
electronics

Article

FPGA Implementation of a Functional Neuro-Fuzzy
Network for Nonlinear System Control

Jyun-Yu Jhang 1 ID , Kuang-Hui Tang 2,3 ID , Chuan-Kuei Huang 2, Cheng-Jian Lin 4,* and
Kuu-Young Young 1

1 Institute of Electrical and Control Engineering, National Chiao Tung University, Hsinchu City 300, Taiwan;
o800920@gmail.com (J.-Y.J.); kyoung@mail.nctu.edu.tw (K.-Y.Y.)

2 Department of Industrial Education and Technology, National Changhua University of Education,
Changhua County 500, Taiwan; tkhf14@ncut.edu.tw (K.-H.T.); ckhuang@cc.ncue.edu.tw (C.-K.H.)

3 Department of Electronic Engineering, National Chin-Yi University of Technology,
Taichung City 406, Taiwan

4 Department of Computer Science & Information Engineering, National Chin-Yi University of Technology,
Taichung City 406, Taiwan

* Correspondence: cjlin@ncut.edu.tw; Tel.: +886-4-2392-4505 (ext. 8753)

Received: 30 May 2018; Accepted: 9 August 2018; Published: 11 August 2018
����������
�������

Abstract: This study used Xilinx Field Programmable Gate Arrays (FPGAs) to implement a
functional neuro-fuzzy network (FNFN) for solving nonlinear control problems. A functional
link neural network (FLNN) was used as the consequent part of the proposed FNFN model.
This study adopted the linear independent functions and the orthogonal polynomials in a functional
expansion of the FLNN. Thus, the design of the FNFN model could improve the control accuracy.
The learning algorithm of the FNFN model was divided into structure learning and parameter
learning. The entropy measurement was adopted in the structure learning to determine the generated
new fuzzy rule, whereas the gradient descent method in the parameter learning was used to adjust
the parameters of the membership functions and the weights of the FLNN. In order to obtain high
speed operation and real-time application, a very high speed integrated circuit hardware description
language (VHDL) was used to design the FNFN controller and was implemented on FPGA. Finally,
the experimental results demonstrated that the proposed hardware implementation of the FNFN model
confirmed the viability in the temperature control of a water bath and the backing control of a car.

Keywords: neuro-fuzzy networks; entropy; gradient descent; functional link neural networks; Field
Programmable Gate Array (FPGA); control

1. Introduction

Neural fuzzy networks (NFNs) have been widely applied in various fields [1–3]. Traditional NFNs
combine neural networks to learn from processes with fuzzy reasoning to handle uncertain information.
These can only be applied to parameter learning based on the ordered derivative algorithm where
the structure of the NFNs has been determined and fixed in advance [4–6]. In [7,8], a neuro-fuzzy
system could learn system behavior from the training data and automatically generate fuzzy rules
and fuzzy sets to a prespecified accuracy level. The major disadvantage of the existing neural fuzzy
networks is that their application is limited to static problems as a result of their internal feedforward
network structure. For TSK-type neural fuzzy networks (TNFNs), the consequent part of each fuzzy
rule is a linear combination of the input variable. However, the traditional TNFN cannot use the
mapping capabilities of the linear function combination in consequent parts of the fuzzy rules. Hence,
the FNFN model, which combines a neuro-fuzzy network with a FLNN [9], was proposed to improve
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the accuracy of functional approximation. Corresponding to a FLNN, each fuzzy rule comprises a
functional expansion of inputs. The linearly independent functions and orthogonal polynomials are
used in FLNN. The learning algorithm was divided into structure learning and parameter learning
and used for constructing the FNFN automatically. Initially, no rules existed in the FNFN model.
In the structure learning algorithm, the entropy measure was used to determine a whether a new node
needed to be added. In the parameter learning, the backpropagation leaning method was used to
adjust the parameters of the FNFN model.

