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Abstract: As a nature-inspired search algorithm, the Firefly algorithm (being a naturally outstanding
search algorithm with few control parameters) may have a considerable influential performance.
In this paper, we present a new firefly algorithm to address the parameter selection and adaptation
strategy in the standard firefly algorithm. The proposed firefly algorithm introduces a modified
exploration and exploitation mechanism, with adaptive randomness and absorption coefficients.
The proposed method employs the adaptation of the randomness and absorption coefficients to be a
function of time/iterations. Moreover, gray relational analysis advancing fireflies is used to allocate
different information from appealing ones effectively. Standard benchmark functions are applied to
verify the effects of these improvements and it is illustrated that, in most situations, the performance
of the proposed firefly algorithm is superior to (or at least highly competitive with) the standard
firefly algorithm, and state-of-the-art approaches in terms of performance.

Keywords: firefly algorithm; nature-inspired search algorithm; exploration and exploitation
mechanism; optimization problem

1. Introduction

Optimization is something that is involved in all our activities. Everything from the simple
decision of what time to leave for work all the way to the more complex decisions such as how to budget
a daily cost of living allowance requires optimizing procedures. The process of optimization is finding
an optimal solution for a function. All probable values can be obtained solutions and the optimal
solution is assumed to be the extreme value. There are two categories for optimization algorithms.
These are: stochastic and deterministic. Deterministic methods include classical optimization modes
such as Golden mean, Newton method, modified Newton method, gradient method, along with
Lagrange methods. These are largely dependent on gradient information and is most useful in
unimodal functions with one global optimum. This procedure however has problem when gradients
are small or part of flat regions [1]. Therefore, stochastic algorithms are preferred in most instances as
it can get away from local minima for a better performance [2].

Stochastic algorithms are a subset of metaheuristic algorithms. Literature tend to indicate to
stochastic methods as metaheuristics [3,4]. Heuristic refers ‘to discover solution by trial and error’.
When referring to a “higher–level heuristic” that refers to Meta-heuristic, whose search is the result of
a trade-off between local search and randomization. The balance among exploration and exploitation
or diversification and intensification is focused on bio-inspired algorithm [5].

Recently, the biologically inspired algorithms have exhibited as powerful tool to solve complex
engineering optimization problems through the use of hard optimization problems [6]. These methods
are successful because the programs can maintain the proper balance of exploration and exploitations
via a set candidate for solutions with generational improvement. In [2], they refer to this as exploitation
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in reference to the ability of the algorithm to use previous information in order to update its solutions.
Animal swarm behaviors have been said to been inspired by swarm-based algorithms. These are
defined as bio-inspired methods where the intelligence is part of social behavior in animals and
insects. Relatively, all metaheuristic algorithms seek for achieving the balance between local search
and randomization [7].

Inspired by nature, optimization algorithms contain all searching for optimal value problems.
Generally, metaheuristic methods perform on a population of solutions to obtain the best solutions.
Computer scientists studied the possibility of making the conception of evolution as an optimization
method and this created a subset of gradient free methods called genetic algorithms (GA) [8]. Since then
many other nature-inspired metaheuristic methods have been proposed, such as differential evolution
(DE) [9,10], cuckoo search (CS) [11], particle swarm optimization (PSO) [12,13], and more recently,
the firefly algorithm (FA) [14,15] that is inspired by fireflies’ behavior in nature.

Firefly algorithm is a part of the family of swarm intelligence algorithms. This algorithm is based
upon the theory that the bioluminescence of an insect’s body can be used to interact and communicate.
It allows for the development of communication as part of a group social behavior. Firstly, proposed by
Yang in 2008, the firefly algorithm or firefly-inspired algorithm [16], is a metaheuristic optimization
algorithm, inspired by the flashing behavior of fireflies. The fundamental purpose for a firefly’s flash
is applied as a signal system to appeal to other fireflies. Recent researches demonstrate that the firefly
algorithm is quite powerful and efficient, and the performance of firefly algorithm can be improved
with feasible promising results [17–21]. Firefly algorithm is an effective algorithm in exploitation
(i.e., local search) but sometimes it settles into some local optima so that it fails to perform well in the
global search. Also, the search in the firefly method relies totally on random walks, so a convergence is
not guaranteed. Firstly, presented here, a main improvement of including effective adaptive parameters
relies on the iteration processes to enhance the exploration and exploitation mechanisms in the original
firefly method, thus making the approach more feasible for a wider range of practical applications while
preserving the attractive characteristics of the basic FA. The method proposed in this paper is based
on the measurement taken to counteract the limitations and weaknesses of the basic firefly method.
However, to improve the execution of the presented algorithm, the exploitation and exploration of the
search enhanced by altering the values of the fixed parameters. The proposed method is exhibited
to be effective in getting satisfactory results since it aids in providing an equilibrium on exploitation
and exploration abilities. Proposed approach is evaluated on six standard benchmarking functions
that have ever been applied to verify optimization algorithms in continuous optimization problems.
Simulation results show that the proposed method performs more efficiently and accurately than basic
FA, PSO, DE and other state-of-the-art approaches.

This paper is organized as follows: In Section 2, the Firefly method is briefly presented.
The proposed firefly method is presented and discussed in Section 3. Simulation and examples
of the proposed firefly algorithm presented in Section 4. Finally, discussion and conclusions are
outlined in Sections 5 and 6, respectively.

