
electronics

Article

A Low Hardware Consumption Elliptic Curve
Cryptographic Architecture over GF(p) in
Embedded Application

Xianghong Hu 1 ID , Xin Zheng 1, Shengshi Zhang 1, Shuting Cai 1,* and Xiaoming Xiong 1,2,*
1 School of Automation, Guangdong University of Technology, Guangzhou 510006, China;

xianghong_hu@163.com (X.H.); zx15521205871@gmail.com (X.Z.); xsshengshi_zhang@163.com (S.Z.)
2 Company of Chipeye Microelectronics Foshan Ltd., Foshan 528225, China
* Correspondence: shutingcai@gdut.edu.cn (S.C.); xmxiong@gdut.edu.cn (X.X.); Tel.: +86-020-3932-2553 (S.C.);

+86-0757-8668-7032 (X.X.)

Received: 11 June 2018; Accepted: 29 June 2018; Published: 3 July 2018
����������
�������

Abstract: In this paper, a low hardware consumption design of elliptic curve cryptography (ECC)
over GF(p) in embedded applications is proposed. The adder-based architecture is explored to
reduce the hardware consumption of performing scalar multiplication (SM). The Interleaved Modular
Multiplication Algorithm and Binary Modular Inversion Algorithm are improved and implemented
with two full-word adder units. The full-word register units for data storage are also optimized.
The design is based on two full-word adder units and twelve full-word register units of pipeline
structure and was implemented on Xilinx Virtex-4 platform. Design Compiler is used to synthesized
the proposed architecture with 0.13 µm CMOS standard cell library. For 160, 192, 224, 256 field
order, the proposed architecture consumes 5595, 7080, 8423, 9370 slices, respectively, and saves
17.58∼54.93% slice resources on FPGA platform when compared with other design architectures.
The synthesized result uses 35.43 k, 43.37 k, 50.38 k, 57.05 k gate area and saves 52.56∼91.34% in
terms of gate count in comparison. The design takes 2.56∼4.07 ms to perform SM operation over
different field order under 150 MHz frequency. The proposed architecture is safe from simple power
analysis (SPA). Thus, it is a good choice for embedded applications.

Keywords: elliptic curve cryptography; hardware consumption; scalar multiplication; adder units

1. Introduction

Elliptic curve cryptography (ECC) is an asymmetric cryptography proposed in 1986 by Miller [1]
and Koblitz [2]. The main advantage of ECC is that it uses a smaller key than some other methods,
such as the RSA encryption algorithm, to provide a comparable or higher level of security. International
standard organizations, such as NIST [3], ANSI [4] and IEEE [5], have standardized ECC.

Many hardware implementations of ECC have been proposed [6–18] for ECC. The accelerator of
modular multiplication (MM) can be divided into two categories: multiplier-based architecture and
adder-based architectures. Multiplier-based architecture includes specific prime field multiplication
and Montgomery Multiplication [19]. Adder-based architecture uses Interleaved Multiplication
algorithm [20]. Design in [8] is based on modified Montgomery multiplication algorithm using
an r-bit × r-bit multiplier. Designs in [9,10] are based on specific prime field and use a full-size n-bit ×
n-bit multiplier and fast reduction operation to perform MM. However, multiplier-based architecture
consumes large hardware area. Modular inversion (MI) operation is another tedious operation in ECC.
Binary Modular Inversion Algorithm is well known adder-based MI algorithm. The MM and MI units
in design [12] are adder based but two operation units are independent and do not share adder with
each other.
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In this paper, an adder-based architecture with low hardware consumption over GF(p) is proposed.
The main contributions of this paper are as follows:

• Interleaved Modular Multiplication Algorithm and Binary Modular Inversion Algorithm are
improved carefully to make full use of hardware source of adder and register. MM and MI are
implemented with two full-word adder units and four full-word register units.

• The utilization of registers is optimized to minimize the hardware area. For data register, MA,
MS, MM, MI consume four full-word register units and scalar multiplication (SM) operation uses
eight full-word register units.

• The architecture is flexible and safe from SPA. The parameters, such as prime value p, elliptic curve
point P and scalar value k, can be easily deployed without hardware reconfiguration.

