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Abstract: Intelligent radios collect information by sensing signals within the radio spectrum, and the
automatic modulation recognition (AMR) of signals is one of their most challenging tasks. Although
the result of a modulation classification based on a deep neural network is better, the training of the
neural network requires complicated calculations and expensive hardware. Therefore, in this paper,
we propose a master–slave AMR architecture using the reconfigurability of field-programmable
gate arrays (FPGAs). First, we discuss the method of building AMR, by using a stack convolution
autoencoder (CAE), and analyze the principles of training and classification. Then, on the basis
of the radiofrequency network-on-chip architecture, the constraint conditions of AMR in FPGA
are proposed from the aspects of computing optimization and memory access optimization. The
experimental results not only demonstrated that AMR-based CAEs worked correctly, but also showed
that AMR based on neural networks could be implemented on FPGAs, with the potential for dynamic
spectrum allocation and cognitive radio systems.

Keywords: wireless communication; signal recognition; cognitive radio; neural networks;
reconfigurable hardware

1. Introduction

Intelligent radios collect information by sensing signals within the radio spectrum, including the
presence, type, and location of the signals. This capability not only identifies friendly or hostile signals
in military applications, but also helps regulators to detect whether the use of the radio equipment
complies with the spectrum rules. In both cases, an intelligent radio is allowed to take countermeasures
corresponding to the perceived information.

In recent years, the application of intelligent radio technology in commercial communications
has been defined as software-defined radio (SDR) and cognitive radio (CR) [1,2]. On software and
hardware platforms under software control, an SDR can select its operating parameters, including
modulation format, coding scheme, antenna configuration, and bandwidth. Therefore, the receiver
needs to have a robust method to identify these parameters. CR, by means of opportunities, utilizes the
available spectrum of the existing users to provide a solution to the problem of insufficient spectrum
utilization [2]. Therefore, one of the key tasks of CR is spectrum sensing [3], which collects information
in spectrum scenarios. This information needs to be able to evaluate the possibility of interference with
other users and set the corresponding operating parameters. There are plans to allocate the unused
spectrum to television broadcasting services through CR.

Signal recognition is a challenging and critical task for intelligent radios. First, the recognition
algorithm needs to be able to flexibly sense different signal types under different conditions. For
example, primary users with different sensitivity requirements, different transmission rates, and
different modulation methods. Second, the recognition algorithm should minimize the requirement
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for signal preprocessing. For example, these algorithms should not rely on carrier synchronization and
channel estimation, because the smart receiver is not synchronized with the perceived radio signal
and there is no a priori knowledge of the signal parameters. Finally, even at low signal-to-noise ratios
(SNR), the recognition algorithm can provide higher performance with lower complexity in shorter
observation time.

Automatic signal modulation recognition (AMR) is a major research direction of signal recognition.
At present, AMR is implemented using the three types of methods listed in Figure 1: (1) The
first method is based on the likelihood ratio test (LRT), such as the average LRT proposed by
El-Mahdy et al. [4], the general LRT proposed by Panagiotou et al. [5], and the hybrid LRT proposed by
Hameed et al. [6]. The disadvantage of this type of algorithm is that the assumption that the symbols are
independent and identically distributed is usually not true in reality, and the complexity increases with
an increase in the number of unknown parameters. In addition, this type of method is more sensitive
to the mismatch of the model; for example, when a time shift occurs, the recognition performance
deteriorates considerably; (2) The second method is a feature-based (FB) method that relies on prior
knowledge. The features for classification include Dobre’s use of first-order cyclostationary features of
digital signals [7] and second-order cyclostationarity [8], the space–time correlation matrix features
proposed by Marey and Choqueuse [9,10], wavelet features proposed by Hassan [11], and constellation
features proposed by Mobasseri [12]. This method can obtain better results under the condition of
a low SNR, but it is necessary to calculate various feature quantities according to the mathematical
model of the modulation method in advance, and the calculation method is relatively complicated.
In addition, some feature quantities are not complete. For example, the cyclic statistics of signals,
such as single-carrier linear digital modulation, orthogonal frequency division multiplexing, and
single-carrier frequency domain equalization, have even-order cyclostationarity. Therefore, there
are certain restrictions when dealing with signals of these unknown modulation modes; (3) The
third method includes blind recognition methods that do not rely on prior knowledge. For example,
Migliori’s method of recurrent neural network autoencoder [13] and the convolutional neural network
method proposed by O’Shea [14]. Such methods do not need to know the modulation mathematical
model of the signal [15]. However, finding a suitable neural network structure requires proficiency in
artificial intelligence.
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Figure 1. Main implementation of modulation classification.

