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Abstract: Following trends that emphasize neural networks for machine learning, many studies
regarding computing systems have focused on accelerating deep neural networks. These studies
often propose utilizing the accelerator specialized in a neural network and the cluster architecture
composed of interconnected accelerator chips. We observed that inter-accelerator communication
within a cluster has a significant impact on the training time of the neural network. In this paper,
we show the advantages of optical interconnects for multi-chip machine-learning architecture by
demonstrating performance improvements through replacing electrical interconnects with optical
ones in an existing multi-chip system. We propose to use highly practical optical interconnect
implementation and devise an arithmetic performance model to fairly assess the impact of optical
interconnects on a machine-learning accelerator platform. In our evaluation of nine Convolutional
Neural Networks with various input sizes, 100 and 400 Gbps optical interconnects reduce the training
time by an average of 20.6% and 35.6%, respectively, compared to the baseline system with 25.6 Gbps
electrical ones.

Keywords: machine learning; accelerator; optical interconnect; multi-chip architecture; cluster;
Convolutional Neural Network (CNN)

1. Introduction

Advances in algorithms, increases in computing power, and collections of huge datasets
enable deep learning to outperform alternatives in numerous application areas. In particular,
Convolutional Neural Networks (CNNs) provide superior performance in image recognition compared
to conventional solutions. Hence, it has rapidly gained popularity, leading to the invention of various
CNN models [1–6]. Because CNNs demand huge computing power and can be massively parallelized,
many studies on computing systems have utilized accelerators designed especially for CNNs as they
can improve performance by maximizing parallelism in computing and energy-efficiency only with
essential components [7].

Meanwhile, as CNNs become deeper (more layers being populated), more storage capacity and
computing capability are required for accelerators. Therefore, scalability (flexibility in size) is a critical
factor for machine-learning computing systems. Many of the proposed accelerator architectures
are used to build a cluster where multiple accelerators are interconnected through a network [7–9].
However, they do not focus enough on improving the performance of communication through
a network, but rather focus on increasing parallelism and/or reducing memory access in an accelerator.

In this paper, we first examined how much inter-accelerator communication affects the
performance of three CNN models for image recognition: AlexNet [1], VGG [2], and ResNet [3].
We estimated training time, which is as critical as inference time for intelligent decision makers and
information providers to enhance their prediction models. We modeled DaDianNao [7], a custom
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multi-chip machine-learning architecture designed for CNN, and estimated its execution time (training)
with our arithmetic performance model described in Section 4.2. When allocating a CNN model and
input/intermediate data to each accelerator to reduce inter-chip communication, we applied model
parallelism [10] to AlexNet as well as data parallelism to VGG and ResNet. Consequently, for various
batch sizes (the numbers of input images concurrently propagating through CNN), the portion of
communication time in total training time is dominant for VGG and ResNet. In addition, it is also
quite considerable on AlexNet.

A direct way to enhance the communication performance is by replacing existing electrical
interconnects with optical ones that provide higher bandwidth. This is reasonable because photonics
technology has been dramatically improved in terms of bandwidth, optical module size, and
on-package integration. For example, 100 G (gigabit) Ethernet is one of the mainstream for
datacenter-scale networks [11] while 400 G Ethernet is expected to enter the market in a couple
of years [11]. Moreover, silicon optical interposers have been available [12–14], which can integrate
multiple chips, optical components, and waveguides implemented on the interposer in a single package
by 2.5D integration.

In this paper, we show the advantages of optical interconnects for multi-chip architecture
targeting machine learning by demonstrating performance improvement through replacing electrical
interconnects (25.6 Gbps) with optical ones (100 Gbps or 400 Gbps) in an existing multi-chip
system. To show the effects of optical interconnects, we assume highly practical implementation.
Considering the feasibility with current technologies, DaDianNao [7] is selected as the baseline
architecture of the machine-learning accelerator cluster where 100 Gbps optical interconnects are
applied, which can be implemented both on-chip and off-chip by current photonics technology [11–15].
Because directly interconnecting small DaDianNao accelerators (about 8 × 8 mm2) with optical cables
is too costly, we propose and assume to integrate several accelerator chips in a package by 2.5D
integration with a silicon optical interposer and to interconnect multiple packages with off-chip
(off-package) fibers [14] at a reasonable cost. With our proposed multi-chip packages (Section 3.2) and
blade server design (Section 3.3), up to 1536 accelerators can be installed in a standard 42U rack. To go
beyond 100 Gbps, we also apply 400 Gbps optical interconnects to the baseline system and evaluate its
performance.

