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Abstract: The high-frequency-based medium voltage (MV) inverter is used in renewable energy
power sources for power transmission. However, power quality is compromised as a result of
the increase in common mode noise currents by the high inter-winding parasitic capacitance in
high-frequency link transformers. This fast voltage transient response leads to harmonic distortion
and transformer overheating, which causes power supply failure or many other electrical hazards.
This paper presents a comparative study between conventional and modified toroid transformer
designs for isolated power supply. A half bridge high-frequency (10 kHz) MV DC–AC inverter
was designed along with power source; a 680 W solar module renewable system was built.
An FEM-simulation with Matlab-FFT analysis was used to determine the core flux distribution and to
calculate the total harmonics distortion (THD). A GWInstek LCR meter and Fluke VT04A measured
the inter-winding capacitance and temperature in all four transformer prototypes, respectively.
The modified design of a toroid ferrite core transformer offers more resistance to temperature increase
without the use of any cooling agent or external circuitry, while reducing the parasitic capacitance
by 87%. Experiments were conducted along with a mathematical derivation of the inter-winding
capacitance to confirm the validity of the approach.

Keywords: high-frequency-based MV inverter; transformer’s parasitic capacitance; total harmonic
distortion; toroidal transformer; sector windings

1. Introduction

A transformer plays a vital role in energy conversion and is at the heart of the electric power
system. The transformer size decreases with increasing frequency, which allows for the building of
smaller, less expensive, and compact portable electrical devices [1,2]. Therefore, high frequency power
transformers are preferred over traditional frequency transformers (50–60 Hz) in the power electronic
fields, such as switching power supplies; converters; and inverters, including medium voltage (MV)
inverters, which offer a step-up transformer-less solution to interconnect photovoltaic (PV) arrays to
the MV grid [3–8].

Green energy is a priority of many researchers because of population and industrial growth,
which are leading the world towards an extensive rise of global warming threats and visible climate
change. Therefore, renewable energy sources are in high demand, particularly solar and wind energy.
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These sources are projected to fulfill 50% of the energy requirement by the year 2050 [9]. On the
other hand, the intermittent nature of these power sources is a major limitation to connecting them
straight to electrical/electronic systems or national grids. This critical obstacle can be overcome using
external devices, such as energy storage, converters, and inverters (see Figure 1) [10–13]. As a result of
the high penetration of these high-frequency-based MV inverters into the renewable energy power
plants, energy demands could be fulfilled for industries and home power requirements. However,
these high-frequency links, for example, high-frequency transformer, H-bridge inverter dead time,
and non-linear load, generates high harmonic content. This can cause serious damage to the equipment
including overheating, power supply failure, or electric shock hazards [14,15]. Consequently, to protect
the component and the connected loads from overheating and to provide a power supply without any
disturbances, the power quality of these MV inverters needs to be taken into consideration [16–19].
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An electromagnetic interference (EMI) in inverters can affect the power quality of transients,
both short time and longtime deviation, which can cause harmonics. In these devices, harmonics can
be categorized into two classes: common and differential conduction modes (CCM and DCM) [20–22].
The high-frequency transformer is one of the sources of EMI and contributes to the common mode
harmonics because of the intrinsic coupling capacitance, and electric and magnetic fields [23]. The duty
cycle is inversely proportional to the harmonics. Therefore, DCM operations of pulse-width modulation
(PWM) converters increase the harmonics, which adds power losses in transformer windings. Similarly,
high-frequency operation causes skin and proximity effects that elevate the harmonic losses, winding
power losses, and rapid growth in the operating temperature [24,25]. On the other hand, high frequency
winding losses and lowering the leakage inductance has been a major research focus, while the winding
capacitance requires equally serious attention during the design of transformers. Capacitive coupling
is one of the paths that can carry high frequency noise; premature resonance; electrostatic coupling
to other circuits; and fast transient voltages from primary to secondary circuitry, which produces
common mode noise currents and an increase in transformer temperature in the device, resulting in a
deterioration of the overall system operation, noise, health, and safety threats.