Real-time control is very important in industrial process control system applications. For rapid
computing hardware engineering, real-time control becomes more feasible [10]. Recently, there has
been a focus on the hardware implementation [11] of artificial neural networks (ANNs). Furthermore,
the realization that a hybrid of neural networks and fuzzy systems presents an even more powerful
form of computational intelligence [12] provides additional motivation to complete hardware
implementation. The main reason for hardware implementation is that it has high speed processing
and real-time operating capability. In many applications, hardware implementation requires larger
arrays and has resorted to digital simulation, which are usually built using digital integrated circuits.
Development of digital integrated circuits such as FPGA [13] makes the hardware implementation
process programmable and flexible. Recently, the hardware implementation of neural networks has
been successfully implemented. Li et al. [10] discussed various aspects of the hardware implementation
of an artificial neural network (ANN), e.g., generic architecture, back propagation, precision, etc.
One of the best arguments for hardware is the exploitation of parallelism in the neural network,
which can be very fast, especially for well-defined signal processing usage. They implemented basic
ANN in field programmable gate arrays (FPGA). Compared to software, FPGA implementation
can utilize parallelism to speed up processing time. Page and Mohsenin [11] reduced complexity,
efficiently deployed deep networks in an embedded FPGA-based setting with strict power and area
budgets and reduced the inherent complexity of a network by applying both fixed-point quantization
and low-rank weight approximation. Bettoni et al. [13] presented an FPGA implementation of
Convolutional Neural Networks (CNN) designed for addressing portability and power efficiency
for video processing applications such as video surveillance and homeland security. However, their
implementation using hardware resulted in a lack of learning ability. According to the aforementioned
disadvantages, this study presented the hardware implementation of FNFN using FPGAs to solve
nonlinear control problems.

This study is organized as follows. The related work is introduced in Section 2. The FNFN
structure is presented in Section 3. The structure and parameter learning algorithms are illustrated
in Section 4. Next, Section 5 describes the FPGA hardware implementation of the FNFN controller.
The experimental results of two nonlinear control applications are described in Section 6. Finally,
the conclusions are given in the last section.

2. Related Work

Recently, many algorithms have been implemented on FPGA for real-time applications [14–17].
Emanuel et al. [18] proposed a fuzzy logic edge detector based on the morphological gradient for
pattern recognition and realized on FPGA. The hardware architecture processing the image resolution
was set to 480 × 640 pixels at 24 fps, and the hardware architecture enables handling the real-time
processing for an image resolution set to 480 × 640 pixels at 24 fps. Ammar et al. [19] designed a
sun tracking system by a using neuro-fuzzy controller implemented on FPGA. The experimental
results revealed that the neuro-fuzzy controller was more robust than the fuzzy logic controller.
M. et al. [20] presented the design and implementation of a low-cost solar-powered wheelchair for
physically challenged people. They constructed an artificial neural network-based classifier to classify
the patterns and features extracted from the raw sEMG signals; and the proposed wheelchair revealed
that it was financially feasible and cost-effective. Yesid et al. [21] presented a neuro fuzzy controller for
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a robot that rode a bicycle using the Acrobot model for slow speeds, which was also implemented on
an FPGA-based embedded system.

3. Architecture of Functional Neuro-Fuzzy Networks (FNFN)

In the proposed FNFN model, the function link neural network (FLNN) was used as the
concluding part of a fuzzy rule. The FLNN adopts a nonlinear combination of input variables.
The architecture of a FNFN model is shown in Figure 1.
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The jth fuzzy if-then rule in FNFN model is described as follows.

IF x1 is Bij and x2 is B2j · · · and xi is Bij · · · and xN is BNj, THEN yj =
M

∑
k=1

wkj∅k (1)

where xi represents the input; yj is the output of the jth fuzzy rule; Bij represents the membership function;
wkj denotes the link weight; N denotes the number of input variables; M presents the basis function number;
and ∅k represents the trigonometric polynomial function combination of input variables.

Next, we describe the FNFN architecture layer by layer. In layer 1, no operation exists and the
input signals transmit to the second layer directly:

u(1)
i = xi (2)

where Aij presents a membership function. In layer 2, we adopted a Gaussian membership function
for FNFN, which had the following advantages: (1) a small number of parameters are needed to
define; (2) better robustness; and (3) the performance is superior than polygonal membership functions.
The degree of the membership function is calculated

u(2)
ij = exp

−
[
u(1)

i −mij

]2

σ2
ij

 (3)
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where mij and σij represent the expected value and variance, respectively.
In layer 3, the product operator is used to achieve the conditional part in the fuzzy rules. Outputs

are described as follows:
u(3)

j = ∏
i

u(2)
ij (4)

where ∏
i

u(2)
ij denotes the inference of its corresponding rule.

In Figure 1, the outputs of layer 3 were used as the inputs of layer 4, and the other inputs in layer
4 were from the outputs of a FLNN. The node in layer 4 is illustrated as follows:

u(4)
j = u(3)

j ·
M

∑
k=1

wkjφk (5)

The functional expansion (F.E.) adopts a trigonometric polynomial basis function and is described
by ∅k = [x1,sin(πx1), cos(πx1), x2,sin(πx2),cos(πx2), x1 x2] for two-dimensional input variables.

