosθ

)2
]2 (23)

where θβ and φβ denote the incident angles, θ and φ denote the reflex angles. The diagram of scattering
model of the ellipsoid is shown in Figure 2.
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Figure 2. Scattering model of the ellipsoid. Figure 2. Scattering model of the ellipsoid.

We use the Kinect to get the key joints coordinates of human target. Kinect is a non-contact
optical device that uses a natural user interface to interact with people without keyboard and mouse,
which can get the 3-D coordinates of skeleton structure. Kinect is used in this paper to obtain the 3-D
coordinates of 25 joints of the human target in real time with three postures: hands prolapse, shoulder
abduction and hands held. In the experiment, the Kinect is placed at 1.5 m in front of the human
target which is 1.75 m high. Figure 3 shows the experimental scene, the 3-D coordinates obtained by
Kinect and the human ellipsoid model we established. Figure 4 shows the antenna array of the MIMO
radar system and the spacing between each array element is 0.08 m. This system uses 10 transmitting
antennas and 10 receiving antennas to generate 100 radar echo channels.

In this paper, the antenna array is designed to ensure the coherence of the observable channels
and the consistency of the scattering property of each T/R channel pair. As shown in Figure 4b, virtual
arrays generated by this antenna can approximately form a dense area array and improve the capability
of the spatial sampling while saving the number of physical array elements [55].

Table 2 shows the radar system parameters. Simulation experiment and real data measurement
are carried out according to the same parameters. We use the Wiener filtering, the Tikhonov algorithm,
the TM algorithm, the LR algorithm, the LRMER algorithm, the LRTV algorithm and the CF weighted
method to perform image enhancement. Additionally, Gaussian white noise is added to the signal and
let the SNR of the signal equals to 10 dB and the regularization coefficient γ is 0.2. The azimuth-height
of 3-D imaging results is analyzed.
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Table 2. Parameters of simulation experiment.

Parameter Value

Center frequency 1.96 GHz
Stepped-frequency 4 MHz

Bandwidth 600 MHz
Transmitting terminal 10

Receiving terminal 10

Figure 5 shows the azimuth-height of 3-D imaging results with a heat map, where the red color
refers to highly reflected power and the dark blue color presents non-reflection. Figure 5a,b shows
that the BP imaging result matches the human ellipsoid model. There are more grating lobes because
the target expansion widens the main lobe of each trajectory in BP imaging and raises the level of
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the grating lobe. Without changing the hardware conditions, the enhanced imaging can be used to
control the grating lobes. Figure 5c shows that the Wiener filtering amplifies noise and grating lobes
are undesirable because they produce artifacts and contaminate images. Figure 5d,e show that the
Tikhonov algorithm and the TM algorithm can both improve the recognition degree of the imaging
results but loss some human body parts in radar images. Figure 5f,g show that the LR algorithm and
the LRMER algorithm can both suppress partial grating lobes but these algorithms cannot preserve
edges of radar images and make the distortion of human body. The LRTV algorithm brings a much
better recognition degree in Figure 5h,i, which not only makes the contour of the simulated the human
target clear but also distinguish each part of the human body target. And the ability to denoise the
LRTV algorithm is better than the LR algorithm. Figure 5j shows the result of the enhanced imaging
result with the CF weighted method but weak energy is annihilated.
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Figure 5. (a) BP imaging result; (b) Registration figure for BP imaging; (c) Enhanced imaging result
with Wiener filtering; (d) Enhanced imaging result with Tikhonov regularization; (e) Enhanced imaging
result with Tikhonov-Miller (TM) regularization; (f) Enhanced imaging result with LR algorithm;
(g) Enhanced imaging result with LRMER algorithm; (h) Coherence Factor (CF) weighted method;
Enhanced imaging result with LRTV algorithm; (i) Enhanced imaging result with LRTV algorithm;
(j) Registration figure for LRTV algorithm.
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Figure 6 shows the image SNR graph and the curve of termination. The blue line represents
the LR algorithm, the black line represents the LRTER algorithm and the red line represents the
LRTV algorithm. It can be concluded from Figure 6a–c that the image SNR is higher when using the
LRTV algorithm than using the LR algorithm and LRTER algorithm. Figure 6d–f illustrate the LRTV
algorithm stops at a smaller number of iteration times, that is, the LRTV algorithm converges faster
and is more efficient than the others.
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Figure 6. (a) Image signal-to-noise ratio (SNR) curve of LR, LRTER and LRTV when “hands prolapse”;
(b) Image SNR curve of LR, LRTER and LRTV when “shoulder abduction”; (c) Image SNR curve of
LR, LRTER and LRTV when “hands held”; (d) Termination condition of iteration of LR, LRTER and
LRTV when “hands prolapse”; (e) Termination condition of iteration of LR, LRTER and LRTV when
“shoulder abduction”; (f) Termination condition of LR, LRTER and LRTV when “hands held”.