This capacitive coupling is an eruption effect of a transformer parasitic, rooted by a wide range of
capacitance across the transformer, which circulates as a result of winding arrangements. Therefore,
the key to overcoming this critical hurdle is lowering the inter-winding capacitance. Conventional
methods to reduce the emergence of capacitive coupling at the transformer include increasing the
insulation between the primary and secondary winding or increasing the distance between the primary
and secondary winding by winding them on opposite sides of the toroidal core. These changes in the
transformer will, however, cause other drawbacks, such as high leakage inductance, larger physical
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size, and poor inductive coupling. Accordingly, conventional methods are not completely effective in
improving the power quality. On the other hand, previous studies [26–32] examined the techniques on
smart transformers fuzzy logic based transformers by winding using fiber optic sensors and certain
oils for cooling the transformer. They, however, were arranged specifically for the coupling capacitance
and temperature control and showed no significant difference when compared with the less expensive
conventional solutions.

The leakage inductance and primary/secondary capacitance are mutually exclusive and are
governed by the distance between the windings and the unwounded core. As a result of this, it is
difficult to achieve both low capacitive coupling and a high degree of inductive coupling in a power
transformer [33,34]. To circumvent this inherent tradeoff in this study, the conventional toroid ferrite
core transformer was modified by an additional 3D printed polylactic acid (PLA) mold, which separates
the primary and secondary windings, and helps to implement unique sector winding. Although the
distance between windings will introduce leakage inductance, there is some gain in capacitance due to
the dielectric constant of PLA. However, the magnetic core geometry and winding arrangements have
a large influence on self-capacitance and leakage inductance of the transformer and because of the
addition of a mold, it enables access to various types of winding arrangements. This paper reports
a comparative analysis on the high frequency-link MV inverter for power-quality improvement by
effective subtraction of capacitive coupling and reducing the temperature increase without using any
extra circuitry or cooling agents.

2. High-Frequency Link Based MV Inverter Design Consideration

2.1. Toroid Ferrite Core

To utilize the intrinsic ferrite material properties, it is essential to use a ring configuration
of the ferrite core. Therefore, the toroid core was used in this paper, as it is commonly used for
high-frequency square/sine wave-based applications, such as power input filters, ground-fault
interrupters, common-mode filters, and pulse and broadband filters.

A 77 material ferrite toroid was used as the core for MV inverter high-frequency link transformer.
Figure 2 presents a schematic diagram of the core and is defined by its outer diameter (A), inner
diameter (B), and thickness (C) (See Table 1). Figure 3 shows how the increasing temperature affects
the core properties and Table 2 presents toroid ferrite77 core material’s electrical properties.
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Table 2. Ferrite 77 toroid core electrical properties (courtesy: Fair-Rite products Corp).

Electrical Properties

AL (nH) 2950 ± 25%
AE (cm2) 1.58000

∑I/A (cm−1) 9.20
Ie (cm) 14.50

Ve (cm3) 22.80000
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2.2. Harmonic Current Contribution on Transformer Losses and Temperature Rise

Total harmonics distortion (THD) is a widely-used notion to define the harmonic content in
alternating signals. This value is defined as the ratio sum of the powers of all harmonic components to
the power of the fundamental frequency. THD is used for low, medium, and high voltage systems,
where the current and voltage distortion is defined as THDI and THDV, and can be calculated using
the following Equations (1)–(2).

THDv =

( H

∑
h 6=1
|Vh|2

) 1
2

/|V1|

× 100% (1)

THDI =

( H

∑
h 6=1

∣∣∣Ih
i

∣∣∣2) 1
2

/|I1|

× 100% (2)

where h is the harmonic content order, and Vh and Ih are the voltage and current amplitude of order “h”
harmonic component, respectively. V1 and I1 are the voltage and current amplitude of the fundamental
component, respectively.

The International Electrotechnical Commission (IEC) 61727 imposes the limits for harmonics in
the current—Electromagnetic compatibility (EMC)-Part 3–2: Limits for harmonics current emission.
The IEEE Single Phase Harmonics Task Force (P1495) has set similar limitations. U.S. and European
power systems are different from each other in many standards. Therefore, the United States should
be different than the IEC stance. Thus, there is a flexibility to follow the certain standard (Table 3).
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Table 3. Current and Voltage total harmonic distortion allowing values and their associated risks
(courtesy: Interpreting European norm (EN) 50160 and International Electrotechnical Commission
(IEC) standard 61727). THD—total harmonics distortion.