Although the neural network-based modulation classification results presented in [13,14] are
better, neural network training is a computationally intensive task. Computers that handle large
amounts of radiofrequency (RF) data are expensive, and their size and power consumption do not
meet the requirements of portable applications. To this end, we propose the following novel solutions:
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• A new structure of AMR based on a stacked convolution autoencoder is proposed [16]. The
purpose of neural networks is to approximate the transformation function from the input layer to
output layer. Compared with neural networks, the autoencoder can obtain the sparse feature of
the signal automatically. The stacked autoencoders can learn multiple expressions of the original
data layer by layer. Each layer is based on the expression of the bottom layer, but is often more
abstract and more suitable for complex tasks such as classification. Compared with the LRT
method, it is no longer necessary to spend a lot of work to build a signal, noise model, and
a cost function. Moreover, the randomness of the channel environment makes these models
vulnerable to failure. Compared with FB’s method, this method can automatically generate
signal characteristics. This feature is suitable for some special occasions, particularly military
communications. Because the waveform of the signal in these cases is often non-standard and
time-varying in time, frequency and the other domains, the signal characteristics are difficult
to predict.

• We used the reconfigurability of field-programmable gate arrays (FPGA) to propose a master–slave
AMR architecture. In this architecture, shown in Figure 2, the deep neural network setup
and training tasks are performed on a workstation equipped with a graphics processing unit.
First, the RF signal digitizer converts the modulated RF signal to sampled data and enters
the workstation for training the network. After completing the neural network training, it is
converted to the FPGA hardware configuration file on the workstation. Finally, the hardware
configuration file is transmitted to the FPGA SDR platform by wireless or wired communication,
updating the configuration of the AMR function. The trained hardware model can be operated on
portable radio equipment, thus reducing the requirements of hardware. If there is a new type
of modulation that needs to be identified, the system needs to be retrained. After the training is
completed, new weights are generated. At this time, the original FPGA fabric needs to be updated.
Therefore, reconfigurability is necessary for the evolution of the system. The current AMR is
not reconfigurable, so no recognition can be made for the new modulation type. With respect
to such a situation, the proposed scheme adds value to the actual project. This is also a very
important function for identifying non-standard and time-varying signals in multiple domains.
As a large number of intelligent radio terminals can share the training results of a workstation,
the computational costs can be decreased considerably.
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Figure 2. Master–slave auto-modulation classification architecture in which neural network training is
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The rest of this paper is organized as follows. In the next section, the principle of the modulation
classification of radio signals is analyzed, and a modulation classifier structure using convolutional
autoencoders (CAEs) is proposed. In Section 3, we discuss how to convert a trained neural network
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model into an FPGA hardware function module. The experimental results of the modulation
classification of actual radio signals are provided in Section 4, and the related discussion of the
results is presented in Section 5.

2. Construction of Automatic Modulation Recognition

The deep learning method represented by the convolutional network (CNN) [17] adopts the local
connection method and the sharing weight method. This reduces the number of parameters, shows
superiority in image processing, and is closer to the actual biological neural networks. In addition to
reducing the number of parameters, CNN uses feature extraction to avoid the complex pre-processing
of the image and can directly input the original image [17]. If the input of the deep neural network is
not an image but a sampling of the communication signal, the work carried out in [13] and [14] proves
that the signals of different modulation methods can be better classified.