In Table 3, HuBP denotes the image information entropy of the BP imaging result, HuWIENER
denotes the image information entropy of the enhanced imaging result with the Wiener filtering,
HuTikhonov denotes the image information entropy of the enhanced imaging result with the Tikhonov
algorithm, HuTM denotes the image information entropy of the enhanced imaging result with the TM
algorithm, HuLR denotes the image information entropy of the enhanced imaging result with the LR
algorithm, HuLRTER denotes the image information entropy of the enhanced imaging result with the
LRTER algorithm, HuLRTV denotes the image information entropy of the enhanced imaging result with
the LRTV algorithm, IWIENER denotes the mutual information between the enhanced imaging result
with the Wiener filtering and the degraded image, ITikhonov denotes the mutual information between
the enhanced imaging result with the Tikhonov algorithm and the degraded image, ITM denotes the
mutual information between the enhanced imaging result with the TM algorithm and the degraded
image, ILR denotes the mutual information between the enhanced imaging result with the LR algorithm
and the degraded image, ILRTER denotes the mutual information between the enhanced imaging result
with the LRTER algorithm and the degraded image, ILRTV denotes the mutual information between
the enhanced imaging result with the LRTV algorithm and the degraded image.

A quantitative analysis result for some similar enhanced imaging algorithms, shown in Table 3,
illustrates that the entropy of the enhanced imaging result with the LRTV algorithm is less than with
the LRTER algorithm, the LR algorithm, the TM algorithm, the Tikhonov algorithm, the Wiener filtering
and the BP imaging results. We can see that the mutual information from the enhanced imaging result
with the LRTV algorithm is higher than that of the other algorithms. These data illustrate that the
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proposed algorithm can perform a more similar result to the degraded image and maintain more
information during the enhanced imaging procedure, that is, less information is lost. These results
indicate that the LRTV algorithm outperforms the other similar algorithms.

Table 3. Image information entropy and mutual information with different algorithms in simulation.

Hands Prolapse Shoulder Abduction Hands Held

HuBP 3.2972 3.2540 3.2365
HuWIENER 3.1784 3.1413 2.9540
HuTikhonov 3.0956 3.0741 2.9326

HuTM 2.9564 2.9113 2.8978
HuLR 2.8839 2.8774 2.6593

HuLRTER 2.8115 2.8029 2.5649
HuLRTV 2.7853 2.7412 2.4231
IWIENER 0.3652 0.3149 0.3497
ITikhonov 0.3991 0.3628 0.3965

ITM 0.4215 0.4119 0.4265
ILR 0.4694 0.4690 0.4473

ILRTER 0.4789 0.4857 0.4613
ILRTV 0.4830 0.4984 0.4878

In Table 4, SSIMWIENER denotes the SSIM between enhanced imaging result with the Wiener
filtering and the degraded image, SSIMTikhonov denotes the SSIM between enhanced imaging result
with the Tikhonov algorithm and the degraded image, SSIMTM denotes the SSIM between enhanced
imaging result with the TM algorithm and the degraded image, SSIMLR denotes the SSIM between
enhanced imaging result with the LR algorithm and the degraded image, SSIMLRTER denotes the SSIM
between enhanced imaging result with the LRTER algorithm and the degraded image, SSIMLRTV
denotes the SSIM between enhanced imaging result with the LRTV algorithm and the degraded image.

Table 4. Structural similarity (SSIM) with different algorithms in simulation.