THDV THDI Risk

<8% <5% normal situation considerable
8–15% 5–50% Minor harmonic pollution with malfunctions possibility
>15% >50% major harmonic pollution with malfunctions probability

The losses in transformers can be classified as load loss (impedance loss), no-load loss (excitation
loss), and total loss (no-load + load-loss). Load loss can be subdivided further into stray magnetic
losses in the core, eddy currents, and resistive losses in the windings.

pt = p f

h=hmax

∑
h=1

I2
h h2 (3)

where Pf is the eddy current loss at the fundamental frequency, and f and Ih are the fractions of the
total RMS load current at the harmonic number h.

2.3. Circuit Operation

Figure 4 shows, A single-phase half bridge (10 kHz) is comprised of two power MOSFET (IRF
250) (Texas Instruments, Dallas, TX, USA), S1 and S2, which are driven by a DSP F28335 (Texas
Instruments, Dallas, TX, USA) chip to generate a pulse width modulated waveform and feedback
diodes, D1 and D2. These are called freewheeling diodes with two DC bus capacitors to stabilize
the DC voltage. Two-stage power conversions with the help of the high-frequency transformer.
High-frequency operation is possible at the first DC/DC stage and at the second stage modified
amplitude of converted high-frequency AC voltage by high-frequency transformer secondary, which is
connected to high-frequency rectifier AC/DC and an output inverter, which converts the DC voltage
to the required frequency AC voltage in the case of utility grid 50/60 Hz.
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3. Fabrication

This study examined a new design for the high-frequency link of an MV inverter, which mitigates
the temperature increase occurring as a result of harmful harmonics by reducing the capacitive coupling
at the high-frequency transformer. Four toroid core transformers with conventional and modified
configurations, with 180◦ and 360◦ sector windings, were fabricated, and their THD, self-induced
capacitance, and temperature were measured and compared. The transformer windings for all four
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configurations were wound manually. The core material, dimensions, copper wire, and a number of
winding turns were the same for the conventional and modified configuration, as listed in Table 3.
The difference between the conventional and modified configuration was a two-part mold that was
mounted over the secondary windings and ferrite core. The primary winding was then wound over
this additional piece of hardware, which altered the dimensions of the primary winding and provided
scope to unique winding arrangements. The mold was printed using a 3D printer with a PLA filament
material. This was comprised of two parts, top and bottom, each with a width of 0.5 mm each with
very negligible extra weight and cost [35,36].

3.1. Case 1: Conventional Toroid Core Transformer with 180◦ Sector Windings

In this configuration, the entire secondary winding is distributed over the 180◦ sector of the toroid
core in a back-and-forth manner. The other half of the toroid core is wound with primary windings in
a similar manner, as shown in Figure 5.
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3.2. Case 2: Modified Toroid Core Transformer with 180◦ Sector Windings

In this configuration, the secondary winding is distributed over the 180◦ sector of the toroid
core in a back-and-forth manner, just as in the previous case. The two parts of the 3D printed mold
using a PLA filament material were mounted over the ferrite toroid core and secondary windings, to
completely encapsulate them. Owing to the assembly of the mold, the secondary winding is completely
hidden, which leaves an entire 360◦ span for the primary winding. The initial experiments were carried
out with the primary windings over the 360◦ sector and 180◦ sector of the core. On the other hand,
the lowest leakage inductance was achieved when the primary had a 180◦ sector winding without
overlapping the secondary winding, as shown in Figure 6.
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3.3. Case 3: A Conventional 360◦ Wound Toroid Core Transformer

In this case, the secondary winding is distributed over the entire 360◦ sector of the toroid ferrite
core. The primary winding is also distributed over the 360◦ sector on top of the secondary winding
(Figure 7).



Electronics 2018, 7, 142 7 of 15

 
Electronics 2018, 7, x  7 of 16 

  

3.3. Case 3: A Conventional 360° Wound Toroid Core Transformer 

In this case, the secondary winding is distributed over the entire 360° sector of the toroid ferrite 
core. The primary winding is also distributed over the 360° sector on top of the secondary winding 
(Figure 7). 

 
Figure 7. The 360° conventional (A) 2D model; (B) flux distribution; (C) 3D model. 

3.4. Case 4: A Modified 360° Wound Toroid Core Transformer 

In this case, the secondary winding is distributed over 360° sector of the toroid core in a back-and-
forth manner, as in the former case. The toroid ferrite core along with the secondary winding is 
encapsulated with the 3D printed mold, over which the primary winding is wound around a 360° span 
(Figure 8). 