The rest of the paper is arranged as follows. Section 2 reviews the elliptic curve (EC) and EC
scalar multiplication (SM). Section 3 presents a low hardware consumption architecture over GF(p).
Section 4 gives the result of the implement followed by analysis and comparison with other designs.
The paper is concluded in Section 5.

2. Mathematical Background

2.1. Elliptic Curve Over GF(p)

This section provides a brief introduction to elliptic curve over GF(p) and the finite field arithmetic
involved. More information about elliptic curve cryptographic primitives can be found in [5,21].
A non-super singular elliptic curve E over GF(p) for p > 3 can be described by Weierstrass equation.

y2 = x3 + ax = b (1)

where x, y, a and b are elements of GF(p) and 4a3 + 27b2 6= 0 (mod p). The set of points (x, y) which
satisfies Weierstrass equations together with the point at infinity consists an abelian group.

In affine coordinates, the point addition (PA) and point doubling (PD) operations can be
represented as follows: assuming that P1 = (x1, y1) and P2 = (x2, y2) are on the elliptic curve,
PA formulas for computing P3(x3, y3) = P1(x1, y1) + P2(x2, y2) are:

x3 = λ2 − x1 + x2

y3 = λ(x1 − x3)− y1
(2)

with

λ =


y2−y1
x2−x1

, if P1 6= P2

3x2
1+a

2y1
, if P1 = P2

(3)

When P1 = P2, i.e., adding a point to itself, this special case operation is called PD operation.
In this paper, only two full-word adder units are needed. In affine coordination, PA operation consists
of one MI, two MM, and six MA/MS operations, whereas PD operation needs one MM and two
MA/MS more operations than PA. In order to reduce the power dissipation, optimization of MM and
MI operation are significant on the overall performance of the SM operation.

2.2. Elliptic Curve Scalar Multiplication

Scalar multiplication (SM) operation is an elemental operation of elliptic curve crypto systems.
The scalar multiplication is an operation of adding a EC point P to itself k times, denoted kP,
where k = (kl−1, ..., k0), l is the binary length of k. The scalar multiplication algorithm needs to
be able to resist simple power analysis (SPA) attacks. Therefore it is necessary to perform scalar
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multiplication as described in Algorithm 1 bellow, where PA and PD operations are performed for
every bit of the scalar.

Algorithm 1: Elliptic Curve SPA Resistant Scalar Multiplication
Input: scalar k and, EC point P
Output: EC point Q[0]: Q[0] = kP
1: Q[0] = P;
2: for i = l − 2 down to 0 do
3: Q[0] = 2Q[0]
4: Q[1] = Q[0] + P
5: Q[0] = Q[kl ]
6: end
7: reture Q[0]

3. Scalar Multiplication Architecture

In this section, a bottom-up optimization algorithm over GF(p) is presented, which takes
advantage of maximum reuse of adder unit.

3.1. Modular Addition/Subtraction

Modular addition (MA) and modular subtraction (MS) operations are performed as two step
operations of addition and subtraction operations according to Algorithm 2 given bellow. The most
significant bit of subtraction result can be used as the result of comparing the two numbers, for example
C[1]n in MA operation, where n is the length of p. In FPGA or ASIC, we could achieve addition or
subtraction operation with almost equal hardware, that is to say same adder. In proposed design,
MA and MS operations are performed in one cycle, so need two full-word adders. The adder is
considered as the minimum unit.

Algorithm 2: Modular Addition and Subtraction in GF(p)

Input: A, B, p: 0 ≤ A, B < p, p is prime field.
Output: R: R = (A + B) mod p
1: C[0] = (C[0]n, C[0]n−1, ..., C[0]0) = A + B
2: C[1] = (C[1]n, C[1]n−1, ..., C[1]0) = C[0]− p
3: if C[1]n = 1 then
4: return R = C[0]
5: else
6: return R = C[1]

Input: A, B, p: 0 ≤ A, B < p, p is prime field.
Output: R: R = (A− B) mod p
1: C[0] = (C[0]n, C[0]n−1, ..., C[0]0) = A− B
2: C[1] = (C[1]n, C[1]n−1, ..., C[1]0) = C[0] + p
3: if C[0]n = 1 then
4: return R = C[1]
5: else
6: return R = C[0]

The architecture of two used full-word adder units are illustrated in Figure 1. Left diagram is the
minimum adder unit, which can easily be modified to perform subtraction using B’s complement and
c = 1 as shown in right.