We made and used an arithmetic performance model reflecting the microarchitecture and
operation of the DaDianNao accelerator and statistical latencies in the 2D-mesh network [15] to estimate
computation time, memory access time, communication time, and energy-efficiency (Energy-Delay
Product (EDP): an implementation neutral metric demonstrating the balance of performance and
energy efficiency of a system design [16]) of neural networks. In our evaluation of nine different
CNN models with various batch sizes, 100 Gbps and 400 Gbps optical interconnects improve the
training time (and EDP) by 20.6% (22.8%) and 35.6% (44.3%) on average or up to 41.1% (47.4%) and
72.2% (85.6%), respectively, compared to the baseline system with 25.6 Gbps electrical interconnects.
Consequently, we clearly show that machine-learning accelerator cluster systems can benefit from
high-bandwidth optical interconnect.

2. Background and Motivation

In this section, we briefly introduce the baseline system as an example of systems specialized in
machine learning. Then, we discuss the impact of interconnects on the performance of the baseline
system and the evolutionary status of optical interconnects.

2.1. DaDianNao

DaDianNao [7] is a custom multi-chip machine-learning architecture proposed to follow trends
emphasizing neural networks, such as CNN, characterized by their large size. It achieves much
higher performance and energy efficiency compared to existing systems (e.g., GPU) by maximizing
parallelism and fully mapping total memory footprints from neurons (nodes in a neural network)
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and synapses (weights of edges between nodes) to on-chip embedded DRAMs (eDRAM) that require
no main-memory access (a major performance/energy bottleneck). Therefore, the number of chips
required is determined by the size of the neural network model and input data (e.g., multiple input
images forming a batch and concurrently propagating through an image recognition CNN). In Figure 1,
we sketched the accelerator chip and its cluster (multi-chip) architecture specified in [7]. A chip has
16 tiles, a central eDRAM (4 MB), fat-tree on-chip interconnect, router fabric, and four physical layers
(PHYs) for electrically connecting to other chips. Each tile contains computational logic, a SRAM
neuron buffer (16 KB), a local eDRAM (2 MB), and input/output interfaces to the central eDRAM.
For PHYs, a commercially available HyperTransport (HT) 2.0 IP block is implemented. Each PHY
has bidirectional ports and provides a bandwidth of 25.6 Gbps in each direction with 16 pairs of
differential links. The cluster architecture (see the right hand side of Figure 1) is a set of chips arranged
in 2D-mesh topology.
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Figure 1. DaDianNao chip and cluster (multi-chip) architecture.

2.2. Impact of Off-Chip Interconnect on Performance

We examined the degree of impact of off-chip interconnects on the performance of DaDianNao.
The answer differs greatly depending on how neurons and synapses are spread to every chip and
which machine-learning phase (inference vs. training) we focus on. To minimize the number of
accelerator chips required, we assume that both neurons and synapses of all neural network layers
are equally grouped and distributed to every chip. Before the computation for each layer, the authors
of [7] assumed that all neurons of the on-going layer, interleaved to every chip, are broadcasted and
saved into an extra eDRAM space of each chip. Consequently, a chip exclusively (independently)
computes all neurons with its own synapses. Hence, neuron values mainly travel through off-chip
interconnects rather than synapses. This method is called model parallelism [10]. However, because
latest trends show that synapses are getting light when compared to inflating neurons (as discussed in
Section 4.1), we also assume the opposite assumption to reduce inter-chip communication overhead,
which is called data parallelism [10]. When using data parallelism, all synapses of an on-going layer
before computation for the layer are broadcasted to each chip. A chip independently computes its own
neurons with all synapses. In contrast to model parallelism, synapses mainly use off-chip interconnects
rather than neurons.

Machine learning has two phases: training (sequential execution of one forward and one backward
propagations) and inference (a forward propagation from input data to output result). Conventional
CNN accelerators have focused more on the latter; however, the former precedes the latter and also
draws keen attention because CNN models evolve rapidly and are applied to more diverse and
ever-growing datasets, necessitating continuous training. In this paper, we focus on training rather
than inference.

