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Abstract: The verification of the digital models of chaotic systems and processes is a valuable
problem in many practical applications, such as nonlinear control and communications. In our study,
we propose a hybrid technique for chaotic systems’ identification, based on the chaotic synchronization
of digital and analog counterparts and a numerical optimization method used for the fine tuning of
parameters. An analog circuit implementing the Rössler oscillator with digitally controlled parameters
was chosen as an identification object, and the FPGA model was used as a digital counterpart for
coupling and parameter retrieval. The synchronization between analog and digital chaotic models
can be used to estimate the quality of an identification procedure. The results of this study clarify the
practical bounds of digital and analog systems’ equivalence. They also contribute to the problem
of designing technical systems possessing advantages of both analog and digital chaotic generators
(e.g., a high accuracy and protection from quasi-chaotic oscillation modes).

Keywords: chaos; nonlinear systems; chaotic synchronization; system identification; bifurcation
analysis; FPGA

1. Introduction

Nowadays, chaos is common in a number of applications, including chaotic communicational
systems [1], chaotic encryption systems [2], chaotic sensors [3], and others. The major advantages of
chaotic oscillators over traditional harmonic and stochastic signal generators are that they provide a
simple way to obtain unique patterns resistive to the crosstalk effect, and they possess the possibility to
synchronize with each other, which is a convenient mechanism to observe and control the state
of a chaotic system. Digital chaotic oscillators also provide fully repeatable broadband signals.
However, the great influence of the numerical method used for discretization makes them unsuitable
for some applications [4].

Today, strong evidence exists that the numerical simulation of chaotic systems meets notable
difficulties. Round-off errors existing in both fixed and floating point arithmetic [5] and truncation
errors, rising from discrete operator application [6] may violate simulation results in a crucial
way. Even an order of arithmetical operations makes sense in a chaotic system simulation, and
mathematically equivalent but arithmetically different numerical schemes may sufficiently differ in
their properties [7].

Chaotic behavior appears in a variety of analog systems, including circuits with memristive
elements [8,9], elements with hysteresis [10], and other nonlinear devices [11] (e.g., ones with
exponential nonlinearity [12]), as well as in analog artificial neural networks, chaotic sensing, and
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transmitting systems. The analog electrical oscillators demonstrate ‘real’ chaos, representing dynamics
close to continuous mathematical models. This motivated some researchers to construct hybrid
analog–digital systems based on an analog chaotic generator, with digital inputs and outputs for
practical applications [13]. However, this approach appears to be redundant if a proper digital model
is found, verified, and implemented as a digital embedded system.

In a previous work, a practical possibility for the synchronization between analog and digital
chaotic systems was shown experimentally [14]. This result leads to an idea that one of the possible
ways to verify digital chaotic models is the synchronization between these models and their continuous
counterparts. A low synchronization error would show the relevance of the digital model. With the
use of modern circuitry and data acquisition instruments, a simple setup can be built to make an
experimental study of analog and digital systems’ equivalence.

In this paper, we contribute to the problem of constructing reliable chaotic system simulators,
proposing a complex approach based on a hybrid analog–digital synchronization concept with
parameter re-identification. This research studies the performance of a hybrid analog–digital coupled
system in which a continuous circuit controls the dynamics of the digital one. Our concept is aimed at
reducing synchronization error as much as possible. This requires precise parametric identification
using an optimization technique, as the imperfectness of analog elements making up an experimental
circuit, as well as errors in multipliers and operational amplifiers, introduce notable deviations from
the intended design.

In our study, we investigate the Rössler chaotic system as an illustrative example, because of
its simplicity and the possibility of the parametric identification of this system via optimization,
as previously shown [15]. In a future work, more complicated systems are intended to be tested
(e.g., based on nonlinear autoregressive moving average models with exogenous inputs [16]).

The paper is organized as follows. Firstly, we describe the chaotic system parameters’
identification technique based on optimization schemes and a comparison of bifurcation diagrams.
Secondly, we briefly define the semi-implicit symplectic numerical method and its application for
FPGA chaotic generator implementation. Finally, we show that the analog–digital synchronization
shows better accuracy compared to the analog circuits synchronization, which demonstrates the
sufficiency of the provided concept.

2. Materials and Methods: Identification of Rössler Oscillator Analog Model

An adapted version of the Rössler chaotic system [17] is determined by the differential equation,
as follows: .

x = −y − dz
.
y = x + ay
.
z = b + z(x − c)

(1)

This system has four parameters, a, b, c, d. We have introduced parameter d, which was not
included in the original Rössler equation, to keep the amplitude of the state variables within an
interval of [−10; 10] volts required by the analog-to-digital converter of our digital oscilloscope.
With parameters, as follows:

a = 0.2, b = 0.2, c = 5, d = 2 (2)

System (1) shows the system dynamic, presented in Figure 1.
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Figure 1. Visualization of the dynamics of System (1): (a) three-dimensional (3D) attractor and (b) time
domain plot.

An electronic circuit modeling of System (1) is presented in Figure 2. It consists of RC passive
components, precise operational amplifiers (OPA2277 (Texas Instruments, Austin, TX, US)) implementing
adding integrators, and an analog multiplier (AD633 (Analog Devices, Norwood, MA, US)).
This solution, however, allows for changing only the nonlinear parameter, b. In our study, a more
sophisticated analog solution was used, involving digital potentiometers MCP410XX, as presented in
Figure A1, see Appendix A. The PCB design is shown in Figure A2, and the images of the circuit are
shown in Figure A3.
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Figure 2. Analog of Rössler oscillator, System (1), model.