+ +

A

B

c=0 c=1

S=A+B

A

B
S=A-B

Figure 1. Adder unit.
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3.2. Modular Multiplication

Modular multiplication (MM) operation is an important component in the implementation
of SM operation. Traditional high-speed MM implementations use Montgomery multiplication or
specific prime field modular multiplication. In affine coordination, we choose Standard Interleaved
Modular Multiplication shown in Algorithm 3 given bellow. This algorithm has some disadvantages:
(1) The algorithm needs three additions with carry propagation in step 3 to step 5; (2) The comparison in
step 4 and 5 requires check of the all lengths of the operands in the worst case. The carry propagation of
addition has a significant influence on the latency. Before addition, the comparison must be performed
for MSB first. Those two operations cannot be pipelined without delay. There are researchers have tried
to address these problems previously, such as shown in [22]. In which, Algorithm 4 adopts Modular
multiplication using carry save addition and Algorithm 5 uses Optimized version of the new algorithm.
Algorithm 4 uses carry save adders to perform the additions inside the loop, and Algorithm 5 uses
lookup-table to reduce both area and time. Both algorithms have high complexity and are unsuitable
for the proposed design in this paper.

An improved Interleaved Modular Multiplication Algorithm is given in Algorithm 4 given
bellow. The step 4 in Algorithm 4 are used to replace the step 4 and step 5 in Algorithm 3 given bellow.
This modification addresses the timing latency of comparison and uses only two adders in one iteration.
After step 5 in Algorithm 3, because R may be greater than 2p, the computation of (R mod p) needs
two clock cycles with one full-word adder. In step 4 of Algorithm 4, (R− (Rn+1, Rn) ∗ p) is computed
instead of (R mod p), resulting one cycle saving in every iteration compared with Algorithm 3.
(Rn+1, Rn) is the two most significant bit of R and its value is 0∼3.

Algorithm 3: Standard Interleaved Modular Multiplication Algorithm
Input: X, Y, p: 0 ≤ X, Y < p, p is prime field.
Output: R: R = X ∗Y mod p
1: R = 0
2: for i = n− 1 downto 0 do
3: R = 2R + Xi ∗Y
4: if R > p then R = R− p
5: if R > p then R = R− p
6: end
7: return R

Algorithm 4: Interleaved Modular Multiplication Algorithm
Input: X, Y, p: 0 ≤ X, Y < p, p is prime field.
Output: R: R = X ∗Y mod p
1: R = 0
2: for i = n− 1 downto 0 do
3: R = 2R + Xi ∗Y
4: R = R− (Rn+1, Rn) ∗ p
5: end
6: if R > p then R = R− p
7: return R

The algorithm is implemented using the architecture shown in Figure 2. The implementation
uses only two full-word adder units shown in Figure 1 and one full-word register unit. For simplicity,
Figure 2 omits the output data and modular switch multiplexors which select input data to adders for
MA, MS, MM and MI. The Mult. Counter block, which is a down iteration counter, creates control
signal for selecting the i-th bit of X and selection signal for Mux before adders. When the counter’s
number reduced to 0, the iteration finishes. In Algorithm 4 given above, step 3 to 5 was performed in
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one cycle. Thus, the loop in step 2 to step 5 in Algorithm 4 takes n cycles and MM consumes (n + 1)
cycles, where n is field order. Step 6 is required to make sure the result R ∈ (0, 2p).
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Figure 2. Multiplication diagram.