2.1. Problem Description

2.1.1. Signal Characteristics

In digital receivers, the in-phase and quadrature components of the radio signal can be obtained
through analog-to-digital conversion, forming a 1× N complex-valued vector. The received signal can
be expressed as follows:

r(t) = s(t)× h(t) + n(t) (1)

where s(t) is a modulated signal whose frequency, phase, amplitude, etc., are controlled by analog
or digital modulation signals. Further, h(t) is the channel impulse response function and n(t) is
the additive noise in the channel. However, Equation (1) is an idealized expression. In practical
applications, the following influencing factors of the application are not negligible: the random phase
noise nLo(t) of the carrier frequency, the random phase noise nclk(t) of the phase of the sampling
clock, the time-varying of the amplitude-frequency and phase-frequency characteristics of the channel
corresponding function h(t), the Gaussian nature of additive noise, and so on. These factors are
time-varying sources of error. The actual signal is as follows:

r(t) = e−j×nLo(t)
∫ t0

τ=0
s(nclk(t− τ))h(τ) + n(t) (2)

Equation (2) shows that the instantaneous phase of the signal is affected by the phase noise of the
carrier. The sampling interval of the signal is randomly changed. For an actual communication system,
the phase noise of the carrier and the sampling clock should be kept at a fairly low level.

Assuming that the baseband signal is a digital signal, the transmitted information bits are
converted into complex baseband signals according to the modulation rules. Then, after the modulation,
the voltage of the complex baseband signal is projected onto a sine or cosine function with a carrier
frequency of fc. By controlling the changes in the amplitude, phase, frequency, etc., of the carrier
signal, we can modulate the information bits discretely into the space of these parameters during each
symbol’s time period. For example, M-QAM’s amplitude, phase mapping is as follows:

sM−QAM = Re
[
(Amc + jAms)g(t)e−j2π fct

]
= Amcg(t)cos(2π fct) + Amsg(t)sin(2π fct) (3)

where Amc and Ams are discrete amplitude values and m = 1, 2, · · · , M. M is the number of Amc and
Ams. For 16−QAM, M = 16.

After the received signals are sampled as discrete I/Q data, they are fed to the neural network
for modulation recognition. The data file needs to be arranged in a certain format and structure. The
I/Q data is divided into data vectors containing NSV samples. Each data segment is composed of
interleaved I and Q values for each sample to form a vector of length 2× NSV . Assume that the
number of samples per symbol is NSS. Then, each vector contains NSV/NSS symbols. These vectors are
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placed in two sets for training and testing, respectively (the numbers are NVTr and NVTe, respectively).
In addition, the modulation types and locations in these sets are random. In all of the experiments, the
parameter NSV is the same for each modulation type. The specific values of all of the parameters are
shown in Table 1.

Table 1. Format of the data used for classification.

Property Name Parameter Value

Number of samples per symbol NSS 20
Number of samples per vector NSV 200

Number of training vectors NVTr 60,000
Number of training vectors per modulation NVM 10,000

Number of test vectors NVTe 10,000

2.1.2. Recognition of Modulation

Because of the diversity of the modulation methods, the modulation recognition can be seen as an
N-class decision problem where the input is a complex time series of received signals. Assuming that
a decision system ∅ receives the modulated signal r, it can output the prediction of the modulation
method ∅(r), where the number of modulation methods is a fixed value, Nmod. Let the signal
modulated by r be ϕ(r)—then, the characterization of ∅ can use its full joint distribution. Thus,
the correct prediction for a given signal can be expressed as follows:

Pc(i′
∣∣i) = Pr

{
∅ (r) = i′ and ϕ(r) = i

}
(4)

To fully evaluate the performance of ∅, the average of the classification accuracy of the various
modulation methods is used:

Pcc =
1

Nmod

Nmod

∑
i=1

Pc(i′|i) (5)

Of course, Pcc is a function of the SNR as the SNR affects the signal. Here, SNR = 10 log(S/N),
where S is the power of the signal, and N is the power of the noise.