Figure 2 shows the percentages of computation time (including eDRAM access time) and
communication time (through off-chip interconnect) in total CNN training time. Our estimation
methodology, detailed DaDianNao configuration, and layer information for each CNN are specified in
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Section 4, Tables 1 and 2. AlexNet [1], VGG [2], and ResNet [3] were introduced for image recognition
in 2012, 2014, and 2015, respectively. The ratios of the number of synapses to that of neurons for
more recent CNNs, VGG and ResNet, are lower than that of AlexNet. Therefore, to reduce inter-chip
communication, model parallelism is applied for AlexNet whereas data parallelism is applied for VGG
and ResNet. The batch size and the number of accelerator chips required (numbers in parentheses) are
notated in Figure 2. We do not consider the overlap between computation and communication times
because DaDianNao accelerators concurrently start and end (synchronize) their computations for each
CNN layer [7] so that the overlap time is small at most. The results show that the communication
times of VGG and ResNet are dominant for their total training times. In model parallelism (AlexNet),
the neurons increased by a larger batch size (32) enlarge the portion of communication time.
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Figure 2. The ratios of computation and communication time in total training time of various CNNs. A
number in parentheses represents the number of accelerator chips required.

Table 1. Parameters of the DaDianNao accelerator chip.

Parameter Value Parameter Value

Frequency 606 MHz Local eDRAM latency 3 cycles

# of tiles 16 Central eDRAM latency 10 cycles

# of 16-bit multipliers 288/tile SRAM buffer capacity 16 KB/tile

# of 16-bit adders 288/tile Local eDRAM capacity 2 MB/tile

Peak performance 2.09 TeraOPS Central eDRAM capacity 4 MB

Peak power w/o PHY 7.96 W Peak per-PHY power
- Electrical 25.6 Gbps 2.00 W
- Optical 100 Gbps 3.50 W
- Optical 400 Gbps 6.00 W

Accel.-to-accel. bandwidth (bidirectional) Accel.-to-accel. latency
- Electrical 25.6 Gbps 6.4 GB/s - Electrical 25.6 Gbps 80 ns
- Optical 100 Gbps 25 GB/s - Optical 100 Gbps 80 ns
- Optical 400 Gbps 100 GB/s - Optical 400 Gbps 160 ns
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Table 2. Summary of the evaluated CNN models.

Parameter AlexNet VGG VGG Inception Inception ResNet ResNet ResNet DenseNet

[1] 16 [2] 19 [2] - v1 [4] -v3 [5] 50 [3] 101 [3] 152 [3] 121 [6]

Year introduced 2012 2014 2014 2015 2015 2015 2015 2015 2016
# of layers 14 22 25 73 111 125 244 363 306

(convolution/ (5/3) (13/3) (16/3) (20/1) (56/1) (49/1) (100/1) (151/1) (120/1)
fully connected)

Total synapse [MB] 233 528 548 27 105 97 170 229 30
Total neuron * [MB] 172 1860 2019 587 1446 3290 4956 7014 4061

Ratio in size 1.35 0.28 0.27 0.05 0.07 0.03 0.03 0.03 0.01
(synapse/neuron)

* Input image size and batch size are assumed as 224 × 224 × 3 and 32, repectively.

2.3. Current Status of Optical Interconnect Technology

Photonics technology has been dramatically improved in terms of per-fiber bandwidth, fiber
cost, optical module chip size, on-package integration, and power consumption. 100 G (gigabit)
Ethernet is one of the mainstream for datacenter-scale networks [11] while 400 G Ethernet is
expected to be marketed in a few years. Recently, an optical module vendor, MultiPhy, developed
a 100 G single-wavelength optical module chip that adapts the PAM-4 (4-level pulse amplitude
modulation) technique [11]. While previous 100 G optical interconnect standards are based on
the 25 Gbps-per-wavelength capability, enabling 100 Gbps per wavelength is a key technology for
developing 400 G optical interconnects without increasing the number of fibers or wavelengths
(e.g., 400 G PSM4 or LR4 standards).

Besides datacenter-scale networks, on-chip (on-package) optical interconnects have been actively
studied. Off-chip and on-chip optical interconnects are functionally similar. Therefore, their
transceiver/receiver modules have the same functional blocks (e.g., laser source, modulator,
photodetector, and trans-impedance amplifier). However, on-chip interconnect is more
cost-/energy-efficient by using on-chip waveguides (instead of using optical cables and connectors)
with a limited connection distance. The silicon optical interposer is critical as it can integrate multiple
chips, optical components, and waveguides implemented on the interposer in a single package by
2.5D integration. Recently, several real implementations [12,13] achieved 25–50 Gbps per waveguide
on the silicon optical interposer, enabling several Tbps of bandwidth in a package.