3.3. Modular Inversion

Modular inversion (MI) operation is another significant component in the implementation of
SM operation. In order to using the same adder units shown in Figure 1, Binary Modular Inversion
Algorithm presented in [23] is selected. By assigning a instead of 1 to variable s in step 1 of Algorithm 5
given bellow, the result y satisfies y = a/x. This way, both MI and MM operations can be achieved in
the same run time. To guarantee all operations of each step finish in one cycle, one comparator and
three adders are needed in step 4. The comparator is needed for comparison of u and v. Two adders
are used for modular subtraction ((r− s) mod p) and one adder is required for subtraction (v− u).

Algorithm 5: Binary Modular Inversion Algorithm
Input: p, x ≤ (0, p)
Output: y, satisfying xy = 1 mod p
step1: u = p; v = x; r = 0; s = 1;
step2: if (u is even)

u = u/2;
if (r is odd) r = (r + p)/2;
else if (r is negative) r = (r + 2p)/2;
else r = r/2;

step3: if (v is even)
v = v/2;
if (s is odd) s = (s + p)/2
else if (s is negative) s = (s + 2p)/2
else s = s/2

step4: if (both u and v are odd)
if (u > v) r = r− s; u = u− v;
else s = s− r; v = v− u;

step5: if (u = 1)
if (r < 0) return r = r + p;
else return r.

else if (v = 1)
if (s < 0) return s = s + p;
else return s.

else go to step 2.



Electronics 2018, 7, 104 6 of 13

Algorithm 5 given above is the modified version of Binary Modular Inversion Algorithm to
achieve minimum hardware consumption. In step 4, the comparison result of u and v can be
pre-calculated in step 2 or step 3 and this step completes only the calculation of (r− s) and (u− v) or
(s− r) and (v− u). In the case of r is negative in step 4, (r/2 mod p) can be calculated by adding r to
p and right shifting in step 2 when r is positive odd or negative odd. Similar cases are handled the
same way.

Figure 3 bellow gives the design architecture of implementing Algorithm 5. For simplicity,
the output data and modular switch multiplexors, which select input data of adders for MA, MS,
MM and MI, are omitted in Figure 3. The Inversion Ctrl block is a state machine of seven state: 3′b111
for step 1, 3′b000 for setp 2, 3′b001 for step 3, 3′b010 and 3′b011 for step 4, 3′b100 for step 5 and 3′b101
for finish. Table 1 bellow shows the data and operators of each step in Algorithm 5. In step 2 or step 3,
with the exception of performing (r/2 mod p) or (s/2 mod p), (u/2− v) or (u− v/2) should be
executed in order to pre-calculate comparison result of u and v for step 4.

reg r

reg s

reg u

reg v

Inversion Ctrl

adder1

adder2

001
010

100

110

011

101

000

111

001
010

100

110

011

101

000
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001
010
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110

011

101

000

111

001
010

100

110

011

101

000

111

001
010

100

110

011

101

000
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001
010

100

110
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1

0

10

u>>1

v>>1

0 1

1

A1

B1

c1

A2

B2

c2
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100
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011
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000
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110

011
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0
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0

0

0

0

S1>>1

S1>>1

v>>1

u>>1

0

1

Figure 3. Inversion diagram.
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Table 1. Inversion state and Mux.

State 111 000 001 010 011 100 101 110

adder1 null + + − − 0 + null
A1 null r s r s 0 r null
B1 null p or 2p p or 2p ∼s ∼r 0 p or 0 null
c1 null 0 0 1 1 0 0 null

adder2 null − − − − 0 + null
A2 null u/2 u u v 0 s null
B2 null ∼v ∼v/2 ∼v ∼u 0 p or 0 null
c2 null 1 1 1 1 0 0 null
r 0 (r + p)/2 or (r + 2p)/2 r r− s r r r null
s b s (r + p)/2 or (r + 2p)/2 s s− r r or s r + p or r null
u p u/2 u u− v u u u null
v a v v/2 v v− u v v null

At each iteration in step 2 and 3, either u or v is reduced one bit of length, and total number
of iterations is 2n, where n is field order. In worst case, the number of iterations of step 4 is 0.5n.
Therefore, the overall total number of iterations is at most 2.5n.