In layer 5, the output of the FNFN is a defuzzification operation

y = u(5) =

R
∑

j=1
u(4)

j

R
∑

j=1
u(3)

j

=

R
∑

j=1
u(3)

j

(
M
∑

k=1
wkjφk

)
R
∑

j=1
u(3)

j

=

R
∑

j=1
u(3)

j ŷj

R
∑

j=1
u(3)

j

(6)

where R and y represent the fuzzy rule number and the output of the FNFN model, respectively.

4. Proposed Learning Algorithm

In this study, the proposed learning algorithm was comprised of structure learning and parameter
learning. The flowchart of the proposed learning algorithm is shown in Figure 2. By satisfying the
fuzzy partitioning of the input variables, the entropy measurement was used to decide the fuzzy rule
number in the structure learning. In parameter learning, the gradient descent method was used to
minimize the error function by adjusting the parameters in the FNFN.
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4.1. Structure Learning

In structure learning, the generated fuzzy rules are decided by the training data. The entropy
measurement is adopted to measure the similarity between each membership function and each input
data. If the input data is close to the mean of a membership function, it has a lower entropy value.
This means that the entropy values are computed to decide whether or not a new fuzzy rule is added.
The entropy measurement is determined by the firing degree.

Sj = −
N

∑
i=1

Fijlog2Fij (7)

where Fij = exp (u(2)−1

ij ) and Sj is between zero and one. The maximum entropy measurement is
described as follows:

Smax = max
1≤j≤R

Sj (8)

where R represents the current rule number. If Smax ≤ S, then a new fuzzy rule is added. The value
of S is a pre-defined threshold value and is between zero and one. Its value will decay during the
learning process.

During structure learning, the S value is an important parameter to determine whether a new
fuzzy rule is generated. In general, the S value is pre-defined as 0.3 × N, where N denotes the number
of inputs.

If a new fuzzy rule has been added, the initial expected value, variance, and weights of a new
generated fuzzy rule are determined in the next step. As the learning target is to minimize the error
function, the expected value, variance, and weights are adjusted as follows:

mij = xi (9)

σij = σinit (10)

wjk ∈ [0, 1] (11)

where xi represents the current input data and σinit denotes a pre-defined value.

4.2. Parameter Learning

According to the current input data, the structure of the FNFN model has been adjusted. Next,
the model goes into parameter learning to adjust the parameters of the FNFN model based on the same
input data. The goal of parameter learning is to minimize the error function. The gradient descent
method is used for this backpropagation (BP) learning. For a single output condition, the target of BP
is to minimize the error function as follows:

E(k) =
1
2
(y(k)− yd(k))

2
=

1
2

e2(k) (12)

where yd(t) and y(t) are the goal output and the actual output for time t, respectively.
The parameters of the FNFN model can be adjusted by using the BP learning algorithm and are

defined as follows:

w(k + 1) = w(k)− η
∂E(k)
∂w(k)

(13)

where η denotes the learning rate. W = [m, σ, w]T denotes the adjustable parameters of the FNFN.
The BP of the adjustable parameters W is derived as follows:

∂E(k)
∂w

= e(k)
∂y(k)

∂w
(14)
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The adjustable parameters in the FNFN model are adjusted by the chain rule in each layer.
The updating rule for wj is derived as follows:

wkj(k + 1) = wkj(k)− ηwe

 u(3)
j ∅k

∑R
j=1 u(3)

j

 (15)

Similarly, the updating rule for mij and σij are derived as follows:

mij(k + 1) = mij(k)− ηm e (
u(4)

j

∑R
j=1 u(3)

j

)(
2
(

u(1)
i −mij

)
σ2

ij
) (16)

σij(k + 1) = σij(k)− ησ e (
u(4)

j

∑R
j=1 u(3)

j

)(
2(u(1)

i −mij)

σ3
ij

) (17)

where ηw, ηm, and ησ are the learning rates of the weight, the expected value, and the
variance, respectively.