2. Firefly Algorithm

The firefly algorithm is a new ecology intelligence metaheuristic method [19–21] for solving
optimization problems, in which the search algorithm is inspired by social behavior of fireflies and
the phenomenon of bioluminescent communication. There are two crucial issues in FA that are the
formulation of attractiveness and modification of light intensity. The firefly algorithm imitates the
social behavior of fireflies flying in the tropical summer sky. Fireflies communicate, hunt for pray and
attract other fireflies (especially, the opposite sex fireflies) using bioluminescence with various flashing
patterns. By mimicking nature, various metaheuristic algorithms can be designed. For simplicity,
some of the flashing characteristics of fireflies are idealized so as to design a firefly-inspired algorithm,
which are three idealized rules described as follows: (1) All fireflies are the same sex so that one firefly
will be attracted by other fireflies despite their sex. (2) Attractiveness is proportional to the brightness
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which declines with increasing distance between fireflies. For any couple of flashing fireflies, the less
bright one will move towards the brighter one. If there are no brighter fireflies than a particular firefly,
this individual will move at random in the search space. (3) The brightness of a firefly is determined or
influenced by the objective function.

For a maximization problem, brightness can simply be proportional to the value of the cost
function. Other forms of brightness can be defined in a similar way to the fitness function in PSO
algorithm. The main update formula for any couple of two fireflies i and j at xi, xj, is:

xi
Itr+1 = xi

Itr + β
(

xi
Itr − xj

Itr
)
+ αεi

Itr (1)

where α is a parameter controlling the step size, β = β0 exp
(
−γr2) is the attractiveness with β0

represents the attractiveness at distance (r = 0) and γ represents the light absorption coefficient. εi is
randomization where the vector of random variables being drawn from a distribution (e.g., Gaussian
distribution). The distance between any pair of fireflies i and j at xi, xj, can be the Cartesian distance
rij =‖ xi − xj ‖2 relying on the practical application problems. In this paper, we take β0 = 1, γ = 1
and α ∈ [0, 1].

3. The Proposed Adaptive Approach for Firefly Algorithm

It is important to mention that Firefly algorithm (FA) is better than the evolutionary algorithm in
terms providing solution to complex non-linear optimization. This is because FA is feasible, the time
of execution is less, and lastly, the stability factor is high. However, the FA algorithm has got some
weaknesses and imitations in spite of it considered to execute efficiently than other metaheuristic
algorithms. Firstly, the parameters that form the algorithm are set fixed [20]. In this case, they cannot
be modified in regard to time or iteration. In the literature, they have outlined that the performance of
FA predetermined with distinguishing features is best on functions of narrow variable range and low
dimensions. Moreover, the sizes or variable range may increase if the problems are more complicated.
Hence the issues might not be fit, and their execution might be dropped. The changes help in the
enhancement of the diversification area and the algorithm speed to get rid of premature convergence
of the algorithm. Another limitation of FA is that it does not have the mechanism to remember the
historical data, which may be significant. It also asserts that considering the early simulation, there are
still some changes in the solution because of fixed randomness value as the most favorable condition
is approaching. Therefore, an active research ability potential is needed to enhance the aspect.

The method proposed in this paper is based on the measurement taken to counteract the
FA limitations and weaknesses. One way to improve the execution of the algorithm is that the
exploitation and exploration of the search need to be enhanced by altering the values of the fixed
parameters. In regard to the FA original, many values of the parameter in the equation of renewal
movement are predetermined and fixed. Also, in the suggested algorithm, the randomization and
attractiveness parameter are set in advance at the stage of initialization and later modified in the
process of optimization. During the repetition process, the capability of using the local knowledge
is another aspect that could be used in enhancing the original algorithm. The fact that the algorithm
is still having the significant factor of randomization is determined by FA having less memory and
jumping out of the furthest end in the first repetition, and it may be an issue. It means that it is in a
mode of movement. Therefore, the objectives of the modification are to improve local exploration and
search at the local extreme and end of the search process, to avoid any casual pace. The last is to make
the algorithm to move fast to the optimum point.

The focus of the proposed FA algorithm is the enhancement in the movement area of Firefly.
In regard to exploitation and exploration mechanism, the mathematical expression used to enhance
the movement of the firefly is given as:

xi+1 = β(t)xi + xj(1− β(t)) + α(t)εi (2)
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In this case, the random number is represented by εi; attractiveness coefficient is represented by,
β (t), the time t, and the randomness coefficient at time (t) is represented by α(t). Considering the
movement equation in Equation (2), an exploitation method is represented by the first two terms to
show a better solution to the rest of the agents while exploration processes are described by the last term
for search space exploration. Furthermore, attractiveness β(t), and the randomization α(t) coefficients
are incorporated to modify the adaptive functions. Therefore, in the search process, the parameter of
attractiveness is increased adaptively, while the randomization is reduced over time/iteration.

At the early stage of the search process, the randomization α(t) can be assumed at a high value,
while the attractiveness β(t) can be considered in a low value. They are assumed to make sure that
all the fireflies are to move randomly around the early stages so that global searching process can be
fine-tuned. The strategy of changing the parameters adaptively over time will aid in overlapping the
potential and balance of intense local and global search so that at the early stage, the strategy would
not be trapped into a local extreme point.