Hands Prolapse Shoulder Abduction Hands Held

SSIMWIENER 0.5648 0.5479 0.5218
SSIMTikhonov 0.6258 0.6149 0.6356

SSIMTM 0.6324 0.6415 0.6578
SSIMLR 0.7845 0.7941 0.7459

SSIMLRTER 0.8025 0.8147 0.7614
SSIMLRTV 0.8546 0.8415 0.7889

Table 4 shows the SSIM of images by three algorithms to appraise performance. We can see that
the SSIM of enhanced imaging result with the LRTV algorithm is higher than that with the other
similar algorithms. This illustrates the LRTV algorithm can better retain the structural information of
target in imaging scene, that is, a complete imaging result is obtained.

Furthermore, another advantage of the proposed enhanced imaging method compared to the
similar methods is that the LRTV algorithm improves the precision of an image under different noise
levels. Figure 7 shows the RE performance of the methods with azimuth-height of 3-D imaging results
for “Hands prolapse” at the different noise levels. The simulation results illustrate that the Wiener
filtering, the Tikhonov algorithm, the TM algorithm, the LR algorithm and the LRTER algorithm have
higher relative errors under different noise levels, while the LRTV algorithm is much better than the
other traditional algorithms in terms of precision.
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4.2. Real Data Measurement Experiment

We carry out the real data measurement by using a real MIMO radar. Figure 8 shows the MIMO
radar system, which consists of the stepped-frequency transceiver, antenna system and signal processor.
The radar system uses the ultra-wideband stepped-continuous wave signal and other parameters are
consistent with the simulation experiment.
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The experimental site is set in a free space and the noise is considered. The human target is 1.75 m
high and stands 1.5 m in front of the radar system while posing 3 postures, respectively, which is
shown in Figure 9.
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We used the Wiener filtering, the Tikhonov algorithm, the TM algorithm, the LR algorithm, the
LRTER algorithm, the LRTV algorithm and the CF weighted method to enhance the BP imaging results.
The azimuth-height of 3-D imaging results is analyzed.

Figure 10a,b shows the imaging result by the real MIMO radar system. Due to the different RCS
power of each part of the human body, the human body cannot be fully displayed (thighs, shanks, feet,
etc.) in this experiment but a basic outline and main parts can be observed clearly. Figure 10c shows
the enhanced imaging result by the Wiener filtering, this method produces artifacts and contaminate
images. Figure 10d,e show the enhanced imaging result by the Tikhonov algorithm and the TM
algorithms, respectively. The results of these two algorithms have a low identification degree because
they cannot remove the noise well in radar images and the image edges are not smooth enough.
Figure 10f,g,i,j show the enhanced imaging results of the LR algorithm, the LRTER algorithms and the
LRTV algorithm, respectively. By comparing the three results we can see that the LRTV algorithm can
better distinguish the arm from the trunk and get a clearer human contour. Figure 10h shows the result
of CF weighted method. The CF Weighted method can remove the grating lobes but some details are
annihilated. In conclusion, the proposed algorithm improves the imaging performance well compared
to the other similar algorithms.
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with Wiener filtering; (d) Enhanced imaging result with Tikhonov regularization; (e) Enhanced imaging
result with TM regularization; (f) Enhanced imaging result with LR algorithm; (g) Enhanced imaging
result with LRMER algorithm; (h) CF weighted method; Enhanced imaging result with LRTV algorithm;
(i) Enhanced imaging result with LRTV algorithm; (j) Registration figure for LRTV algorithm.
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Figure 11 shows the curve of the image SNR and the curve of the termination condition in real
data measurement. In Figure 11a–c, it can be concluded that the image SNR of enhanced imaging
result with the LRTV algorithm is higher than with the other algorithms. Figure 11d–f illustrate that
the curve of the LRTV algorithm stops decreasing after a smaller number of iterations, that is, the
LRTV algorithm converges faster, which is consistent with that of the simulation. Figure 12 shows
the RE performance of the methods with azimuth-height of 3-D imaging results for “Hands prolapse”
in the different noise levels. The real data measurement results illustrate that the Wiener filtering,
the Tikhonov algorithm, the TM algorithm, the LR algorithm and the LRTER algorithm have higher
relative errors under different noise levels, while the LRTV algorithm is much better than the other
traditional algorithms in terms of precision. This leads to a more stable solution to the deconvolution.
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Table 5 shows the entropy of image by three enhanced imaging algorithms, the entropy of the
enhanced imaging result with the LRTV algorithm is less than that with the other algorithms and the
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BP imaging result. In addition, the mutual information is computed between the degraded image and
the enhanced image result by the Wiener filtering, the Tikhonov algorithm, the TM algorithm the LR
algorithm, the LRMER algorithm and the LRTV algorithm, respectively. The mutual information from
the enhanced imaging result with the LRTV algorithm is higher than with the other similar algorithms,
that is, the result of the LRTV algorithm is more correlative to the result of BP imaging. Consequently,
the LRTV algorithm performs better.