2.2. Construction Methods

The neural network used for AMR consists of a series of pre-trained CAEs [16] followed
by a fully connected softmax classifier layer. The CAE is just an autoencoder that combines the
principles of model design from CNN. This type of model has many applications, including depth
feature visualization [17], intensive prediction [18], generative modeling [19,20], and semi-supervised
learning [21].

2.2.1. Structure of Stacked CAEs

CAEs filter the input data by using a convolution kernel. In traditional methods, an autoencoder
does not take into account the fact that signals can be regarded as the sum of other signals. In contrast,
a CAE uses a convolution operation to do so. It filters the input signal to extract part of its content.
In the two-dimensional discrete space, convolution operations can be defined as follows:

O(i, j) =
2k+1

∑
u=−2k−1

2k−1

∑
v=−2k−1

F(u, v)I(i− u, j− v) (6)

where O(i, j) represents the convolution results of (i, j), 2k + 1 is an edge of a rectangular odd
convolution kernel, F is a convolution kernel, and I represents the two-dimensional discrete data of
the input. As shown in Figure 3, a convolution kernel is used to convolute the input two-dimensional
data I at each location (i, j).
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CAEs allow model learning to minimize the optimal filter for reconstruction errors, rather
than manually designing filters. CAEs are usually used to extract features from input data so as
to reconstruct the input data. Due to their convolution property, the number of activation graphs
generated by CAEs is the same irrespective of the dimensions of the input data. Therefore, CAEs
completely ignore the structure of a two-dimensional image itself, but act as a general feature extractor.
Once these convolution kernels are trained and learned, they can be applied to any input data for
feature extraction.

A single convolution filter cannot learn to extract various patterns of images. Therefore, each
convolutional layer is composed of the convolution kernel with n depths of D, where D represents
the number of channels for input data. Therefore, the convolution of each input data element with
depth D:

I = {I1, · · · , ID} (7)

and a set of n convolution kernels:
F = {F1, · · · , FD} (8)

produces a set of n activation graphs:

Om(i, j) = σ

(
D

∑
d=1

2k+1

∑
u=−2k−1

2k−1

∑
v=−2k−1

Fmd(u, v)Id(i− u, j− v)

)
m = 1, · · · , n (9)

To improve the generalization of the network, each convolution is wrapped with an activation
function σ so that the training process can learn to use the activation function to represent the input:

zm = Om = σ(I × Fm + bm) m = 1, · · · , n (10)

where bm represents the deviation of the m-th feature map. The resulting activation map is the encoding
of the input I in the low-dimensional space, the dimensions of which are the number of parameters
used to establish each feature map Om, that is, the number of parameters to learn.

To reconstruct the input data I from the generated feature map, a decoding operation is required.
The CAE is a complete convolutional network, so the decoding operation can be reconvoluted. Using
the generated n feature maps zm as inputs to the decoder, we can reconstruct the input data I from the
compressed information. Therefore, the reconstructed data Ĩ are the result of the convolution between
the feature map zm and the convolution filter F′:

Om(i, j) = σ

(
D

∑
d=1

2k+1

∑
u=−2k−1

2k−1

∑
v=−2k−1

Fmd(u, v)Id(i− u, j− v)

)
m = 1, · · · , n (11)
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The cost function used to train the neural network is the mean squared error:(
I, Ĩ
)
=

1
2
‖I − Ĩ‖2

2 (12)

For standard networks, a back-propagation algorithm is used to calculate the gradient of the error
function of the parameters. This result can be easily obtained with a convolution operation by using
the following formula:

∂E(I, Ĩ)
∂Fm

= I × δzm + z̃m × δ Ĩ (13)

where δzm and δ Ĩ are the delta of the feature map and the reconstruction data, respectively. The
weights are then updated using a stochastic gradient descent method.

In fact, the feature map of an autoencoder can be used as the input of another autoencoder, thus
forming a stacked architecture [22]. Let I(k), z(k), and Ĩ(k) represent the input, hidden, and output units
of a single autoencoder, respectively. Then, the process of forward propagation by the entire network
from the encoder is performed in accordance with the following formula:

z(k) = σ(F(k) × z(k) + b(k)) (14)

where k = 1, · · · , K, and z(0) is the input layer.
In our application for radio signal I/Q datasets, a random gradient descent method was used

for continuous, unsupervised training of a single autoencoder layer with a batch size of 50. For deep
belief networks, unsupervised pre-training can be conducted in a greedy, layered manner [23].