5. FPGA Implementation of the FNFN Controller

This section introduces the overall hardware detail design and implementation of the FNFN
controller. This section illustrates the represented fixed-point data format. The various function units
are implemented by Taylor expansion and look-up table (LUT) methods including Gaussian function,
sine function, and cosine function. In this section, the hardware implementation overall components of
the FNFN controller are also introduced and are shown in Figure 3. Four main parts can be described
as follows: (A) Input fuzzifier; (B) Inference processing unit; (C) Consequent unit; and (D) Output
defuzzifier. Finally, the FPGA development platform is introduced.
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5.1. The Represented Data Format

In order to keep the represented data format consistent in the FNFNs, a fixed-point number
was adopted. An encoding technology adopted digital values to illustrate the represented data [8].
The represented fixed-point data format can be denoted as follows:
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[b]i· f (18)

where b represents a sign bit. If b is equal to 0, the value is a positive number, whereas if b is equal
to 1, the value is a negative number. i and f denote the numbers of integer bits and fractional bits,
respectively [9,10]. Twenty bits were adopted as the number of a word length in this study and had
more accuracy than 16 bits. The fixed-point data format included 1 sign bit, 6 integer bits, and 13
fractional bits.

5.2. Design and Implementation of Function Unit

First of all, in the process of hardware implementation of the FNFN, the problem in the
implemented exponential of the Gaussian function of the TSK-type fuzzy model (Figure 3),
sine function of FLNN, and cosine function of FLNN will occur (Figure 4). The functions are complex
and not easily accomplished directly with FPGA implementation. Therefore, the LUT and Taylor
expansion were used to approach the Gaussian function, sine function, and cosine function.
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The Taylor expansion is shown in Equations (19)–(21), and its advantage is that it only utilizes
simple operations which can accurately answer. The disadvantage of LUT is that it must obtain the
correspondence of the input and output value of each datum in advance when setting up the table,
so it takes a much longer time.

ex = 1 +
x
1!

+
x2

2!
+

x3

3!
+ . . . +

xn

n!
=

∞

∑
n=0

xn

n!
(19)

sin x = x− x3

3!
+

x5

5!
− x7

7!
+ . . . =

∞

∑
n=0

(−1)n x2n+1

(2n + 1)!
(20)

cos x = 1− x2

2!
+

x4

4!
− x6

6!
+ . . . =

∞

∑
n=0

(−1)n x2n

(2n)!
(21)

where x is the input variable and n is the number of order. If n is a large order, a more accurate
approach will be obtained. In this case, it needs more memory spaces and logic gates. Table 1 shows
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the error value of the exponential function and Taylor approximation as the higher order requires more
complicated operations. In this study, we chose order n = 3 to achieve the ex, sin x, and cos x hardware.

Table 1. The error value of exponential function and Taylor approximation.

Order
Method

Exponential Function (x = 0.8) Taylor Approximation Error Value

3
2.225541

2.205330 0.020208
4 2.222400 0.003141
5 2.225131 0.000410

5.2.1. Gaussian Function Implementation

According to the operation of exponential function in Gaussian function, we utilized the Taylor
expansion to implement the exponential function in FPGA. This way, we could implement the
hardware, which spends reasonable gate counts. We used the multiplier operation to make x2 and
x3 two values, and divided these values by 2!, and 3!, respectively. In the Taylor expansion, 1, 1!, 2!,
and 3! are four constant regular values, so we undertook the operation of these four values at the
beginning, and then put them into the Gaussian function circuit of the FPGA. Finally, we used an
adder tree to obtain a similar result of the Taylor expansion. In Figure 5, the block diagram shows the
implementation of the exponential function. The hardware implementation of the Gaussian function
in layer 2 of the TSK-type fuzzy model is shown in Figure 6. Figure 7 shows the Gaussian function and
its Taylor approximation. In the range of operation, the outputting value of Gaussian function can
approach the amount outcomes of software in FPGA. However, the input values are not accurate in the
Taylor expansion. The input value is either a large positive value or a large negative value. According
to the aforementioned problem, the LUT was utilized to compensate for the error. Therefore, regardless
of whether the input shows a large positive value or a large negative value, the LUT supported the
values to the multiplexer automatically. In Figure 8, we can see that the block diagram shows the
implementation of the exponential function with the Taylor expansion and LUT. The block diagram
is the implementation of Gaussian function with Taylor expansion and LUT as shown in Figure 9.
In Figure 10, the Gaussian function is compared with its Taylor expansion and LUT approximation.
Comparing Figure 7 with Figure 10, we can see that the Gaussian function approximate was more
accurate than using the Taylor expansion and LUT.
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5.2.2. Sine Function and Cosine Function Implementation