3. Optically Interconnected Multi-Chip Machine-Learning System

In the previous section, we discussed the impact of interconnects on DaDianNao performance
and the availability of high bandwidth optical interconnects. We show how to implement optical
interconnects to a cluster of machine-learning accelerator chips in this section.

3.1. Design Objectives

To fairly demonstrate the potential of optical interconnects for the machine-learning architecture,
the design objectives should be aligned to designing a real product. Our implementation is based on
the following design objectives:

• Reasonable cost: Although additional cost can be justified by achieving better performance,
optical components are still expensive in terms of PHY sizes on silicon and link costs (cable or
other forms of waveguides). We keep interconnects from becoming a major factor of the entire
system cost.

• Feasibility with current technologies: DaDianNao chip was implemented with a 28 nm process [7].
As discussed in Section 3.2, 100 Gbps of bandwidth can also be achieved by current photonics
technology. Our first goal is to apply 100 Gbps interconnects to the current DaDianNao.
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• One step forward with the next generation of optical interconnects: In a few years, optical
components for 400 G standards will be available. Beyond 100 Gbps, we apply 400 Gbps
interconnects to DaDianNao and compare its performance with the existing DaDianNao system.

3.2. Connection to Each Machine-Learning Accelerator

Figure 3 shows a cost-effective and technically feasible design of optical connection to
machine-learning accelerators. Obviously, directly interconnecting small DaDianNao chips
(about 8 × 8 mm2) with optical cables is infeasible and very costly. Therefore, we propose putting
several chips into a package by 2.5D integration with a silicon optical interposer and interconnecting
multiple packages with off-chip (off-package) interconnects. As shown on the left hand side of
Figure 3, we reduced the size of link drivers in an electrical PHY (2.5 mm2 per PHY, an estimation
with reference to [17]) by half to match reduced output loading (reaching only to the silicon interposer)
and added a trans-impedance amplifier (a purely electrical component in the optical receiver, Rx) on
PHY. We changed I/O pads in PHY to bump metal pads to attach the chip on the silicon interposer
through µ-bumps by flip-chip bonding [13,14] and moved PHYs from the edges toward the center
of the chip for stable bonding. The right side of Figure 3 shows the inside of a package including
four DaDianNao chips optically connected in 2D-mesh topology. Because the laser diode (in the
optical transceiver, Tx), modulator driver (Tx), modulator (Tx), photodetector (Rx), and waveguide
can be directly implemented on the silicon interposer [12], we reasonably sized and placed them
on a 25 × 25 mm2 silicon optical interposer with reference to [12]. For example, both we and [12]
use a single laser diode for four waveguides and its size is estimated from the photograph of their
silicon optical interposer. To mitigate thermal issues, we place the laser diodes outside the area below
the accelerator chips. Consequently, two adjacent chips are bidirectionally interconnected. In each
direction, a bandwidth of 100 Gbps is provided through four 25 Gbps waveguides or two 50 Gbps
waveguides (waveguide pitch can be under 100 um [14]). As we discussed in Section 2.3, a bandwidth
of 400 Gbps through four 100 Gbps waveguides (or wavelengths) can also be provided. Outgoing
(or incoming) waveguides across the interposer boundary are switched to off-chip (off-package) optical
fibers by waveguide-to-fiber connectors [14].
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Figure 3. Modified DaDianNao chip and its optically connected multi-chip package.

3.3. Network of Multi-Chip Machine-Learning Architecture

We show how to interconnect the multi-chip packages described above for building a cluster.
We continue to use the 2D-mesh topology originally adopted in DaDianNao. To exploit the broadcasting
characteristic of optical interconnects (e.g., single-write-multi-read), using a serpentine waveguide
is an option [18]. However, due to its limited laser source power and large fan-out, it cannot reach
beyond the chip boundary.
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Figure 4 shows the hardware implementation of the entire multi-chip machine-learning
architecture. Six multi-chip packages, for example, can be bonded (or plugged) on the mainboard
of a half-height blade server. This is possible because DaDianNao can work without main memory
and other storage devices (although the host server requires them). In a blade server, packages are
interconnected through fiber bunches (each with eight or four fibers, or fewer fibers with multiple
wavelengths while providing 200 or 800 Gbps bidirectionally). Another option is using waveguides
implanted on PCB or a flexible ribbon [14]. However, all optical ports of the multi-chip package should
be identical (symmetric), and some ports will be connected to another external blade server with
fibers and not waveguides. To build a cluster with more than 24 accelerators (chips), multiple blade
servers can also be connected through optical fibers. Consequently, fibers are extended out of the
server through optic ferrules [14] and up to 64 blade servers (1536 accelerators) can be installed in
a standard rack (42U in size).
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Figure 4. A 2D-mesh topology implementation using blade servers (each with multi-chip packages)
and a rack-scale machine-learning system implementation.