 
Figure 8. The 360° modified (A) 2D model; (B) flux distribution; (C) 3D model. 

4. Calculation of the Transformer Inter-Winding Capacitance 

The general structure (2D, 3D, and flux flow in core) of the four designed transformer’s prototypes 
under test are illustrated in the fabrication section (3). In this section, prototype transformer calculations 
were carried out for inter-winding capacitance. Figure 9 shows the conceptual structure of case 1 and 
case 2 transformer prototypes for inter-winding capacitance calculation. Likewise, the capacitance for 
other prototypes can be evaluated in a similar manner.  

Figure 7. The 360◦ conventional (A) 2D model; (B) flux distribution; (C) 3D model.

3.4. Case 4: A Modified 360◦ Wound Toroid Core Transformer

In this case, the secondary winding is distributed over 360◦ sector of the toroid core in a
back-and-forth manner, as in the former case. The toroid ferrite core along with the secondary
winding is encapsulated with the 3D printed mold, over which the primary winding is wound around
a 360◦ span (Figure 8).
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4. Calculation of the Transformer Inter-Winding Capacitance

The general structure (2D, 3D, and flux flow in core) of the four designed transformer’s prototypes
under test are illustrated in the fabrication section (3). In this section, prototype transformer calculations
were carried out for inter-winding capacitance. Figure 9 shows the conceptual structure of case 1 and
case 2 transformer prototypes for inter-winding capacitance calculation. Likewise, the capacitance for
other prototypes can be evaluated in a similar manner.

Ferrite core material 77 has a negligible effect on parasitic capacitance; therefore, only winding
configurations were taken into account. For the sake of simplicity, only one winding of the secondary
side, which is wound on the ferrite core, is considered for calculation of inter-winding capacitance.
The same position of the secondary winding is considered for all four cases.

The distance between the inner secondary winding and inner primary windings can be expressed
as follows:

r1in,i =

√
r1

2 + r22 − 2r1r2 cos(
π

2
+

πi
np

) (4)

where r1 is the distance from the center of the core to the inner primary windings, r2 is the distance
from the center of the core to the outer primary windings, r3 is the distance from the center of the core
to the inner secondary windings, r4 is the distance from the center of the core to the outer secondary
windings (Figure 9), and np is the total number of primary turns. In all four cases, r3 and r4 values
are the same, as secondary winding is wounded on the ferrite core and core dimension is same for
all transformer prototypes. On the other hand, r1 and r2 values will vary with respect to each case,
for example, r1, for case 4 (r1, 4) and case 2 (r1, 2) will be same, but they are less than case 3 (r1, 3), which
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in turn is less than case 1 (r1, 1). The details of r1, r2, r3, r4 for the four different configurations are given
as follows:

A : r1, 4 = r1, 2 < r1, 3 < r1, 1

B : r2, 1 < r2, 3 < r2, 2 = r2, 4

C : r3, 1 = r3, 2 = r3, 3 = r3, 4

D : r4, 1 = r4, 2 = r4, 3 = r4, 4

The static capacitance between the inner primary and inner secondary is as follows:

C1in,i =
∈ ◦dπl1

2r1in,i
=

∈ ◦dπl1
2
√

r1
2 + r22 − 2 r1r2 cos(π

2 + πi
np
)

(5)

where
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◦ is the permittivity of free space, d is the diameter of the wire used for primary and secondary
windings, and l1 is the overlapped length.

Assuming that the voltage potential distribution along the primary turn varies linearly,

Vp[i] =
i

np − 1
Vp (6)

The total stored energy between the inner primary and secondary is as follows:

E1in =
1
2

np−1

∑
i=0

(
C1in,i(

i
np − 1

Vp)
2
)

(7)

Similarly, the capacitance between the inner primary–outer secondary, outer primary–outer
secondary, and outer primary–outer secondary can be calculated. Equations (4)–(7) can be used to
find the capacitance and energy for the other three cases as well (Table 4). The simulation was run
on MATLAB to calculate the capacitance in all four cases. For the sake of simplicity and to ignore the
repetitive process of inter-winding capacitance calculations, only one winding in the same position
of the secondary side is considered for all four cases. To see the effect of inter-winding capacitance,
we choose three primary winding for 180◦ conventional and modified configurations instead of 116,
and 6 primary windings for 360◦ conventional and modified configurations instead of 220.