Table 5. Image information entropy and mutual information with different algorithms in real
data measurement.

Hands Prolapse Shoulder Abduction Hands Held

HuBP 4.5023 4.4047 4.5085
HuWIENER 3.3146 3.9850 3.6108
HuTikhonov 3.2956 3.9665 3.5471

HuTM 3.2549 3.9317 3.2996
HuLR 3.2472 3.9272 3.0033

HuLRTER 3.2069 3.8497 2.9413
HuLRTV 3.1689 3.6548 2.8794
IWIENER 0.4789 0.5412 0.4895
ITikhonov 0.4978 0.5149 0.4978

ITM 0.5211 0.8979 0.5217
ILR 0.5735 0.6110 0.5712

ILRTER 0.5793 0.6148 0.5959
ILRTV 0.5858 0.6261 0.6583

Table 6 shows the SSIM of image by different algorithms. We can see that the SSIM of enhanced
imaging result with the LRTV algorithm is higher than that with the other algorithms. This illustrates
the LRTV algorithm can better retain the structural information of the target.

Table 6. The SSIM with different algorithms in real data measurement.

Hands Prolapse Shoulder Abduction Hands Held

SSIMWIENER 0.4156 0.4529 0.4781
SSIMTikhonov 0.4914 0.4732 0.4963

SSIMTM 0.5248 0.5489 0.5367
SSIMLR 0.6514 0.6317 0.6849

SSIMLRTER 0.7569 0.6954 0.6958
SSIMLRTV 0.7694 0.7258 0.7157

4.3. The Proposed Algorithm in Complicated Scenario

Radar imaging and enhanced imaging are performed on two human body targets in order to
verify the applicability of the proposed algorithm. In the simulation experiment, all parameters remain
unchanged. The simulation scene is set as follows: the MIMO radar is placed at 1.5 m in front of the
human targets which are 1.60 m and 1.75 m high, the first case is that the two human body targets
stand close to one another and the second case is that the two human body targets stand far from
each other.

First of all, the radar imaging result with two human body targets can be obtained by the BP
algorithm. Then, we enhance the radar images only by use of the LR algorithm and the LRTV algorithm
to verify the applicability of the proposed algorithm.

In Figure 13, it can be seen that the LR algorithm and the proposed algorithm can enhance the
BP imaging result when the two human body targets are standing close by. Specifically, not only can
the proposed algorithm obtain a clearer human contour compared to the LR algorithm but it can also
suppress noise well. As a result, the proposed algorithm for enhanced imaging with one human body
target also applies to more people. We should notice that the BP imaging result get the phenomenon of
azimuth ambiguity when the two human body targets are standing far from each other. Due to the
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influence of the angular resolution of the MIMO radar system, the imaging result will be distorted and
get azimuth ambiguity.

Electronics 2018, 7, x FOR PEER REVIEW  19 of 21 

 

The simulation experiment shows that the proposed algorithm can enhance the imaging result 
in a complicated scenario. Therefore, we believe that the proposed algorithm for enhancing radar 
images has good performance in real applications. 

 
Figure 13. The enhanced imaging methods are used in complicated scenarios. 