2.2.2. Training and Classification

After the completion of the unsupervised pre-training phase, supervised fine-tuning was carried
out. At this stage, we added pre-trained autoencoders to a pure feedforward multi-layer perceptron in
the form of Equation (15) and attached a final layer for the classification:

z(K) = so f tmax
(

F(K) × z(K−1) + b(K)
)

(15)

In the multilayer perceptron final output vector as a reflection of the modulation type of probability
distribution, L2 regularization item supervised learning was added to minimize the negative logarithm
likelihood function, to ensure that the model was in the stage of unsupervised learning sparse
activation. The value of a regularized item λ was set to 1 or 0, depending on the required experimental
configuration. Suppose that N is a sample list, K is the number of layers, z(K) is the output of the K-th
layer, and F(K) represents the weight matrix between the K-th layer and the (K + 1)-th layer. Then,
the layer sensor loss function can be expressed as follows:

J = − 1
N

N

∑
i=1

log
ez(K)ti

∑SK
m=1 ez(K)mi

+ λ
K−1

∑
k=0

sk

∑
v=1

sk+1

∑
u=1

(
F(k)

uv

)2
(16)

where ti is the index corresponding to the correct label of sample i and sk is the number of cells in layer
k. We use the batch stochastic gradient descent method to minimize Equation (14) [24]. The overall
architecture of our proposed modulation classifier is shown in Figure 4, and the fixed parameters used
in the experiment are listed in Table 2.
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Figure 4. Structure of a modulation classifier constructed using convolutional autoencoders (CAEs)
and Softmax.

Table 2. Parameters of the training modulation classifier.

Property Name Parameter Value

Activation function σ ReLU
Convolution depth D 1
Convolution filters m 256
Number of CAEs K 2

3. Implementation

It is very easy to change the architecture of a neural network by using software, but for the
hardware, the FPGA fabric cannot be arbitrarily reconfigured. First, a neural network cannot provide
a solution that satisfies all the applications. Second, the neural network architecture (size, type, and
number of layers) is the main driver of performance, but a generic FPGA solution cannot be created
because the various possible architectures are very large. Such a solution either consumes a lot of
resources or fails to achieve the desired throughput.

3.1. Architecture

RF network-on-chip (RFNoC) is an open-source framework for developing data processing
applications that can be run on FPGAs [25]. It is a method of modularizing signals or data processing
components on an FPGA and effectively accessing them. The processing is divided into blocks
(or computational engines), and data are passed between blocks. These blocks are connected to a
crossbar, which allows the arbitrary routing of packets between arbitrary blocks. RFNoC is responsible
for passing data between blocks, routes, and configuration blocks from the software. Data can also be
passed back and forth between RFNoC blocks and the software. We can decompose the radio system
into different functional blocks, each of which executes a digital signal processing (DSP) algorithm.
As shown in Figure 5, the data from the radio are routed to the AMR intellectual property (IP) block
proposed herein, and all of the data between the blocks are packed.
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Internally, all of the blocks contain a generic framework interface called Noc-Shell [15]. This
allows any type of AXI-Stream-compatible IP to be connected to the RFNoC network. Noc-Shell is
responsible for packetization, offline, routing, flow control, and any common settings between blocks.
By setting the appropriate routing information, Noc-Shell can correctly process all of the transmitted
packets so that they can reach the intended destination.

As shown in Figure 6, the components of the RFNoC module have three levels of content,
including its integration with GNU Radio. In a nutshell, the development work needed for these three
levels is as follows:
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Figure 6. Components of the RFNoC module have three levels of content.

1. The actual FPGA IP. This is the main part of the development work and includes various DSP
algorithms, modulation, demodulation, carrier synchronization, and so on.