Based on the operation of sine and cosine functions, the same method of the Taylor expansion
was utilized to implementation sine and cosine functions in FPGA. Figures 11 and 12 show the
implementation of sine and cosine functions with Taylor expansion. Figures 13 and 14 show the results
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of cosine function and sine function by the Taylor approximation. In the range of operation, the output
value of the cosine function and sine function could approach the outcome of software in FPGA.
However, some accurate values in the Taylor expansion will occur, such as a large positive or negative
input. According to the aforementioned problem, we utilized the LUT to compensate for this error.
Therefore, if the input had a large positive or negative value, the LUT will automatically support the
values to the multiplexer. Figures 15 and 16 show the implementation of the cosine and sine functions
with the Taylor expansion and LUT. In Figures 17a and 18a, the cosine function and sine function
approach was more accurate by using the Taylor expansion and LUT. Figures 17b and 18b show the
error rate and the MSE used to estimate the error rate. The MSE of the Taylor and LUT approximation
of the sine function and cosine function were equal to 0.00003922 and 0.00041378, respectively.
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5.3. Hardware Implementation of FNFN Controller

5.3.1. Input Fuzzifier

The fuzzification operator is implemented in Equation (3). The Gaussian function in this module
is the main structure of the fuzzy rules in the FNFN. The implementation of the Gaussian membership
function in Equation (3) is complex by the conventional active functions. Therefore, the Taylor
expansion and LUT were used to approach the Gaussian membership function. A detailed description
is given in Section 5.2.1. In Section 5.2.1, Figure 9 shows the block diagram of the Gaussian function
with Taylor expansion and LUT. Four multipliers, a subtracter, three dividers, a multiplexer, and an
adder were used. In all of the components, the multiplier and divider were the main parts of the
hardware implementation.

5.3.2. Inference Processing Unit

The multiplication operation in Equation (4) was performed in the inference processing unit.
Figure 19 shows the block diagram of the inference processing unit.
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5.3.3. Consequence Unit

The main work of the consequence unit is to carry out the operation of consequence nodes in
Equation (5). In layer 4, the nodes of this layer represent the consequent nodes. The inputs of layer 4
are the outputs of a FLNN and layer 3. The consequence unit module is built by multipliers and FLNN
and is illustrated in Figure 20. Figure 4 presents the hardware architecture of FLNN.
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5.3.4. Output Defuzzifier

This module implements Equation (6) and the block diagram is shown in Figure 21. First, the signal
u(3)

j and signal u(4)
j adopted the adder operation to sum all the values, respectively. After being added,

the sum of u(4)
j value was divided by the sum of the u(3)

j value.
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5.4. FPGA Development Platform

The hardware implementation of a FNFN controller was built in SMIMS VeriEnterprise®.
Figure 22 shows the SMIMS VeriEnterprise® FPGA development platform with a Xilinx Virtex
4–XC4VLX60 chip. This development platform is a high-speed PC-based FPGA platform. The key
features of the platform are: (1) On-board 128 MB DDR; (2) data transfer with USB 2.0 interface;
(3) On-board 16 MB Flash; (4) Up to 168 additional available I/Os; (5) two independent
banks—on-board 16 MB Pseudo SRAMs; (6) Download FPGA configuration through USB; (7) Two
External Clock SMA Connector; and (8) Maximum data transmit rate between PC and FPGA was
211 Mbps [12].
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6. Experimental Results

To verify the control performance of the FNFN, two control problems were tested in the
experiments. The FNFN controller was used for solving the temperature control of a water bath [11]
and the backing control of a car [22]. The design of the FNFN controller was programmed by ISE 9.1i
software and used MATLAB 7.0 software for the example. The FNFN controller as implemented in
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the SMIMS VeriEnterprise® FPGA development platform with a Xilinx Virtex 4–XC4VLX60 chip [12],
and its clock rate was set to 50 MHz for the two examples.

6.1. Temperature Control of a Water Bath

The objective of this experiment was to implement the temperature control of a water bath by the
FNFN. The dynamic equation of a water bath is described as follows:

y(k + 1) = e−αTsy(k) +
δ
α

(
1− e−αTs)

1 + e0.5y(k)−40
u(k) +

[
1− e−αTs

]
y0 (22)

where k is the discrete-time index; u(k) and y(k) denote the system input and output, respectively;
and Ts is the sampling period. α and δ are constant values.

In this experiment, the parameters of the water bath plan were δ = 8.67973× 10−3, α = 1.0015× 10−4,
and y0 = 25.0 (◦C), which were obtained from a real water bath plant [11]. The input u(k) was limited
to 0, and 5 V represents the voltage unit. The sampling period was Ts = 30.