 
Electronics 2018, 7, x  8 of 16 

  

 
Figure 9. Toroidal transformer with 180° sectored winding, Conceptual presentation of transformer 
prototypes from left to right conventional and modified. PLA—polylactic acid. 

Ferrite core material 77 has a negligible effect on parasitic capacitance; therefore, only winding 
configurations were taken into account. For the sake of simplicity, only one winding of the secondary 
side, which is wound on the ferrite core, is considered for calculation of inter-winding capacitance. The 
same position of the secondary winding is considered for all four cases. 

The distance between the inner secondary winding and inner primary windings can be expressed 
as follows: 

, cos ( + )in i
p

ir r r r r
n

π π= + −   2 2
1 1 2 1 22

2
 (4) 

where r1 is the distance from the center of the core to the inner primary windings, r2 is the distance 
from the center of the core to the outer primary windings, r3 is the distance from the center of the core 
to the inner secondary windings, r4 is the distance from the center of the core to the outer secondary 
windings (Figure 9), and np is the total number of primary turns. In all four cases,  and  values are 
the same, as secondary winding is wounded on the ferrite core and core dimension is same for all 
transformer prototypes. On the other hand, 1  and 2  values will vary with respect to each case, for 
example, , for case 4 ( , ) and case 2 ( , ) will be same, but they are less than case 3 ( , ), which in 
turn is less than case 1 ( , ). The details of , , ,  for the four different configurations are given as 
follows:  

A:   ,   =  ,    <    ,   <   ,  B:    ,   <   ,    <    , =   ,  C:   ,   =  ,    =    ,  =   ,  D:    ,   =  ,    =    ,  =   ,  

 

The static capacitance between the inner primary and inner secondary is as follows: 

Figure 9. Toroidal transformer with 180◦ sectored winding, Conceptual presentation of transformer
prototypes from left to right conventional and modified. PLA—polylactic acid.



Electronics 2018, 7, 142 9 of 15

Table 4. Detailed parameters of the transformer prototypes. PLA—polylactic acid.

Prototypes Physical Properties Case 1 Case 2 Case 3 Case 4

Copper Wire standard 24 AWG 24 AWG 24 AWG 24 AWG
Primary Turns 116 116 220 220

Secondary Turns 116 116 220 220
Core Material (Table 1) Ferrite 77 Ferrite 77 Ferrite77 Ferrite 77

Core shape Ring Ring Ring Ring

Permittivity (F/m) 8.85 × 10−12

(Air)
8.4190×10−12

(Air + PLA)
8.85×10−12

(Air)
8.419 × 10−12

(Air + PLA)
Inner Radius (mm) 17.775 15.275 17.775 15.275
Outer Radius (mm) 30.5 32.5 30.5 32.5
Primary Voltage (V) 24 24 24 24

Secondary Voltage (V) ~24 ~24 ~24 ~24
Frequency (kHz) 1–30 1–30 1–30 1–30

r1 17.265 14.765 16.755 14.765
r2 30.5 32.5 31.01 32.5
r3 17.265 17.265 17.265 17.265
r4 30.5 30.5 30.5 30.5

It can be seen from Table 5 that the inter-winding capacitance would be highest for case 3, followed
by that for case 1, case 4, and case 2. These analytical calculations hold well with the experimental data
for inter-winding capacitance, which is shown in the next section.

Table 5. Theoratical analysis of all presented prototypes, calculated energy, and inter-winding capacitance.

Case 1

E1 E2 E3 E4 Etotal Capacitanceeq (F)

Energy (J) 5.63 × 10−10 3.87 × 10−10 3.54 × 10−10 2.87 × 10−10 1.59 × 10−10
2.76 × 10−12

Percentage % 35.4 24.3 22.3 18 100

Case 2

E1 E2 E3 E4 Etotal Capacitanceeq (F)

Energy (J) 5.31 × 10−10 3.74 × 10−10 3.66 × 10−10 2.94 × 10−10 1.57 × 10−9
2.72 × 10−12

Percentage % 33.9 23.9 23.4 18.8 100

Case 3

E1 E2 E3 E4 Etotal Capacitanceeq (F)