In regard to the end of optimization stage, the light intensity is increased by setting the
attractiveness to a higher value so that firefly with the optimum location to produce lighter making
others move closer. On the other hand, by setting the randomization to a low value allows fireflies to
move to a nearer excellent location, escalating the fireflies’ intensity. To improve the accuracy of the
algorithm of the extreme value, then their movements need to be targeted.

Three parameters are used in standard FA in solving the optimization, and the parameters
might result in the notably different performance of FA. For example, there is the coefficient of γ, α,
which represents absorption, and a represent randomization parameter, respectively. However, it is
hard to manually tune the parameters by looking at various problems with distinguish characteristics.
In this case, to improve FA, several adaptive functions can be employed, and two mechanisms are
incorporated to eradicate premature convergence of classical FA. Ideally, to create an equilibrium
between the exploration and the exploitation based on the proposed adaptive function. Moreover,
the mechanisms are gray-based coefficient for improving the heterogeneous search efficiently [22],
and the distance-based adaptive, which is for information sharing. Both the mechanism can exchange
messages and is used to tune the control parameters in FA method. Also, a new strategy was suggested
for the selection of the parameter of randomization. Therefore, the randomness coefficient α equation
can be expressed as:

α(Itri) = exp
(

1−
(

Itrmax

Itrmax − Itri

)c)
(3)

where c represents the integer number to determine the speed of decaying of the randomness,
Itrmax represents maximum number of iteration and Itri is the current iterations number.

Moreover, parameter γ is a vital aspect in characterizing the differences of the speed of the
convergence and the attractiveness. The outcome is that, when a constant c is applied in solving the
problems of optimization, then FA execution will be noticeably constrained as done in traditional
FA. As well known that during the search process attractiveness should vary with different distances
among the population, and it must also be connected with distance among the fireflies. The importance
of information of the distances is to promise search adaptively. Consequently, the ratio of distance,
which is to trace the promising flight direction adaptively is the determinant factor in the definition of
an adaptive coefficient. Its definition is as follows:

γ(Itri) = 1− exp
(

1−
(

Itrmax

Itrmax − Itri

)c)
(4)

Based on the adjustment, the proposed firefly algorithm will not get trapped in the local extreme,
and it will escalate the convergence speed making the solution at optimum better a better since there
will be an equilibrium between local and global search.

Heterogeneous is applied in the updating rule based on Gray relational analysis (GRA), which is
the same as the measure for the finite sequence having incomplete information, suggested in [22,23].
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Therefore, it is carried to enhance the fireflies search capabilities. In the search process, two updating
equations are explained and chosen randomly and are presented in Equation (4):

xi+1 =

{
β(i)xi + xj(1− β(i)) + α(i)εi rand > 0.5
NG−i

NG (1− δ)xi + δxbest ELSEWHERE
(5)

where δ represents the gray coefficient and NG is the number of generations.
The fireflies are given a chance to acquire more beneficial information from others and change

the directions of flight adaptively. At the final point, the step measurement is meant to make the
algorithm have an equilibrium between exploitation and exploration mechanisms, and to enhance
the algorithm in case the search conditions are in sophisticated and ample space and high conditions.
Hence, applying all the suggested changes and considerations, the FA is enhanced and can be outlined
in the pseudo-code as follows in Algorithm 1.

Algorithm 1: The Proposed Firefly Algorithm Improved

Input: Cost Function f (x), Initial population of Fireflies x0, the Max number of Iteration ITRmax,
light absorption coefficient γ, the randomness coefficient α.
Generate initial random population xi, (i = 1, 2, . . . , n), initialize the Light Intensity I0 at xi by f (xi).
While Loop: till Itri ≤ ITRmax do
Determine the value of the adaptive parameters (γ, α) in Equations (3) and (4)

For loop: for each i = 1 . . . n all n fireflies do
Inner loop: for each j = 1 . . . n all n fireflies do
Evaluate the distance, r, between the two particles (xi, xj)
Evaluate the attractiveness β = exp

(
−γr2)

If
(

Ii < Ij

)
, move firefly i towards j;

Update parameter values (γ, α) as Equations (3) and (4)
Evaluate new solution xi+1 as in Equation (5)

end if
End For j

End For i
Update light intensity Ixi+1

Rank the fireflies and find the current global best values
End While
Output: the best fireflies solutions x and elapsed time

4. Accuracy and Convergence of the Presented Algorithm

The effect of tuning and choosing of the iteration parameters and a population of the presented
algorithm are outlined in this section. Also, it observes and examines the convergence features and
the effect on the accuracy of the optimal solution. It is because, when providing a solution for any
optimization problem, the parameters of bio-inspired algorithms computation need to be found and
selected correctly to get the most favorable results. The simulation part gives the comparison between
the proposed algorithm and its predecessor. Also, the objective of the research is to investigate the role
of the number of iteration and impact of the population size in various dimensions of the problem [24].
There are two unconstrained problems of single optimization outlined in the benchmark functions,
which is applied in this study. Two types of optimization problems that form the functions are local
optima and a single global optimum. They consist of multimodal and unimodal types.

The personal computer (PC) that has a processor provided a platform for the performance of the
experimental testing. In this case, the PC had a CPU Intel (R) Core (TM) i7-2.4G that has Windows
10 operating system, and memory of 4.00 GB RAM. MATLAB R2013a (MathWorks, Natick, MA,
USA) is used in coding the program. Some of the parameters are made similar is to provide an
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honest comparison of the algorithms. Also, the two-benchmark function both have a global optimum.
When the number of iteration and the population size is stationary at a specific value, then the number
of function evaluations is given as:

NE = n× Itrmax (6)

In this case, the population size is represented by n, and the maximum iteration is represented by
Itrmax during the process of iteration. The time was taken after allowable Itrmax was reached, and the
best solution value found and is used to determine the performance results.