3.4. Point Addition and Point Doubling

The MA, MS, MM, MI operations have been introduced above. Because all those operations use
the same adder units and the same register units, the operations must be performed one after one.
Point addition (PA) and point doubling (PD) operations consist of those operations. The scheduling of
those operations in PA and PD of proposed architecture is given by Algorithm 6 bellow. It is noted that
PA and PD operations need six full-word registers: x1, y1, x2, y2, t1, t2. The remaining two registers are
used for SM scalar k and prime field p.

Algorithm 6: Point Addition and Point Doubling

Input: P1(x1, y1), P2(x2, y2)
Output: P3(x3, x3) = P1 + P2
1: t3 = y2− y1
2: t2 = x2− x1
3: t1 = t3/t2
4: t2 = t1 ∗ t1
5: t3 = t2− x1
6: x3 = t3− x2
7: t3 = x1− x3
8: t2 = t1 ∗ t3
9: y3 = t2− y1
10: return x3,y3

Input: P1(x1, y1), P2(x2, y2)
where x1 = x2 and y1 = y2
Output: P3(x3, x3) = P1 + P2
1: t2 = x1 ∗ x1
2: t3 = t2 + t2
3: t3 = t2 + t3
4: t3 = t3 + a
5: t2 = y1 + y1
6: t1 = t3/t2
7: t2 = t1 ∗ t1
8: t3 = t2− x1
9: x3 = t3− x2
10: t3 = x1− x3
11: t2 = t1 ∗ t3
12: y3 = t2− y1
13: return x3,y3

3.5. Scalar Multiplier Architecture

In this section, the block diagram of scalar multiplication over GF(p) is given in Figure 4.
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Figure 4. Inversion diagram.

Scalar Mult Core block performs modular operations, MA, MS, MI, MM, and point operations,
PA, PD, SM. The finish-flag signal is set to high when all the calculations are done and the result is
ready for master system.

Main Controller block is a state machine which controls PA, PD and SM operations. In addition,
it also controls data transforming from Register Block to Modular Controller and from Modular
Controller to Register Block.

Modular Controller block performs one of MA, MS, MM, and MI operations at a time.

4. Implementation and Result

The elliptic curve scalar multiplication architecture described above was implemented using
Verilog-HDL language. The design was synthesized using Design Compiler with the 130-nm CMOS
standard cell library. The hardware area is evaluated based on a 2-way NAND gate. This architecture
is also implemented on FPGA platform Xilinx Virtex-4 xc4vsx35, using Modelsim for simulation and
Xilinx ISE 14.7 for synthesis, mapping, and routing.

Since MI operation can also perform the computation a/b mod p, PA operation needs 1 MI,
2 MMs and 6 MA/MSs and PD operation needs 1 MI, 3 MMs and 8 MA/MSs in Algorithm 6 given
above. The number of cycles for the PA and PD operations are given by (4), respectively.

PA = I + 2M + 6A

PD = I + 3M + 8A
(4)

where I is the cycles of MI operation, M is the cycles of MM operation and A is the cycles of MA/MS
operation. The total number of cycles to perform SM operation is given by (5).

SM = (n− 1) ∗ PA + (n− 1) ∗ PD (5)

where n is prime field order.
Table 2 shows the execution cycles of different operations over 160∼256 field order. In 100 tests,

a 256-bit EC takes 1066 cycles for PA operation, 1325 cycles for PD operation and 610 k cycles for
SM operation.
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Table 2. Execution cycles for different operations.

Field Order Number of Cycles

Modular Mult. Modular Inversion Point Addition Point Doubling Scalar Mult.

160 163 338 671 834 239 k
192 195 405 801 998 344 k
224 227 473 932 1163 467 k
256 259 545 1066 1325 610 k

The proposed architecture costs two full-word adder units and twelve full-word register units.
Table 3 shows that the hardware consumption of all registers and adders occupied 42% of total area in
average. Register includes twelve register units for data storage and other non-combination. As the
bit width increases, the hardware consumption percent of the adder units increased from 13.72%
to 15.09%.