Energy (J) 5.69 × 10−10 3.87 × 10−10 3.56 × 10−10 2.90 × 10−10 1.60 × 10−9
2.78 × 10−12

Percentage % 35.5 24.2 22.2 18.1 100

Case 4

E1 E2 E3 E4 Etotal Capacitanceeq (F)

Energy (J) 5.29 × 10−10 3.73 × 10−10 3.73 × 10−10 3.00 × 10−10 1.57 × 10−9
2.73 × 10−12

Percentage % 33.6 23.7 23.7 19 100

5. Experimental Setup

The high-frequency transformer temperature, capacitive coupling, and leakage inductance
were measured using a Fluke VT04A (Fluke, Everett, WA, USA) Thermometer and GWInstek LCR
(GWINSTEK, New Taipei City, Tucheng Dist., Taiwan) meter. The experiments were conducted at
constant ambient room temperature, on the high-frequency link of a 1 kW half bridge MV inverter.
Two 38 V, 350 W standalone solar modules connected in parallel served as input for the developed
inverter. Owing to the addition of a 3D printed mold and sector winding, it was possible to have
different winding arrangements. A number of modified toroid high-frequency transformers have been
developed with different sector windings, such as 45◦, 90◦, 120◦, 180◦, 270◦, and 360◦. Figure 10
presents a block diagram of the experimental setup. The input and output waveforms of the
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transformer were stored, and the harmonic contents present in the waveform were analyzed by
Matlab-FFT (MathWorks, Natick, MA, USA).
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6. Results and Discussion

For the comparative analysis, we designed a conventional toroid transformer with the same 180◦

and 360◦ sector windings and the same core dimension. The comparative experimental studies stated
that the proposed modified design succeeded in lowering the inter-winding capacitance (approximately
87%) and controlling temperature increase issues (less than 30◦) when compared with conventional
designs; detailed discussion based on sectored winding is shown below. Table 6 compares the THD
of the aforementioned transformer prototypes. By comparative analysis of normative Table 3 and
experimental result Table 6, it is clearly visible that all the prototypes have a minimum risk. Although,
modified designs have registered more or less similar distortion compared with conventional designs.

Table 6. Voltage and current THD for all prototypes.

Source Input Voltage (V) Case THDV % THDI %

Primary Secondary Primary Secondary

24 1 45.53 22.34 5.6 7.20
24 2 34.70 22.15 12.22 11.85
24 3 11.92 16.33 48.19 49.56
24 4 9.81 14.94 43.06 44.32

6.1. Toroidal Transformer with 180◦ Sectored Winding

Inter-winding Capacitance: Large inter-winding capacitance causes a significant amount of common
mode noise at high-frequency operations. Figure 11 shows the comparison for parasitic capacitance
from 1 to 30 kHz frequency at a high-frequency-based MV inverter. It is clearly visible that the
proposed modified design has minimized the parasitic capacitance close to 20 pF, which is much
lower than the conventional design. This was because of the mold, which helped increase the distance
between the windings.
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Figure 11. Toroidal transformers at 180◦ sectored winding, parasitic coupling capacitance comparison
between the conventional and modified design of high-frequency link based MV inverter systems.

Leakage Inductance: In a sectored wound transformer, when the winding covers only 180◦, leakage
flux path changes in the core. According to theory, we expected the leakage inductance to be higher
in modified design when compared with the conventional design because of the distance between
windings created by the PLA mold. However, the 3D printed mold using PLA filament was mounted
over the ferrite toroid core and secondary windings to completely encapsulate them and provided
scope to increase the mean length turn of the primary winding, which is required to reduce the leakage
inductance. This theory is supported by the experiment results [37]. Figure 12 demonstrates that the
modified design recorded less leakage inductance than the conventional design.
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Temperature: By comparing modified and conventional transformers on full load, it is clearly
visible that lowering the interwinding capacitance and harmonics distortion helped significantly in
controlling the temperature rise issue in the transformer (Figure 13).

 
Electronics 2018, 7, x  12 of 16 

  

 
Figure 12. Toroidal transformers at 180° sectored winding, leakage inductance comparison between the 
conventional and modified design of high-frequency link based MV inverter systems. 