A schematic diagram of the temperature control of the water bath is shown in Figure 23.
This program has two processes: The training process and the control process. In the training process,
switches S1 and S2 were connected to nodes 1 and 2, respectively, to form a training loop. In this loop,
the training data with input vector I(k) = [yP(k + 1)yP(k)] and desired output u(k) were defined, where
the inputs of the FNFN controller were the same as that used in the inverse modeling [13]. In the
control process, switches S1 and S2 were connected to nodes 3 and 4, respectively, to form a control
loop. In this loop, the control signal û(k) was generated according to the input vector I’(k) = [yref(k +
1)yP(k)], where yP is the plant output and yref is the reference model output.
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Figure 23. Schematic of the temperature control of the water bath system.

The random input signals urd(k) were constrained between [0, 5] V and infused directly into
the dynamic equation of the water bath as described in Equation (22). Based on the input–output
characteristics to cover the entire reference output, 120 training patterns were selected. The initial water
temperature was set to 25 ◦C. When a random input signal was infused, the temperature of the water
rose progressively. After 15,000 training iterations, four fuzzy rules were generated. The obtained
fuzzy rules in FNFN are as follows.

Rule 1:

IF x1 is µ(0.995031, 0.91) and x2 is µ(0.988214, 0.084)
THEN ŷ1 = 23.753880x1 − 20.0154785 sin(πx1)− 11.353351 cos(πx1)

−23.073202x2 + 18.681133 sin(πx2) + 15.328705 cos(πx2)

+3.764496x1x2
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Rule 2:
IF x1 is µ(0.997067, 0.84) and x2 is µ(0.998780, 0.35)

THEN ŷ2 = 6.520161x1 − 21.382976 sin(πx1)− 1.787920 cos(πx1)

−6.960691x2 + 21.554704 sin(πx2) + 2.924881 cos(πx2)

+0.238945x1x2

Rule 3:

IF x1 is µ(0.818868, 0.47) and x2 is µ(0.141187, 0.62)
THEN ŷ3 = −0.602595x1 + 0.207561 sin(πx1)− 0.455584 cos(πx1)

−0.602411x2 − 0.969473 sin(πx2) + 0.493613 cos(πx2)

−0.109840x1x2

Rule 4:

IF x1 is µ(0.002391, 0.082) and x2 is µ(0.000861, 0.92)
THEN ŷ4 = 20.333939x1 − 5.231502 sin(πx1)− 10.808845 cos(πx1)

−19.797790x2 − 5.819267 sin(πx2) + 10.899276 cos(πx2)

+1.701125x1x2

In this study, we compared the control performance of the proposed FNFN with those of the
Takagi–Sugeno–Kang (TSK)-type neural fuzzy network (NFN) [2], the functional link neural network
(FLNN) [4], the proportional–integral–derivative (PID) controller [23], and the manually designed
fuzzy controller [24]. The performance evaluation consisted of the regulation of set-points, the noise
influence, and the tracking capability.

The first work was to evaluate the regulation of three points.

yre f (k) =


35o, i f k ≤ 40

55o, i f 40 < k ≤ 80
75o, i f 80 < k ≤ 120

(23)

The results of the regulation of the set-points using the FNFN controller are shown in Figure 24a.
Figure 24b illustrates the errors between the FNFN output and desired output. The performance
evaluation adopted the sum of absolute error (E) and is described as follows:

E = ∑
k

∣∣∣yre f (k)− y(k)
∣∣∣ (24)

where y(k) and yref(k) are the actual output and desired output, respectively.
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Figure 24. (a) The regulation outputs and (b) errors of FNFN controller in the water bath system. Figure 24. (a) The regulation outputs and (b) errors of FNFN controller in the water bath system.
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The second experiment was to obtain the noise influence of the FNFN controller. At the 60th
sampling time, a noise value was added to the output of the water bath system (i.e., −5 ◦C).
This experiment adopted a pre-set temperature of 50 ◦C. For the noise influence, the outputs and the
corresponding errors of the FNFN controller are presented in Figure 25a,b, respectively. After the
occurrence of the noise influence, the proposed FNFN controller had a very quick and steady recovery.
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Figure 25. (a) Outputs and (b) errors of the FNFN controller with impulse noise in the water
bath system.