The inversion and multiplier units in [12] are implemented by using the Binary Inversion
Algorithm and Interleaved Modular Multiplication Algorithm, similar to this work. However,
the design in [12] uses two inversions and two multipliers whereas the proposed design here uses
one inversion and one multiplier, both based same two adder units. As shown in Table 4, in 256-bit
field order, the design in [12] requires 167.5 k gate while this design uses 57.05 k gate, saving 65.94%
hardware resource. In the given field order, AT parameter of this design is 232 and the AT of [12] is
504. This design has advantages of area-time product. The proposed design saves 64.77% to 65.94%
hardware resource comparing with [12] under different field order.

Table 3. Hardware consumption of register and adder on ASIC.

Field Order Total Area
Area Percent

Register Adder Reg and Add Register Adder Reg and Add

160 35.43 9.91 4.86 14.77 27.97% 13.72% 41.69%
192 43.37 11.83 6.26 18.09 27.28% 14.43% 41.71%
224 50.38 13.93 7.23 21.16 27.65% 14.35% 42.00%
256 57.05 15.75 8.61 24.36 27.61% 15.09% 42.70%

Table 4. ECC Hardware Performance Comparison on ASIC.

Design Technology Field Order Area Frequency Cycles SM AT 1 Power Energy 2

(k gate) (MHz) (k) (ms) (mW) (µ J)

This work 130 nm

160 35.43 150 239 1.60 57 7.40 11.79
192 43.37 150 342 2.28 99 8.18 18.65
224 50.38 150 468 3.12 157 10.05 31.36
256 57.05 150 610 4.07 232 11.60 47.17

[12] 130 nm

160 101.3 150 129.3 0.87 88 - -
192 123.1 138 - 1.36 167 - -
224 143.9 130 - 1.95 281 - -
256 167.5 110 - 3.01 504 - -

[8] 130 nm

160 117.5 137.7 153 1.21 142 - -
192 118.02 137.7 184 1.44 170 - -
224 120.26 137.7 297 2.34 281 - -
256 120.26 137.7 340 2.68 322 - -

[10] 130 nm 256 659 163.7 3.3 0.02 13 - -

[15] 130 nm 256 122 556 562 1.01 123 - -

[16] UMC L180 P-192 11.686 1.695 1003 592 6915 0.193 114.2

[17] IBM 130 nm GF(2163) 8.756 - 191 - - - 4.19

[18] 65 nm GF(2163) 11.571 13.56 7.87 0.58 6.71 0.077 0.61
1 AT: Area * SM, area-time product. 2 Energy: Total energy of 1 scalar multiplication.
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The design in [8] adopts word-based Montgomery multiplier with an optimized data bus and
an on-the-fly redundant binary converter boost the throughput of the EC scalar multiplication.
Compared with [8] in different field order, the proposed design saves 52.56∼69.85% hardware resource.
The design in [10] is based on full-size 256-bit × 256-bit multiplier and uses 659 k gates to implement.
The design in [15] is based on systolic arithmetic unit and operates in higher frequency at 556 MHz.
The designs in [10,15] has smaller AT parameters than the proposed design here.Compared whit
designs in [8,10,12,15], the proposed design here consumes least hardware, saving 52.56∼91.34%
hardware resource on the average.

The processor in [16] consists of with CPU, data RAM, program memory and others. Though it
consumes 11.686 k gate area, but it perform one scalar multiplication operation requires up to 1003 k
clock cycles, 2.93 times over this proposed design here. The scalar multiplication execution time
and energy of [16] can be computed from cycles, frequency and power. The total energy to perform
one 192-bit scalar multiplication of this proposed design is 18.65 µJ while the processor in [16] is
114.20 µJ. Because the low frequency with 1.695 MHz, the processor in [16] has very large scalar
multiplication execution time with 592 ms. The processor in [17] consumes five m-bit registers and
require seven multiply operations per key bit in GF(2m). It has little area and energy than this proposed
design here. However, it did not give detail information about scalar multiplication execution time
or frequency, so there is no way to compare the SM operation time with the proposed design here.
The design in [18] adopts registers and bit-level multiplier share method and consumes 11.571 k gates
area. The complexity of the scalar multiplication between GF(p) and GF(2m) is different, as example,
the modular addition needs carry addition and modulo p operation in GF(p) while modular addition
needs just xor operation in GF(2m). The modular addition is fundamental operation in low area ECC
architecture. Therefore is difficult to compare which are better among [17,18] and the proposed design
here from area consumption and operation time.