Temperature: By comparing modified and conventional transformers on full load, it is clearly visible 
that lowering the interwinding capacitance and harmonics distortion helped significantly in controlling 
the temperature rise issue in the transformer (Figure 13). 

 
Figure 13. Toroidal transformers at 180° sectored winding, temperature comparison between the 
conventional and modified transformer design. 

6.2. Toroidal Transformer with 360° Sectored Winding 

The primary winding is on top of the secondary winding for the entire 360°, leakage flux is 
produced by the current in the windings, which are opposite in direction and equal in magnitude 
( = ), thus magnetizing or leakage flux cancels itself in the core. 

Inter-winding Capacitance: Larger values of self-capacitance of the transformer, which occur 
between primary and secondary windings, play a vital role in large primary current distortions. Self-
capacitance value of the proposed modified transformer prototype has been largely reduced (40 pF) 
with the help of 3D designed cover, spaces between windings, and proposed different winding 
arrangements compared with the conventional prototype. In Figure 14, winding capacitance for both 
conventional and modified transformers were plotted. It is noted that the modified design succeeded 
in minimizing the transformer self-capacitance by approximately 87% compared with conventional 
designs. 

Figure 13. Toroidal transformers at 180◦ sectored winding, temperature comparison between the
conventional and modified transformer design.



Electronics 2018, 7, 142 12 of 15

6.2. Toroidal Transformer with 360◦ Sectored Winding

The primary winding is on top of the secondary winding for the entire 360◦, leakage flux is
produced by the current in the windings, which are opposite in direction and equal in magnitude
(N1 I1 = N2 I2), thus magnetizing or leakage flux cancels itself in the core.

Inter-winding Capacitance: Larger values of self-capacitance of the transformer, which occur
between primary and secondary windings, play a vital role in large primary current distortions.
Self-capacitance value of the proposed modified transformer prototype has been largely reduced
(40 pF) with the help of 3D designed cover, spaces between windings, and proposed different winding
arrangements compared with the conventional prototype. In Figure 14, winding capacitance for
both conventional and modified transformers were plotted. It is noted that the modified design
succeeded in minimizing the transformer self-capacitance by approximately 87% compared with
conventional designs.
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Leakage Inductance: The leakage inductance and primary/secondary capacitance are mutually
exclusive and are governed by the distance between the windings and unwounded core. Therefore,
it is difficult to achieve both low capacitive coupling and a high degree of inductive coupling in a
power transformer. However, the magnetic core geometry and winding arrangements have a large
influence on self-capacitance and leakage inductance of the transformer and because of the addition of
a mold, it enables access to various types of winding arrangements. Thus, the modified design has
successfully lowered the inter-winding capacitance and achieves the minimum difference between
leakage inductance. The experimental results are shown in Figure 15.
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Temperature: Modified design shows significant control in temperature rise by lowering the
inter-winding capacitance and controlled leakage inductance over conventional designs (Figure 16).
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An MV inverter high-frequency link-modified toroid transformer was designed differently from
the conventional toroid designs. Both modified prototypes, case 2 and 4, showed extremely low
coupling capacitance, that is, 20 pF and 40 pF, respectively. The toroidal transformer at 180◦ sectored
winding has registered higher leakage inductance, which can be utilized in other topologies, such as
dual active bridge topologies. The experimental results matched the calculated analysis quite well.
Thus, the feasibility of the converter was validated.
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7. Conclusions

Overall, the MV inverter with the proposed modified transformer design has a minimized total
circuit input–output capacitance to approximately 20 pF, while the temperature increase was kept
below 29.5 ◦C, without using any extra circuitry or cooling agent. The modified design is certainly a
powerful solution to reduce the distortion in the waveform. This leads to an improved power quality of
renewable power sources and an increase in the operational lifetime of the devices and loads involved
in power systems. Hence, the MV inverter with the modified design transformer is more robust than
other available power inverters of the same power rate. These experimental measurements, which
agree with the mathematical derivation, prove that the transformer shape and winding arrangements
have a huge impact on the inter-winding capacitance, and cannot be ignored in power inverters when
power quality improvement is of concern.

Finally, the overall result achieved with the prototype provides a very high resistance to the
common mode noise current caused by rapid voltage transients, which makes the MV inverter feasible
for renewable energy sources applications. For future research, a study of the optimal design method
on advanced prototypes with higher inductive coupling with more controlled THD will be conducted.
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