The parameters of many industrial-control processes will be altered in an irregular way. The third
experiment was to add a 0.7 × u(k−2) value to the input of the water bath system after the 60th
sampling time for testing the robustness of the FNFN controller. This experiment adopted a pre-set
temperature (i.e., 50 ◦C). When the plant dynamics were altered, the outputs and the corresponding
errors of the FNFN controller are shown in Figure 26a,b, respectively. The training process continued
for 125 epochs. Figure 27 shows the learning curve of the FNFN controller in the water bath system.
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water bath system.

In the final experiment, the tracking capability of the proposed FNFN was proven. The ramp-reference
signals are defined as follows:

yre f (k) =



34o, i f k ≤ 30
(0.5k + 19)o , i f 30 < k ≤ 50
(0.8k + 4)o, i f 50 < k ≤ 70
(25 + 0.5k)o, i f 70 < k ≤ 90

70o, i f 90 < k ≤ 120

(25)
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The tracking outputs and the errors of the FNFN controller are shown in Figure 28a,b, respectively.
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water bath system.

The sums of the absolute error (E) of the FNFN controller with software implementation
and with hardware implementation, the Takagi–Sugeno–Kang (TSK)-type neural fuzzy network
(NFN) [2], the functional link neural network (FLNN) [4], the proportional–integral–derivative (PID)
controller [23], and the manually designed fuzzy controller [24] are shown in Table 2. The experimental
results showed that the trained FNFN controller had better noise rejection capabilities and tracking
control performance than the other methods in the temperature control of the water bath.

Table 2. Results of the comparison of various controllers.

E
FNFN Controller TSK-Type NFN

Controller [2]
FLNN

Controller [4]
PID

Controller [23]
Fuzzy

Controller [24]Software Hardware

Regulation 353.13 354.49 361.96 379.22 418.5 401.5
Noise Influence 270.72 271.59 274.75 324.51 311.5 275.8

Plant Dynamics Altered 263.68 264.57 265.48 311.54 322.2 273.5
Tracking 44.53 46.48 54.28 98.43 100.6 88.1

The hardware implementation of the FNFN with four fuzzy logic rules needed to use about 507,064
logic gates. The resource requirements for the example architecture with FNFN implementation are
shown in Table 3. In this table, “Available” represents the various resources of the chip present;
“Used” represents the resources utilized in our implementation, and “Utilization” represents the
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percentage of resources utilized. Experimental results showed that the proposed method obtained
perfect control capability.

Table 3. Resources requirements of FNFN implementation for the temperature control.

Device Selected XC4VLX60

Logic Gate Utilization Available Used Utilization

Slices 26,624 26,352 98%
4 input LUTs 53,248 50,117 94%

Slice Flip Flops 53,248 50,607 9%
GCLKs 32 1 3%

Bonded IOBs 640 61 9%
Gate counts 6,000,000 507,064 8.5%

6.2. Backing Control of a Car

As the backing control of a car is a complex control problem, the traditional control method is
difficult to implement [22]. The loading zone and car are presented in Figure 29. The ϕ, x, and y
variables were used to decide the car position. The (x, y) denotes the center position of the car and
ϕ presents the angle between the horizontal axis and the car. The steering angle of the car (θ) is the
controlled variable. The objective of this control was to move the car to the desired dock (xdesired, ydesired)
at ϕdesired = 90◦. A fixed distance (db) of the car was moved backwards at each time step. The plane
[0, 100] × [0, 100] represents the limited loading region.
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Figure 29. The simulated car and desired dock.

The angle ϕ and cross position x of the car are two inputs of the proposed FNFN, whereas the
steering angle θ presents the output of the proposed FNFN. The ranges of parameters (x, ∅, and θ) are
described as follows.

0 ≤ x ≤ 100 (26)

− 90◦ ≤ φ ≤ 270◦ (27)

− 30◦ ≤ θ ≤ 30◦ (28)

The dynamical equations of the car are

x(k + 1) = x(k) + cos∅(k) + dbcosθ(k)
y(k + 1) = y(k) + sin∅(k) + dbcosθ(k)

∅(k + 1) = tan−1
[

dl sin∅(k)+dbcos∅(k)sinθ(k)
dl cos∅(k)−dbcos∅(k)sinθ(k)

] (29)

where dl denotes the car length.
After BP training processing, four fuzzy rules were generated and the parameters of the

membership functions also determined in the FNFN controller. Therefore, the total number of
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adjustable parameters was 44. The training process continued for 500 iterations. The RMS errors of the
FNFN were approximately 0.0329. There were four fuzzy rules generated, which are shown as follows.