2. Block control. To control the blocks from the software, some host driver code needs to be written.
3. GNU Radio integration (or integration into other frameworks). According to the actual

application requirements, determine whether this step is needed.
RFNoC is not only an extension of the SDR tool, but can also be used alone to build a modular

SDR application running on an FPGA. It provides a reliable, modular transport layer between the
FPGA and the processor so that different hardware platforms can use the exact same RFNoC FPGA
and software code, while RFNoC handles the FPGA-to-processor interface. In addition, any aspect of
the software interface specific to an RFNoC calculation engine is dynamically connected to the correct
FPGA component and is reusable across different hardware platforms.

3.2. AMR IP

Since RFNoC between the hardware and the software provides a convenient input/output
interface, our work focuses on the trade-off between the resources and the throughput in the neural
network, without the need for software development, the maintenance of the FPGA, and the repetitive
glue code. On the premise that its structure has been determined, we adopt the Vivado HLS tool
of Xilinx to implement the FPGA IP of the neural network shown in Figure 4. Vivado HLS is used
to synthesize the C, C++, or System C code into verilog or VHDL code. HDL is generated by using
“pragma” instructions inserted into the C code (or a separate instruction file) indicating how the HLS
compiler synthesizes the algorithm. For the design shown in Figure 4, we developed the roofline
model on the basis of a quantitative analysis of different optimization techniques (circulation block
and transform), computing throughput, and the required memory bandwidth so as to find the best
performance and the lowest FPGA resource demand solutions [26].
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The neural network described by the C++ HLS tool was composed of the rectified linear unit
function (ReLU), tanh, sigmoid, convolution, maxpool, and so on. We optimized the computations
and the memory access according to the design method proposed by Zhang et al. [26].

Although a large number of loop operations in the convolution consume considerable
computational time, the use of loop blocking can fully utilize the hardware resources in the FPGA
to perform parallel processing on the data and accelerate the computations [27]. The example code
in C++ HLS is shown in Figure 7. “Circular expansion” can be used to increase the utilization of
massive computing resources in FPGA devices. Expanding along different loop dimensions generates
different implementation variables. Whether the two deployed execution instances share data and
the amount of data shared affect the complexity of the generated hardware and ultimately affect the
number of deployed replicas and the frequency of hardware operations. The “circulation pipeline”
is a key optimization technique in the high-level synthesis that improves the system throughput by
overlapping the execution of operations from different loop iterations. The throughput achieved is
limited by the resource constraints and data dependencies in the application. The dependencies carried
by the loop will prevent the loop from being completely streamlined.Electronics 2018, 7, x FOR PEER REVIEW  10 of 15 
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Figure 7. Sample code for optimizing loop operations.

Memory access optimization is achieved through data reuse. The convolution of CAEs needs to
load the input/output feature maps and weights before starting and to write the generated output
feature maps back to the main memory. As the neural network is pre-trained, the weights can be
solidified into the FPGA. Therefore, the memory access is mainly the input/output of the feature map.
If the innermost loop is independent of the array, there are redundant memory operations between
different loop iterations. At this point, local memory promotion [28] can be used to reduce redundant
operations. To maximize the opportunity for data reuse through local memory promotions, we use a
polyhedron-based optimization framework to identify all legal loop transformations.

After synthesizing the neural network into the FPGA code through HLS, we packaged it using
verilog for secure interactions with the RFNoC architecture. This is also the Noc-Shell described in
Section 3.1, which connects the AXI-Stream-compatible neural network IP to the RFNoC network. The
structure is shown in Figure 8.
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Figure 8. Structure of automatic signal modulation recognition (AMR) IP implemented using an
RFNoC framework.

4. Results

4.1. Use of Resources

Through experiments in TensorFlow, we used some of these software components to construct an
optimized AMR structure as shown in Figure 4 and Table 2. In the AMR, the total number of weights
was 2,830,427. Each weight was a 32-bit fixed-point number and therefore, occupied 90,573,664 bits of
storage. We completed the pre-training of the AMR on a workstation with the Xeon E-1600V4 CPU,
operating frequency of 3.5 GHZ, and RAM capacity of 16 GB. The operating system used 64-bit Ubuntu
16.04 LTS. No GPU acceleration was used during the training. In the training process, the batch size of
the stochastic gradient descent was 1024.