After recording 3000 samples of analog circuit signal, the following optimization scheme was used:

1. The record was divided into smaller pieces. Sequences of 400, 800, and 1200 points were used.
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2. A system with approximate parameters was simulated using the 8th order semi-implicit ECD
method [18] to obtain the same number of points as the reference record had. Then a total root
mean square error was calculated using the following weighted formula:

E =
N

∑
i

[
0.3 ·

(
x − xre f

)2
+

(
y − yre f

)2
+ 10 ·

(
z − zre f

)2
]

3. The weight coefficients enhanced the convergence of the optimization algorithm.

The parameters were tuned using the Hooke–Jeeves method [19], implemented in MATLAB
2017b (40502181, ETU-LETI, St. Petersburg, Russia).

An example of the optimization results is shown in Figure 3. For the circuit with nominal
parameters, System (2), it was found that exact parameters should be as follows:

a = 0.204, b = 0.200, c = 5.411, d = 1.888 (3)
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Figure 3. Identification of analog system dynamic using the Hooke–Jeeves parameter tuning method:
(a) 3D attractor and (b) state variable z time domain plot.

To process the data obtained from the analog circuit in MATLAB, we used a digital scope with
a 16-bit resolution between −10 V and 10 V and with sampling up to 250 kS/s. This data can be
considered as analog, because the measurements have not affected the oscillations mode.

An ability to control the circuit parameter digitally made it possible to obtain bifurcation
diagrams of the analog circuit and to compare them with the computer simulation bifurcation diagram.
The bifurcation diagram, built when parameter b was varied, is presented in Figure 4. One can see
a good correspondence of the analog circuit and computer model bifurcation diagrams. Notice that
there is very high sensitivity of the bifurcation diagram appearance and exact parameter values of the
Rössler systems, up to a 3rd sign after the decimal point.
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Figure 4. Comparison of analog (blue) and digital (yellow) systems bifurcation diagrams after
identification with parameters, System (3), and varying parameter b.

3. Digital–Analog Chaotic Oscillators Synchronization

Synchronization of two Rössler oscillators may be performed by a coupling procedure [20].
Using this technique, unidirectional (master-slave) and bidirectional coupling can be established.
Assume the couple of synchronized oscillators, as follows:

.
x1 = −y1 − dz1 + k(x2 − x1)
.
y1 = x1 + ay1
.
z1 = b + z1(x1 − c)
.
x2 = −y2 − dz2 + k(x1 − x2)
.
y2 = x2 + ay2
.
z2 = b + z2(x2 − c)

(4)

where k is a coupling constant. If k in one of equation is equal to zero, this corresponds to
the master–slave synchronization case. Figure 5 shows the synchronization between two analog
Rössler oscillators.
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To implement the digital chaotic generator, we chose the Euler–Cromer numerical integration
method [18]. The computational scheme of the Rössler system solved by the Euler–Cromer method is
as follows:

x[0] = x[0] + h · (−x[1]− d · x[2] + k · (xs − x[0])),
x[1] = x[1] + h · (x[0] + a · x[1]),
x[2] = x[2] + h · (b + x[2] · (x[0]− c)).

(5)

where h is the integration step, and a, b, c, d are the system parameters. Array x contains the slave
system state variables and xs is a first state variable of a master system.

The chaotic signal generator, System (5), was implemented on the FPGA of Xilinx Zynq-7010
system-on-chip module, using NI LabVIEW FPGA Module software (see Figure 6). This graphical
code was used to generate FPGA bitmap automatically for the chosen target platform.Electronics 2018, 7, x FOR PEER REVIEW  6 of 10 
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Nonlinear parameters of the digital implementation were selected according to the results of
the optimization procedure. Then, the analog–digital coupling was established and compared to the
analog–analog synchronization. The phase portraits of the corresponding synchronization errors are
presented in Figure 7.
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(D–A) synchronized couples: (a) without an identification of digital model parameters, and (b) after
identification using the proposed technique, the synchronization error is significantly less.
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Figure 7a demonstrates the data obtained in the literature [14]. Figure 7b shows the result
of synchronization after the identification procedure. One can see that the application of a
proper identification technique allows for reducing the synchronization error. Table 1 shows the
quantitative estimates.

Table 1. Comparison of root mean square (RMS) errors of different oscillator couples.

Synchronized Couple RMS Error, %

Analog–analog 1.4
Analog–digital with manual tuning 0.6
Analog–digital with identification 0.36

4. Discussion and Conclusions

Our study convincingly demonstrates the practical possibility of synchronization between
digital and analog chaotic systems, with an accuracy higher that in the case of the analog–analog
synchronization. The obtained results can be used in a variety of practical applications. For chaos-based
sensors, one can develop novel hardware architectures, allowing for the real-time identification of
nonlinearity parameters. For the encryption systems, some new mechanisms can be proposed to
improve their strength, by exchanging data between the analog and digital oscillators. Communication
systems based on analog–digital chaotic synchronization can show a better resistance to interferences
through the application of DSP algorithms, while the analog part will be responsible for receiving data
from the media.

A further investigation will be dedicated to transferring the identification algorithms to embedded
systems, as well as the implementation of specific technical systems that exploit the proposed
synchronization technique.
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Appendix A

In this section, the schematic PCB layout and images of the experimental equipment described in
Section 2 are shown.
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