4. Experimental Methodology

To evaluate the effectiveness of optical interconnects on the performance and energy efficiency of
the multi-chip machine-learning system, we modeled DaDianNao multi-chip systems and used
famous CNNs for image recognition as well as our arithmetic performance and energy model
for measurements.

4.1. Evaluated System and CNN Models

Architectural parameters of DaDianNao accelerator are listed in Table 1. The parameters,
except for those of optical interconnect, are the same as the default parameters specified in [7]. The peak
performance of the accelerator for training based on 32-bit operations is 2.09 TeraOps/s where four
16-bit multipliers and two 16-bit adders are used for a 32-bit multiplication and a 32-bit addition,
respectively. In computing a CNN layer per tile, 8 KB of input neurons and 8 KB of output neurons
are saved into a 16 KB SRAM neuron buffer and reused as many times as possible to minimize
eDRAM accesses [7]. The peak power per PHY of optical interconnects (100/400 Gbps) includes the
power dissipation in the interposer-side optical components. For 100 Gbps PHY (3.5 W), we use the
power specification of Intel’s 100 G PSM4 Optical Transceiver [19]. And for 400 Gbps PHY, an optical
transceiver module vendor, LUXTERA, estimated the peak power as 6 W [20] and we use its value.

The latency of 100 Gbps optical interconnects between two neighbor accelerators is conservatively
assumed to be the same as HT 2.0 latency [7] because a major portion of that latency is not from the
components distinguishing electrical interconnect from the optical one, but from the other interconnect
layers and the rest of PHY. For one meter of interconnect length, the optical transmission line delay is
2 ns lower than the electrical one [21]. The delay from the modulator driver (Tx) to the trans-impedance
amplifier (Rx) in optical PHY (excluding the transmission line delay) does not surpass 1 ns, which is
similar to that of functionally equivalent blocks in electrical PHY [22]. By contrast, the latency of
400 Gbps optical interconnects is assumed to be 80 ns longer than the others because the optical
interconnects faster than 100 Gbps are generally considered to require Forward Error Correction (FEC)
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due to a higher Bit Error Rate (BER). The IEEE Standard 802.3 bs [23] has adopted RS (544,514) FEC
for the 400 G Ethernet standards using PAM-4, where its latency overhead is estimated as 47 cycles
(78 ns at 606 MHz) by [24].

In Table 2, we summarized the structures of the evaluated CNN models. The number X in VGGX,
ResNetX, and DenseNetX indicates the total number of convolution layers and fully connected layers
composing the respective model. The more recently introduced CNNs have more layers. However, the
total synapse size does not always increase correspondingly because the number of synapses per
convolution layer is sharply reduced and the number of fully connected layers is decreased, which
have many synapses (weights). Accordingly, the ratio of total synapse size to total neuron size was
decreased as new CNNs emerged. Therefore, data parallelism is becoming more effective to reduce
inter-accelerator communication time compared to model parallelism. In Section 5, except for AlexNet,
we only show results using data parallelism as it performs better.

4.2. Arithmetic Performance and Energy Model

We made and used an arithmetic performance and energy model to estimate the total training
time and Energy-Delay Product (EDP) of CNN. With only an arithmetic model, we can estimate the
computation time of the DaDianNao accelerator and the inter-accelerator communication time on the
network for the following reasons:

• The computational unit of DaDianNao has a simple pipeline structure with only three stages and
works by in-order execution.

• The clock frequency of the accelerator is constant, so dynamic frequency scaling is not used.
• Every inter-accelerator communication is all-to-all broadcast through a 2D-mesh network so that

the execution time can be calculated by a mathematical model [15].
• The throughputs and delays of the computational unit, eDRAM, and interconnect are

clearly defined.

Our model consists of three parts: computation, eDRAM, and communication, which are based
on Equations (1)–(3), respectively.

Computation time = max
[(

# o f multiply operations
multiply throughput

)
,
(

# o f add operations
add throughput

)
, ...
]

. (1)

eDRAM time =
total data size o f eDRAM accesses

eDRAM bandwidth
+ eDRAM access latency. (2)

Broadcast time = 2 × node to node latency ×
(√

# o f nodes − 1
)

+
node to node trans f er data size

node to node bandwidth
× (# o f nodes − 1) .