The number of complex samples used for the training was 24 million, and these samples included
Nmod = 11 types of modulation. The samples were divided into 256 training sample sets. We used
approximately 93,000 samples for the training. These samples were evenly distributed over the SNR
range of −20 dB to +20 dB and were flagged so that we could evaluate the performance of a specific
subset. The training process was completed after 39 epochs. The total time required was 15 h and
26 min.

Then, we applied Vivado HLS to generate the AMR hardware code. Table 3 shows the estimates of
the resource usage after the hardware code was synthesized, indicating the nominal FPGA results for
the relevant component sizes used in the AMR. Although the block-random access memory (BRAM)
usage of the fully connected layer was high, the DSP48s module, the flip-flop (FF), and the look-up
table (LUT) generally achieved relatively low device utilization.

Table 3. FPGA resource usage of synthesized AMR.

Component Name BRAM18 DSP48 FF LUT

Fully connected layer 8 8 658 1183
Convolution 34 136 4882 1232

Tanh 1 0 51 206
Sigmoid 1 0 56 182

ReLU 0 0 12 45
Maxpool 2 0 77 252



Electronics 2018, 7, 122 12 of 16

4.2. Experiment

AMR was built into the FPGA image targeted to the Ettus SDR platform by using a workflow
that created the RFNoC image. The newly created AMR block did not require a custom C++ driver,
but required several XML definitions for use in GNU radio companion (GRC). Once the GRC XML
file was ready, the AMR module was inserted into the GRC flowchart for the user input and output
(Figure 9) and then run locally or on an Ettus SDR series device.

Electronics 2018, 7, x FOR PEER REVIEW  11 of 15 

 

used 64-bit Ubuntu 16.04 LTS. No GPU acceleration was used during the training. In the training 

process, the batch size of the stochastic gradient descent was 1024.  

The number of complex samples used for the training was 24 million, and these samples 

included 𝑁𝑚𝑜𝑑 = 11 types of modulation. The samples were divided into 256 training sample sets. 

We used approximately 93,000 samples for the training. These samples were evenly distributed over 

the SNR range of −20 dB to +20 dB and were flagged so that we could evaluate the performance of a 

specific subset. The training process was completed after 39 epochs. The total time required was 15 h 

and 26 min. 

Then, we applied Vivado HLS to generate the AMR hardware code. Table 3 shows the estimates 

of the resource usage after the hardware code was synthesized, indicating the nominal FPGA results 

for the relevant component sizes used in the AMR. Although the block-random access memory 

(BRAM) usage of the fully connected layer was high, the DSP48s module, the flip-flop (FF), and the 

look-up table (LUT) generally achieved relatively low device utilization. 

Table 3. FPGA resource usage of synthesized AMR. 

Component Name BRAM18 DSP48 FF LUT 

Fully connected layer 8 8 658 1183 

Convolution 34 136 4882 1232 

Tanh 1 0 51 206 

Sigmoid 1 0 56 182 

ReLU 0 0 12 45 

Maxpool 2 0 77 252 

4.2. Experiment 

AMR was built into the FPGA image targeted to the Ettus SDR platform by using a workflow 

that created the RFNoC image. The newly created AMR block did not require a custom C++ driver, 

but required several XML definitions for use in GNU radio companion (GRC). Once the GRC XML 

file was ready, the AMR module was inserted into the GRC flowchart for the user input and output 

(Figure 9) and then run locally or on an Ettus SDR series device. 

 

Figure 9. GRC flow diagram built using AMR blocks. 

We used 64,000 samples to test the AMR running on the Ettus X310. When the number of test vectors 

for each signal was 1000, the time for obtaining the modulation classification result was 3.75 ms.  