4.1. Unimodal Function

In this part, the objective of the study is to provide an understanding of the impacts of tuning
distinguishing factors of the presented FA algorithm on solution and union of the unimodal functions.
Also, the proposed algorithm is used in performing the simulation process with the Schwefel’s Problem,
as follows [23] (refer to Figure 1):

f (x) =
d

∑
i=1
|xi|+

d

∏
i=1
|xi| (7)
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Figure 1. Schwefel’s Problem in 3-D view.

Table 1 contains the comparison of the proposed FA method and the original FA in terms of
accuracy and the corresponding CPU time.

Table 1. Results of the proposed Firefly algorithm (FA) for Schwefel’s Problem.

Variables The Original FA Method The Proposed FA Method c = 5

Population
(n)

Dimension
(d) Itrmax Cost Function f (x) Time (s) Cost Function f (x) Time (s)

6
2

50 6.58824 × 10−4 +/− 2.03 × 10−3 0.019 4.22032 × 10−11 +/− 3.11 × 10−8 0.017649662

500 6.13740 × 10−5 +/− 1.23 × 10−4 0.068 1.88611 × 10−88 +/− 5.23 × 10−53 0.146790572

30
50 8.11338 × 101 +/− 9.23 0.017 2.21701 × 10−8 +/− 4.01 × 10−5 0.017149309

500 2.10145 × 101 +/− 1.03 × 101 0.076 3.77617 × 10−88 +/− 6.11 × 10−51 0.150035174

30
2

50 3.93047 × 10−4 +/− 5.01 × 10−3 0.097 3.05356 × 10−17 +/− 4.03 × 10−11 0.109078429

500 7.42205 × 10−5 +/− 6.17 × 10−4 0.859 1.5336 × 10−98 +/− 5.12 × 10−75 1.049852353

30
50 1.79201 × 101 +/− 7.73 0.106 3.02683 × 10−9 +/− 1.22 × 10−5 0.119447301

500 5.70892 × 10−1 +/− 9.13 × 10−1 0.967 5.9831 × 10−93 +/− 5.31 × 10−73 1.255127879

100
2

50 8.19849 × 10−4 +/− 9.52 × 10−5 0.871 2.66275 × 10−24 +/− 3.31 × 10−16 0.926686182

500 7.36599 × 10−5 +/− 1.33 × 10−4 8.388 2.6357 × 10−119 +/− 1.11 × 10−85 9.85979571

30
50 5.47774 +/− 8.33 0.997 3.1563 × 10−10 +/− 5.01 × 10−6 1.096175286

500 4.62718 × 10−1 +/− 8.35 × 10−2 9.302 5.0678 × 10−100 +/− 1.73 × 10−83 10.67208132

The results showed that there is a small improvement when population size of 100 is used,
compared to when the size of 30 is used. Nevertheless, when the iteration is increased to 500, and the
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problem dimension escalated to 30, the computational burden is presented clearly, based on the use of
large population size.

4.2. Multimodal Function

The simulations involving the levy function, f (x) as illustrated in Figure 2, as an example of
multimodal function are executed to examine the impacts of parameters on solution accuracy of the
suggested algorithm, and the parameter on the union. The f (x) is given by:

f (x) = sin2(πw1) +
d−1

∑
i=1

[
(wi − 1)2

(
1 + sin2(πwi + 1)

)]
+ (wd − 1)2

(
1 + sin2(2πwd)

)
(8)

where
wi = 1 +

xi − 1
4
∀ i = 1, 2, . . . , d
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The comparison of the result is made, and conclusions determined on the most effective parameter
condition for the algorithm. In regard to the multimodal problem of the Levy functions, the suggested
approach and the result for FA original based on numerical simulation are indicated in Table 2.

Table 2. Results of the proposed FA methods for Levy function problem.

Variables The Original FA Method The Proposed FA Method c = 5

Population
(n)

Dimension
(d) Itrmax Cost Function f (x) Time (s) Cost Function f (x) Time (s)

6
2

50 2.456 × 10−1 +/− 9.21 × 10−1 0.022 8.70213 × 10−4 +/− 5.63 × 10−2 0.017334055

500 2.76 × 10−2 +/− 7.03 × 10−2 0.082 2.360659 × 10−3 +/− 3.11 × 10−1 0.166245785

30
50 2.32 × 102 +/− 9.13 × 101 0.022 3.25949207 +/− 8.75 × 101 0.023739867

500 2.15 × 102 +/− 5.21 × 101 0.118 2.586502461 +/− 7.05 × 101 0.195115349

30
2

50 3.64 × 10−2 +/− 7.03 × 10−2 0.128 1.053531 × 10−3 +/− 3.51 × 10−2 0.112729302

500 7.68 × 10−4 +/− 5.19 × 10−4 1.184 1.22458 × 10−4 +/− 1.33 × 10−3 1.038401091

30
50 2.06 × 102 +/− 9.25 × 101 0.133 1.989531603 +/− 8.23 0.135518497

500 1.56 × 102 +/− 9.72 × 101 1.163 1.815948116 +/− 7.33 1.421920632

100
2

50 4.73 × 10−3 +/− 8.78 × 10−3 0.903 1.24 × 10−4 +/− 7.12 × 10−3 0.958555

500 8.84 × 10−4 +/− 6.15 × 10−4 8.501 4.12474 × 10−5 +/− 2.33 × 10−5 9.402039477

30
50 2.22 × 102 +/− 9.25 × 102 1.356 1.94852802 +/− 7.77 1.120368893

500 1.33× 102 +/− 7.88 × 102 9.971 1.797004014 +/− 5.53 11.20427867

The proposed algorithm showed good result to solve the problem and outperforms the original FA
method. The result further noted that a small enhancement could be explicitly observed on population
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sizes of 30 and 100 when high population sizes are used. Also, as the time of computation increased
proportionally with the population size.