Table 5 provides detailed data of the proposed hardware implement of EC designs over 160, 192,
224, 256 field order on given FGPA platform. It consumes 239, 342, 468, 610 clock cycles and takes 5595,
7080, 8423, 9370 Slices to perform SM operation. The SM operation costs 239 clock cycles with 9199
Slice LUTs, 2833 Flip Flops and 8 DPS48s in 160 field order.

Table 5. FPGA Implementation Result.

Field Order Frequency (MHz) Cycles (k) Slice LUTs Flip Flops DSP Slice

160 26.89 239 9199 2833 8 5595
192 21.55 342 11,184 3377 10 7080
224 20.87 468 14,184 2787 12 8423
256 20.44 610 16,195 3194 14 9370

Table 6 shows the performance data of several existing FPGA implementations based on EC
scalar multiplication. The architecture in [6] is based on a unified Add/Sub/Mul unit. It consumes
13,158 Slices over 256 field order while architecture designed in this paper consumes 9370 Slices.
On the same platform, the proposed architecture saves 17.58∼28.79% on average in terms of used
slices comparing with [6] over different field orders. The architectures proposed in [6,12] are capable of
resisting SPA. The architectures in [13,14] are designed to implement Elliptic Curve Digital Signature
Algorithm over GF(2163) while the scalar multiplication implementation data are given in the above
Table 6. Compared with [13] over 163 field order, architecture provided in this paper uses 42.14% less
slices over 160 field order and 26.78% less slices over 192 field order. The proposed architecture has the
lowest hardware consumption among designs given in above Table 6.



Electronics 2018, 7, 104 11 of 13

Table 6. colorredECC Hardware Performance Comparison on FPGA.

Design Platform Field Order Area Frequency (MHz) Cycles (k) SM (ms)

This work Virtex-4

160 5595 Slices 26.89 239 8.89
192 7080 Slices 21.55 342 15.87
224 8423 Slices 20.87 468 22.43
256 9370 Slices 20.44 610 29.84

[6] Virtex-4

160 7088 Slices 53 74.2 1.4
192 8590 Slices 48 110.4 2.3
224 10,800 Slices 43 150.5 3.5
256 13,158 Slices 40 200.0 5.0

[12] Virtex-4

160 12,415 Slices 60 132.0 2.2
192 14,858 Slices 53 185.5 3.5
224 17,331 Slices 47 253.8 5.4
256 20,123 Slices 43 331.1 7.7

[13] Virtex-5 GF(2163) 9670 Slices 147.5 41.7 0.283

[14] Virtex-4 GF(2163)
13,016 Slice LUTs 194.88 109.7 0.56216823 Flip Flops

[24] EP3SL150F1153C GF(2233)
8799 ALUT 276.24 447.5 1.6217143 Registers

5. Conclusions

In this paper, a low hardware consumption and SPA resistant elliptic curve design over GF(p)
is presented. Using two full-word adder units, a bottom-up optimization approach is developed
to schedule all operations of scalar multiplication at algorithm level. The Interleaved Modular
Multiplication Algorithm and Binary Modular Inversion Algorithm are improved to make them
implementable using two adder units. The utilization of registers is also optimized and uses
only twelve full-word register units for data storage in the design implementation. The proposed
architecture has been synthesized by Xilinx ISE14.7 on a Virtex-4 platform and Design Compiler
using 130 nm CMOS. Compared with other designs, it uses 17.58∼54.93% fewer slices on the FGPA
platform and 52.56∼91.34% fewer gates in ASIC over 160, 192, 224, 256 field orders. The architecture is
reconfigurable for any prime p and is also safe from simple power analysis attracts. It suites ECC in
embedded applications.
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The following abbreviations are used in this manuscript:

ECC elliptic curve cryptography
EC elliptic curve
SM scalar multiplication
MM modular multiplication
MI modular inversion
MA modular addition
MS modular subtraction
PA point addition
PD point doubling
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