(3)

In Equation (1), the computation time depends on the operation type causing performance
bottleneck. In Equation (2), although eDRAM accesses are pipelined, the access latency should
be considered once. Equation (3) from [15] derives all-to-all broadcast time for the 2D-mesh
topology. We also considered the pipelined executions between computations and eDRAM accesses.
When measuring EDP, we apply the peak power values of DaDianNao chip and its PHY at the
proper time interval because all chips and chip-to-chip interconnects are fully utilized and show their
maximum throughput during the computation time and communication time, respectively.

5. Evaluation

We estimate the training times and energy-efficiency (EDP) of various CNN models on electrically
or optically interconnected multi-chip machine-learning architecture. In Figure 5, for nine CNNs,
we apply data parallelism by default. For AlexNet only, we add the results by model parallelism.
We present the results of three batch sizes: 1, 32, and 256. The number of accelerators (numbers in
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parentheses) is determined by the total size of neurons and synapses due to limited eDRAM capacity
per accelerator. 25-E is the hardware configuration using 25.6 Gbps electrical interconnects (HT 2.0)
while 100/400-O is that using 100/400 Gbps optical interconnects. Every execution (training) time is
normalized by that of the 25-E case with batch size 1 for each CNN model (for AlexNet, data parallelism
is the baseline). Every EDP value is normalized by that of the 25-E case for each batch size and each
CNN model. The computation time in Figure 5 includes eDRAM access time. In the following
discussion, we assume that, for AlexNet, model parallelism is applied when batch size is 1 or 32 while
data parallelism is used for batch size 256 because this is the best choice for performance.
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Figure 5. The training times (computation/eDRAM + communication) and EDP of nine CNNs on
electrically/optically connected multi-chip machine-learning architectures. Data parallelism is applied
by default. 25-E is the system using 25.6 Gbps electrical links and 100/400-O is that using 100/400 Gbps
optical ones. The execution time is normalized by that of 25-E with batch size 1 for each CNN. EDP is
normalized by that of 25-E for each batch size.

We make the following key observations: First, by applying 100 Gbps and 400 Gbps optical
interconnects, execution times are reduced by 20.6% and 35.6% on average, up to 41.1% (VGG19)
and 72.2% (VGG16), respectively. Moreover, EDPs (lower is better) are improved by 22.8% and
44.3% on average, up to 47.4% (VGG19) and 85.6% (VGG16), respectively. This clearly shows that
the multi-chip machine-learning system can benefit from high bandwidth optical interconnects.
Second, when using data parallelism, the portion of computation time in total execution time is
increased as the batch size is increased. Therefore, the degree of performance improvement by optical
interconnect is decreased because the number of accelerators grows slower when the batch size grows.
Thus, each acclerator performs more computation whereas communication time does not noticeably
change because synapses are not increased. However, this trend is diminishing as batch size further
grows; even with batch size 256, 100 Gbps and 400 Gbps optical interconnects still reduce execution
time by an average of 16.9% and 28.4%, respectively. Third, by applying 400 Gbps optical links,
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EDP of DenseNet121 with batch size 256 gets worse because the communication time reduction is
not enough to overcome the energy overhead from optical interconnect. Because the ratio of the
total synapse size to the number of accelerators is extremely small, the communication time depends
more on node to node latency (see Equation (3)) and does not shrink much due to a longer latency of
400 Gbps optical interconnect. Finally, for CNNs introduced more recently, performance gains from
optical interconnect are not diminished. In other words, none of the CNN design trends make optical
interconnect unnecessary.

6. Conclusions

In this paper, we have shown the advantages of optical interconnects for multi-chip
machine-learning architecture by comparing the performance and energy efficiency of an optically
connected multi-chip system with those of an electrically connected one on various CNN models.
This work was possible due to the following: (1) We observed that inter-accelerator communication
accounts for a significant portion of training time in neural networks. (2) By in-depth consideration of
current technologies, a reasonable and practical implementation of optical interconnect was assumed.
(3) An arithmetic performance and energy model was made because the network topology and the
baseline accelerator have simple structures. We show through evaluation that 100 and 400 Gbps optical
interconnects improve the training time (and EDP) by an average of 20.6% (22.8%) and 35.6% (44.3%),
respectively, compared to the baseline system with 25.6 Gbps electrical ones for nine CNNs.
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