4.3. Other Optimization Methods

In this subsection, we present the performance of the proposed firefly algorithm with
other optimization approaches, such as Standard particle swarm optimization (SPSO) [24],
Differential Evolution (DE) [9], [25] Variable Step Size Firefly Algorithm (VSSFA) [26], Memetic Firefly
Algorithm (MFA) [27] and original FA, in global numeric optimization problem. Well-known classical
benchmark problems used in the following experiments for studying and comparing the performance
of proposed optimization method with other methods in this section [23,28]. Specifically, we have
used six well-defined objective functions to test the proposed Firefly method. Table 3 presents the
selected problem sets. All these functions are continuous. For more details, please refer to [23,28].

Table 3. Benchmark problem sets.

Function’s
Number Name Expression

F1 Ackley Function
f1(x) =

[
−20 exp

(
−0.2

√
1
n

n
∑

i=1
(xi

2)

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + e

]
,

−32 ≤ xi ≤ 32
min( f1) = f1(0, . . . , 0) = 0

F2 Sphere Function
f2(x) =

n
∑

i=1
(xi)

2, −100 ≤ xi ≤ 100

min( f2) = f2(0, . . . , 0) = 0

F3 Rosenbrock Function f3(x) =
n−1
∑

i=1

[
100
(
xi+1 − xi

2)2
+ (xi − 1)2

]
, −10 ≤ xi ≤ 10

min( f3) = f3(1, . . . , 1) = 0

F4 Rastrigin Function
f4(x) =

n
∑

i=1

(
xi

2 − 10 cos(2πxi) + 10
)
, −5.12 ≤ xi ≤ 5.12

min( f4) = f4(0, . . . , 0) = 0

F5 Schwefel Problem 2.22
f5(x) =

n
∑

i=1
|xi|+

n
∏
i=1
|xi|, −10 ≤ xi ≤ 10

min( f5) = f5(0, . . . , 0) = 0

F6 Griewank Function
f6(x) = 1

4000

n
∑

i=1

(
xi

2)− n
∏
i=1

cos
(

xi√
i

)
+ 1, −600 ≤ xi ≤ 600

min( f6) = f6(0, . . . , 0) = 0

In this section, we consider the dimension of the problems of 30 (d = 30). For fair comparison,
we use the same population size (n = 30) and the number of function evaluations of 15 × 103. For each
benchmark function, the mean value of 30 Monte Carlo simulations of each algorithm has been
reported. Nevertheless, we take β0 = 1, γ = 1 and α = 0.2 for the FA and VSSFA methods as in [26].
For MFA method [27], we use the following setting: βmin = 0.2, β0 = 1, γ = 1 and α = 0.2. For the
SPSO and DE methods, we have used the following setting parameters as in [25]. Moreover, we define
a weighting factor (f = 0.5), and a crossover constant (CR) = 0.5 for DE method. While for SPSO, we set
the inertial constant w = 1

2 log(2) , a cognitive constant c1 = 0.5 + log(2), and a social constant for
swarm interaction c2 = 0.5 + log(2) as in [24].

Table 4 shows the numerical result values of the proposed FA method compared with other
methods on the different problem sets. As illustrated in Table 4, the proposed FA method obtained
better results than the other five methods on six benchmark problem sets (F1–F6). The proposed
FA method obtained the target solution on problem set F6, although the other five methods did
not as well as the proposed FA method, they obtained the comparable results to each other as well.
Furthermore, it is clearly that the VSSFA method trapped and failed to achieve reasonable solutions on
all problem sets.

It is also worthwhile to study the proposed FA method with various values of c parameter. Thus,
Table 5 presents the performance of the proposed FA method with different values of c. It is obvious
that the performance of the proposed FA method improves more consistently as c increases, and is
better than that of the FA method. However, the proposed FA method significantly outperforms the
other five algorithms for achieving reasonable solutions on all benchmark problem sets.
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Table 4. Results obtained by the standard FA, Variable Step Size Firefly Algorithm (VSSFA), Memetic Firefly Algorithm MFA, particle swarm optimization (PSO),
differential evolution (DE), and the proposed FA on the test suite.