As shown in Figure 10, the experimental results showed that approximately 70%~80% of the 

average classification accuracy, 𝑃𝑐𝑐  was achieved for all of the SNRs in the test dataset. The average 

accuracy of other AMR methods for the same test data is also given in Figure 10. 
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We used 64,000 samples to test the AMR running on the Ettus X310. When the number of test
vectors for each signal was 1000, the time for obtaining the modulation classification result was 3.75 ms.

As shown in Figure 10, the experimental results showed that approximately 70%~80% of the
average classification accuracy, Pcc was achieved for all of the SNRs in the test dataset. The average
accuracy of other AMR methods for the same test data is also given in Figure 10.
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We used the confusion matrix to analyze the probability that the modulation type was misjudged.
A confusion matrix is the standard format used for evaluating accuracy. The rows of the matrix
represent the instances in a predicted class, while the columns represent the instances in an actual class
(or vice versa) [29]. A confusion matrix of dimension Nmod × Nmod consisting of the values of Pc(i′|i)
was constructed. The confusion matrices for the AMR with the highest overall performance are shown
in Figure 11 at SNRs of −6 dB, 0 dB, 6 dB and 16 dB.
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(b) SNR = 0 dB; (c) SNR = 6 dB; (d) SNR = 16 dB.

We used the confusion matrix to analyze the probability that the modulation type was misjudged.
A confusion matrix is the standard format used for evaluating accuracy. The rows of the matrix
represent the instances in a predicted class, while the columns represent the instances in an actual class
(or vice versa) [29]. A confusion matrix of dimension Nmod × Nmod consisting of the values of Pc(i′|i)
was constructed. The confusion matrices for the AMR with the highest overall performance are shown
in Figure 11 at SNRs of −6 dB, 0 dB, 6 dB and 16 dB.

In addition, we also examined the sensitivity of the AMR to each modulation family as a function
of the samples. Let αi and βi(NVT) be the true and predicted class label, respectively, for sample i.
Then the sensitivity of the AMR for class θ can be expressed as follows:

Sθ(NVT) =
∑Jαi = θ and βi(NVT) = θK

∑Jαi = θK
(17)

where J·K is the indicator function (JpK = 1 if p is true and 0 otherwise) and NVT is the number of test
vectors. We calculated the sensitivity of BPSK, GFSK, QAM16, and QAM64 with AMR at SNR = 5 dB.
The results are shown in Figure 12.
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5. Discussion

In this study, we explored a CAE-based automatic modulation classification method and its
implementation based on FPGA. This laid the foundation for the deployment of real-time, high-rate,
low-power, and useful neural networks for RF communications research and prototyping. The
experiments not only proved that the proposed AMR correctly identified most of the modulation types
within a wide range of SNR changes and worked better, but they also showed that it was possible to
implement AMR on the basis of neural networks on FPGA.

The correct recognition rate as shown in Figure 10 was an average value, ranging from 70% to
80%. It seemed that this result was not as good as feature-based recognition. In practice, however,
this average was pulled down by the identification errors of 8PSK and WBFM. Except for these two
modulation signals, the correct identification rate of the other modulation types was approximately
90%. Therefore, AMR needs to be improved in a future work to improve the accuracy of the
identification of 8PSK and WBFM.

As shown in Figure 11, at an SNR of +18 dB, we obtained a clean diagonal in the confusion
matrix. We observed that our remaining difference of 8 PSK was misclassified as QPSK and WBFM
was misclassified as AM-DSB. As the QPSK constellation points spanned 8PSK points, 8PSK symbols
containing specific bits were difficult to distinguish from QPSK. In the case of WBFM/AM-DSB, there
were only carriers during the silence period of the analog speech signal. Therefore, these samples were
difficult to identify correctly. Even at high signal-to-noise ratios, we could not achieve 100% accuracy.

The AMR developed in this study could directly identify the modulation type of the radio signal
time series, thereby avoiding the computation of cumbersome expert features, and it has the potential
for dynamic spectrum allocation and CR systems. On the basis of the implementation of the trained
AMR in the FPGA, more neural network algorithms can be added to the FPGA-based SDR system in
the future so that the radio equipment has more intelligent applications.
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