5. Conclusions 

Radar imaging methods have attracted a lot of attention in recent years. However, identification 
and imaging performance are limited in many different applications. Many factors affect the imaging 
results and the analysis of the target at a later stage, such as quality of radar imaging algorithms, 
arrangement of antenna arrays, parameters of hardware and the inevitable external conditions. In 
this paper, an enhanced imaging method based on the LR algorithm and the TV regularization is 
proposed. Compared to similar conventional algorithms, the LRTV algorithm performs better visual 
identification because it can effectively reduce the influence of the grating lobes and suppress noise 
amplification. Meanwhile, the LRTV algorithm better increases the image SNR, converges fast, has a 
higher SSIM (retain the structural information of the target well) and higher accuracy compared to 
other similar methods. In addition, the experiment result shows that the LRTV algorithm loses less 
information after the enhanced imaging processing and can better obtain the complete human 
contours and clear human limbs. In the end, that the proposed algorithm can enhance the imaging 
results in a complicated scenario is verified by simulation experiment. 

Author Contributions: Each author contributes extensively to the preparation of this manuscript. D.Z.: 
Literature search, figure, study design, data collection, data analysis, writing; T.J.: Study design, data analysis; 
Y.D.: Study design, data collection; Y.S.: Study design, data collection; X.S.: Data analysis, writing. All authors 
participated in the discussion about the proposal and contributed to the analysis of the results. 

Funding: This work was funded by the National Natural Science Foundation of China, grant numbers 61271441 
and 61372161. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Sherwin, C.W.; Ruina, J.P.; Raweliffe, R.D. Some Early Developments in Synthetic Aperture Radar System. 
IEEE Trans. Mil. Electron. 1962, 6, 111–115. 

2. Wiley, C.A. Synthetic Aperture Radar. IEEE Trans. Aerosp. Electron. Syst. 1985, 21, 440–443. 
3. Bartoletti, S.; Giorgetti, A.; Win, M.Z.; Conti, A. Blind Selection of Representative Observations for Sensor 

Radar Networks. IEEE Trans. Veh. Tech. 2015, 64, 1388–1400. 
4. Bartoletti, S.; Conti, A.; Giorgetti, A.; Win, M.Z. Sensor Radar Networks for Indoor Tracking. IEEE Wirel. 

Commun. Lett. 2014, 3, 157–160. 
5. Salman, R.; Willms, I.; Sakamoto, T.; Sato, T.; Yarovoy, A. Environmental imaging with a mobile UWB 

security robot for indoor localisation and positioning applications. In Proceedings of the IEEE European 
Microwave Conference, Nuremberg, Germany, 6–10 October. 2013; pp. 331–334. 

6. Anabuki, M.; Okumura, S.; Sato, T.; Sakamoto, T.; Saho, K.; Yoshioka, M. Ultra-wideband Radar Imaging 
Using Adaptive Array and Doppler Separation. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 190–200. 

7. Chiani, M.; Giorgetti, A.; Paolini, E. Sensor Radar for Object Tracking. Proc. IEEE 2018, 106, 1022–1041. 
8. Sakamoto, T.; Sato, T.; Aubry, P.; Yarovoy, A. Fast imaging method for security systems using 

ultrawideband radar. IEEE Trans. Aerosp. Electron. Syst. 2016, 52, 658–670. 

Figure 13. The enhanced imaging methods are used in complicated scenarios.

The simulation experiment shows that the proposed algorithm can enhance the imaging result in
a complicated scenario. Therefore, we believe that the proposed algorithm for enhancing radar images
has good performance in real applications.

5. Conclusions

Radar imaging methods have attracted a lot of attention in recent years. However, identification
and imaging performance are limited in many different applications. Many factors affect the imaging
results and the analysis of the target at a later stage, such as quality of radar imaging algorithms,
arrangement of antenna arrays, parameters of hardware and the inevitable external conditions. In this
paper, an enhanced imaging method based on the LR algorithm and the TV regularization is proposed.
Compared to similar conventional algorithms, the LRTV algorithm performs better visual identification
because it can effectively reduce the influence of the grating lobes and suppress noise amplification.
Meanwhile, the LRTV algorithm better increases the image SNR, converges fast, has a higher SSIM
(retain the structural information of the target well) and higher accuracy compared to other similar
methods. In addition, the experiment result shows that the LRTV algorithm loses less information after
the enhanced imaging processing and can better obtain the complete human contours and clear human
limbs. In the end, that the proposed algorithm can enhance the imaging results in a complicated
scenario is verified by simulation experiment.
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