Function
Standard FA VSSFA MFA SPSO DE The proposed FA with c = 5

Mean Mean Mean Mean Mean Mean

F1 3.21 × 10−2 +/− 1.09 × 10−2 2.31 × 101 +/− 4.5 × 101 7.31 × 10−4 +/− 8.55 × 10−3 8.75 × 100 +/− 9.77 × 100 1.03 × 101 +/− 4.1 × 101 0 +/− 0
F2 7.87 × 101 +/− 5.3 × 101 6.83 × 101 +/− 9.21 × 101 2.71 × 10−4 +/− 3.34 × 10−4 4.31 × 10−4 +/− 5.33 × 10−4 5.11 × 101 +/− 4.1 × 101 1.12 × 10−185 +/− 7.03 × 10−123

PF3 5.71 × 10−2 +/− 9.55 × 10−2 4.75 × 10+3 +/− 7.1 × 103 3.95 × 101 +/− 8.3 × 101 5.31 × 100 +/− 5.2 × 100 7.71 × 101 +/− 8.5 × 101 3.30 × 10−187 +/− 3.65 × 10−153

F4 5.12 × 102 +/− 8.7 × 101 4.23 × 102 +/− 7.1 × 102 3.53 × 101 +/− 2.3 × 101 1.92 × 103 +/− 2.7 × 103 2.13 × 104 +/− 2.2 × 104 28.88 × 100 +/− 2.01 × 10−2

F5 4.87 × 10−2 +/− 7.23 × 10−2 9.28 × 101 +/− 9.3 × 101 8.01 × 10−4 +/− 7.33 × 10−4 1.95 × 100 +/− 8.7 × 100 7.27 × 101 +/− 1.3 × 101 5.98 × 10−93 +/− 3.25 × 10−78

F6 1.41 × 10−3 +/− 9.88 × 10−3 8.75 × 101 +/− 9.2 × 101 5.33 × 10−3 +/− 7.35 × 10−3 7.72 × 10−3 +/− 8.75 × 10−3 8.52 × 100 +/− 9.6 × 100 1.48 × 10−5 +/− 8.22 × 10−4

Table 5. Results obtained by the standard FA and the proposed FA with different values of c on the test suite.

Function
Standard FA Proposed FA c = 1 Proposed FA c = 2 Proposed FA c = 3 Proposed FA c= 5

Mean Mean Mean Mean Mean

F1 3.21 × 10−2 +/− 1.09 × 10−2 0 +/− 0 0 +/− 0 0 +/− 0 0 +/− 0
F2 7.87 × 101 +/− 5.3 × 101 2.72 × 10−48 +/− 4.11 × 10−23 1.93 × 10−112 +/− 3.33 × 10−83 2.85 × 10−155 +/− 1.71 × 10−95 1.12 × 10−185 +/− 7.03 × 10−123

F3 5.71 × 10−2 +/− 9.55 × 10−2 1.51 × 10−48 +/− 2.57 × 10−25 2.87 × 10−113 +/− 7.23 × 10−92 7.25 × 10−151 +/− 2.22 × 10−105 3.30 × 10−187 +/− 3.65 × 10−153

F4 5.12 × 102 +/− 8.7 × 101 28.86 × 100 +/−2.00 × 10−2 28.86 × 100 +/− 2.00 × 10−2 28.87 × 100 +/−2.01 × 10−2 28.88 × 100 +/− 2.01 × 10−2

F5 4.87 × 10−2 +/− 7.23 × 10−2 2.21 × 10−24 +/− 8.11 × 10−15 1.66 × 10−58 +/− 5.88 × 10−37 2.52 × 10−78 +/− 6.21 × 10−52 5.98 × 10−93 +/− 3.25 × 10−78

F6 1.41 × 10−3 +/− 9.88 × 10−3 1.26 × 10−4 +/− 3.83 × 10−3 2.48 × 10−4 +/− 8.57 × 10−3 1.47 × 10−4 +/− 4.51 × 10−4 1.48 × 10−5 +/− 8.22 × 10−4
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4.4. Computational Complexity

In this subsection, we obtained the average CPU time to evaluate the computational complexity
of each method. For each method, the computational complexity based on the CPU time for each
approach is defined as follows [20],

EFF =
Tc(F)

Ttot(F)
× 100% (9)

where EFF represents the computational efficiency for each method, Tc(F) denotes the computational
time of an algorithm on the benchmark problem set F and Ttot(F) is the total time of all the methods
on the problem set F.

As shown in Table 6, DE and the standard FA methods obtain the best results among all other
methods, and they are followed by MFA method. Furthermore, the computational efficiency of the
presented FA method is comparable to SPSO method. However, the proposed method is worse than
the standard FA method in terms of computational complexity because of the new exploration and
exploitation approach have been used.

Table 6. The computational efficiency (EEF) of each method on the six problem sets.

Functions Standard FA VSSFA MFA SPSO DE The Proposed FA with c = 5

F1 10% 25% 11% 22% 9% 23%
F2 11% 26% 12% 20% 10% 21%
F3 10% 23% 12% 20% 11% 24%
F4 10% 25% 11% 22% 9% 23%
F5 9% 26% 11% 20% 10% 24%
F6 11% 24% 12% 20% 10% 23%

4.5. Statistical Test

In this subsection, we employ the typical non-parametric tests; namely, the Quade, Friedman, and
Aligned Friedman tests [29,30], as a methodology for comparing and evaluating the results of all the
algorithms in this paper. Table 6 shows the average rankings obtained from the non-parametric test.
Each method and its score are reported in descending order. Furthermore, we reported the statistics
and the corresponding p-values of the tests at the bottom of the Table 7.

Table 7. Descending ranks of all compared methods over all problem sets.

Average Quade Friedman Aligned Friedman

Rank Method Score Method Score Method Score

1 VSSFA 7.6235 VSSFA 7.5026 VSSFA 82.5832
2 SPSO 6.8235 SPSO 6.8125 SPSO 75.1472
3 DE 6.5121 DE 6.5011 DE 72.1322
4 FA 6.4157 FA 6.4113 FA 68.3582
5 MFA 5.5201 MFA 5.1090 MFA 52.4235
6 Proposed FA 3.1052 Proposed FA 3.3075 Proposed FA 38.8885

Statistic 4.011302 35.2354 12.75773
p-value 0.0056273 0.000271 0.367715

5. Discussion

This paper examines the newly proposed improvements regarding FA method. By including
effective adaptive parameters relies on the iteration processes to enhance the exploration and
exploitation mechanisms in the original FA method. The proposed method is exhibited to be effective
in getting satisfactory results since it aids in providing an equilibrium on exploitation and exploration
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abilities. In the proposed FA, the fireflies fly in the sky to find food/prey (i.e., best solutions).
Two parameters are: The step size (α) that acts in a similar role as the cooling schedule in the
traditional simulated annealing optimization method, and the absorption coefficient (β) that regulates
the attractiveness. The appropriately update for the step size (α) and absorption coefficient (β) balances
the exploration and exploitation behavior of each firefly, respectively. As the attractiveness usually
decrease once a firefly has found its prey/solution, the light intensity increases in order to raise the
attack accuracy. The results found in this paper provides a conclusion on apprehending the impacts
of tuning distinguishing features of the proposed FA algorithm on their accuracy of solution and
union. The multimodal Levy function problem and the unimodal Schwefel’s Problem 2.22 were used
in the simulation execution along with other benchmark functions. It was noted that a large number
of repetitions yielded a better-quality solution. Also, the vast iteration is needed and essential in
comparing the algorithm scrutinized. It is because all the algorithms proposed have shown good
capability in obtaining better global extreme value by overlapping the iteration. The quality of the
solution can also be increased by increasing the population size, and this will also increase the time
for computation. Consequently, a competitive proportion of the population is applied in comparing
the algorithm proposed to determine the best result. Moreover, the proposed method is worse than
the standard FA method in terms of computational complexity because of the new exploration and
exploitation approach have been used. Nevertheless, with the advent of GPUs (see Nvidia.com, e.g.),
multi-thread excursions, and cloud computing, metrics based on the timing of a single CPU are no
longer relevant. The critical and most important metric is really performance quality of the algorithm.

6. Conclusions

This paper proposed an improved meta-heuristic Firefly method for optimization problems.
A novel type of FA model has been presented, and an improvement is applied to exchange information
between fireflies during the process of the light intensity updating. This new method can enhance the
performance of the original firefly method rate without losing the speed convergence of the basic FA.
The detailed implementation procedure for this proposed method is also described. Compared with
the basic FA, PSO, DE, and two other FA variants, the simulation results illustrate that this approach
is a feasible and effective way in numerical optimization problems. Regarding the results found in
the unimodal problem, as the dimensions of the problem increase, the population size also increases,
which was better than the original FA. Furthermore, due to increased iteration, the proposed algorithm
has obtained important enhancement. For the case of multimode study, the proposed algorithm obtains
a good improvement in the accuracy of the solution with an increase in dimension and population size.
Our future work will focus on developing a new meta-hybrid approach to solve optimization problem.

Author Contributions: M.S., M.Z. and M.K. contributed to the development of the code for the enhanced Firefly
algorithm and the optimization algorithms. M.S. wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yang, X.-S. Engineering Optimization: An Introduction with Metaheuristic Applications; John Wiley & Sons:
Hoboken, NJ, USA, 2010.

2. Tang, W.J.; Wu, Q.H. Biologically inspired optimization: A review. Trans. Inst. Meas. Control 2009, 31, 495–515.
[CrossRef]

3. Simon, D. Evolutionary Optimization Algorithms; John Wiley & Sons: Hoboken, NJ, USA, 2013.
4. Singiresu, S.R. Engineering Optimization Theory and Practice, 4th ed.; John Wiley & Sons: Hoboken, NJ,

USA, 2009.
5. Talbi, E.G. Metaheuristics: From Design to Implementation; John Wiley & Sons: Hoboken, NJ, USA, 2009.

http://dx.doi.org/10.1177/0142331208094044


Electronics 2018, 7, 132 12 of 13

6. Castro, L.N. Nature-Inspired Computing Design, Development, and Applications; IGI Global: Hershey, PA,
USA, 2012.

7. Blum, C.; Roli, A. Metaheuristics in combinatorial optimization: Overview and conceptual comparison.
ACM Comput. Surv. 2003, 35, 268–308. [CrossRef]

8. Russell, C.E.; Shi, Y. Comparison between genetic algorithms and particle swarm optimization.
In Proceedings of the Evolutionary Programming VII, 7th International Conference, San Diego, CA, USA,
25–27 March 1998.

9. Das, S.; Suganthan, P.N. Differential evolution: A survey of the state-of-the-art. IEEE Trans. Evol. Comput.
2010, 15, 4–31. [CrossRef]

10. Albataineh, Z.; Salem, F.; Ababneh, J.I. Linear phase FIR low pass filter design using hybrid differential
evolution. Int. J. Res. Wirel. Syst. 2012, 1, 43–49.

11. Yang, X.-S.; Deb, S. Cuckoo search: Recent advances and applications. Neural Comput. Appl. 2014, 9, 169–174.
[CrossRef]

12. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International
Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995.

13. Shi, Y.; Eberhart, R.C. Parameter selection in particle swarm optimization. In Proceedings of the 7th
International Conference on Evolutionary Programming VII, San Diego, CA, USA, 25–27 March 1998.

14. Yang, X.-S.; He, X. Firefly algorithm: Recent advances and applications. Int. J. Swarm Intell. 2013, 1, 36–50.
[CrossRef]

15. Binitha, S.; Sathya, S.S. A survey of bio inspired optimization algorithms. Int. J. Soft Comput. Eng. 2012, 2,
137–151.

16. Yang, X.-S. Firefly algorithms for multimodal optimization. In Proceedings of the 5th International
Conference on Stochastic Algorithms: Foundations and Applications, Sapporo, Japan, 26–28 October 2009.

17. Wang, H.; Wang, W.; Sun, H.; Zhao, J.; Zhang, H.; Liu, J.; Zhou, X. A new firefly algorithm with local
search for numerical optimization. In Proceedings of the Computational Intelligence and Intelligent Systems:
7th International Symposium (ISICA), Guangzhou, China, 21–22 November 2015.

18. Wang, H.; Wang, W.; Sun, H.; Rahnamayan, S. Firefly algorithm with random attraction. Int. J. Bio-Inspired
Comput. 2016, 8, 33–41. [CrossRef]

19. Wang, G.-G.; Guo, L.; Duan, H.; Wang, H. A new improved firefly algorithm for global numerical
optimization. J. Comput. Theor. Nanosci. 2014, 11, 477–485. [CrossRef]

20. Cheung, N.J.; Ding, X.M.; Shen, H.B. Adaptive firefly algorithm: Parameter analysis and its application.
PLoS ONE 2014, 9, e112634. [CrossRef] [PubMed]

21. Yang, X.-S. Firefly algorithm, stochastic test functions and design optimization. Int. J. Bio-Inspired Comput.
2010, 2, 78–84. [CrossRef]

22. Engelbrecht, A.P. Heterogeneous particle swarm optimization. In Proceedings of the International Conference
on Swarm Intelligence, Brussels, Belgium, 8–10 September 2010.

23. Virtual Library of Simulation Experiments: Test Functions and Database. Available online: https://www.
sfu.ca/~ssurjano/ (accessed on 20 March 2018).

24. Clerc, M. Standard Particle Swarm Optimization. Available online: http://clerc.maurice.free.fr/pso/SPSO_
descriptions.pdf (accessed on 10 March 2018).

25. Albataineh, Z.; Salem, F. New blind multiuser detection in DS-CDMA using H-DE and ICA algorithms.
In Proceedings of the International Conference on 2013 4th Intelligent Systems Modelling & Simulation
(ISMS), Bangkok, Thailand, 29–31 January 2013.

26. Yu, S.H.; Zhu, S.L.; Ma, Y.; Mao, D.M. A variable step size firefly algorithm for numerical optimization.
Appl. Math. Comput. 2015, 263, 214–220. [CrossRef]

27. Fister, I., Jr.; Yang, X.S.; Fister, I.; Brest, J. Memetic firefly algorithm for combinatorial optimization.
In Bioinspired Optimization Methods and their Applications (BIOMA 2012); Filipic, B., Silc, J., Eds.;
Jozef Stefan Institute: Ljubljana, Slovenia, 2012.

28. Wang, H.; Rahnamayan, S.; Sun, H.; Omran, M.G.H. Gaussian bare-bones differential evolution.
IEEE Trans. Cybern. 2013, 43, 634–647. [CrossRef] [PubMed]

http://dx.doi.org/10.1145/937503.937505
http://dx.doi.org/10.1109/TEVC.2010.2059031
http://dx.doi.org/10.1007/s00521-013-1367-1
http://dx.doi.org/10.1504/IJSI.2013.055801
http://dx.doi.org/10.1504/IJBIC.2016.074630
http://dx.doi.org/10.1166/jctn.2014.3383
http://dx.doi.org/10.1371/journal.pone.0112634
http://www.ncbi.nlm.nih.gov/pubmed/25397812
http://dx.doi.org/10.1504/IJBIC.2010.032124
https://www.sfu.ca/~ssurjano/
https://www.sfu.ca/~ssurjano/
http://clerc.maurice.free.fr/pso/SPSO_descriptions.pdf
http://clerc.maurice.free.fr/pso/SPSO_descriptions.pdf
http://dx.doi.org/10.1016/j.amc.2015.04.065
http://dx.doi.org/10.1109/TSMCB.2012.2213808
http://www.ncbi.nlm.nih.gov/pubmed/23014758


Electronics 2018, 7, 132 13 of 13

29. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests
as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput.
2011, 1, 3–18. [CrossRef]

30. Chih, M. Three pseudo-utility ratio-inspired particle swarm optimization with local search for
multidimensional knapsack problem. Swarm Evol. Comput. 2018, 39, 279–296. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.swevo.2011.02.002
http://dx.doi.org/10.1016/j.swevo.2017.10.008
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Firefly Algorithm 
	The Proposed Adaptive Approach for Firefly Algorithm 
	Accuracy and Convergence of the Presented Algorithm 
	Unimodal Function 
	Multimodal Function 
	Other Optimization Methods 
	Computational Complexity 
	Statistical Test 

	Discussion 
	Conclusions 
	References