Rule 1:
IF x1 is µ(2.46678, 0.64) and x2 is µ(0.180007, 0.71)

THEN ŷ1 = 0.500968x1 − 0.818936 sin(πx1) + 1.77709 cos(πx1)

−2.76852x2 + 0.722349 sin(πx2)− 1.0599 cos(πx2)

+4.02142x1x2

(30)

Rule 2:

IF x1 is µ(−0.53439, 0.2) and x2 is µ(−0.294915, 0.64)
THEN ŷ2 = −0.943522x1 + 0.884788 sin(πx1)− 0.196846 cos(πx1)

+0.713501x2 − 1.1581 sin(πx2)− 0.162965 cos(πx2)

−7.97909x1x2

(31)

Rule 3:
IF x1 is µ(−11.8231, 0.98) and x2 is µ(4.34674, 0.81)

THEN ŷ3 = 2.58614x1 − 0.570534 sin(πx1)− 2.00722 cos(πx1)

+1.61986x2 + 1.46359 sin(πx2)− 2.69316 cos(πx2)

+0.0618043x1x2

(32)

Rule 4:
IF x1 is µ(−0.840175, 0.52) and x2 is µ(−1.11993, 0.74)

THEN ŷ4 = 1.46606x1 + 1.14098 sin(πx1)− 0.75915 cos(πx1)

+1.07353x2 + 0.74087 sin(πx2) + 3.4868 cos(πx2)

−1.73986x1x2

(33)

Figure 30 presents the FNFN controller learning curve and Figure 31a–d show the moving car
trajectories of the trained FNFN controller with the four different initial positions. The RMSE is
adopted to evaluate the FNFN performance; Table 4 shows the RMSE of the four different initial
positions. Experimental results showed that the trained FNFN could be successfully reloaded from
different initial positions.
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   

   

1 2

2 1 1 1

2 2 2

1 2
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ˆ 0.943522 0.884788sin 0.196846cos

0.713501 1.1581sin 0.162965cos

7.97909

 

 

 

 

   

  



IF  x  is  and  x  is 

THEN  y x x x

               x x x

               x x
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Rule 3: 

   

   

   

1 2

3 1 1 1

2 2 2

1 2

11.8231,0.98 4.34674,0.81

ˆ 2.58614 0.570534sin 2.00722cos

1.61986 1.46359sin 2.69316cos

0.0618043

 

 

 



  

  



IF  x  is  and  x  is 

THEN  y x x x

               x x x

               x x
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Rule 4: 
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   

   

1 2

4 1 1 1

2 2 2

1 2

0.840175,0.52 1.11993,0.74

ˆ 1.46606 1.14098sin 0.75915cos

1.07353 0.74087sin 3.4868cos

1.73986

 

 

 

 

  

  



IF  x  is  and  x  is 

THEN  y x x x

               x x x

               x x
 

(33) 

Figure 30 presents the FNFN controller learning curve and Figure 31a–d show the moving car 

trajectories of the trained FNFN controller with the four different initial positions. The RMSE is 

adopted to evaluate the FNFN performance; Table 4 shows the RMSE of the four different initial 

positions. Experimental results showed that the trained FNFN could be successfully reloaded from 

different initial positions. 

 

Figure 30. FNFN controller learning curve in the backing control of the car. Figure 30. FNFN controller learning curve in the backing control of the car.

Table 4. The RMSE of a car backing control.

Position E

(a) 0.2691
(b) 0.1519
(c) 0.1955
(d) 0.2454
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The hardware implementation of the FNFN with four fuzzy logic rules needed to use about 

507,064 logic gates. Table 5 illustrates the resource requirements for the control architecture of 

backing up the truck with FNFN implementation. In this table, “Available” represents the various 

resources of the chip present; “Used” represents the resources utilized in our implementation, and 

“Utilization” represents the percentage of resources utilize. Experimental results showed that the 

proposed method obtained perfect control capability. 

Table 5. Resource requirements of FNFN implementation the backing control of a car. 

Device Selected XC4VLX60 

Logic Gate Utilization Available Used Utilization 

Slices 26,624 26,352 98% 

4 input LUTs 53,248 50,117 94% 

Slice Flip Flops 53,248 50,607 9% 

GCLKs 32 1 3% 

Bonded IOBs 640 61 9% 

Gate counts 6,000,000 507,064 8.5% 

Figure 31. The moving car trajectories of the trained FNFN controller with the four different initial
positions (x, y, ϕ) = (a) (10, 20, 150◦), (b) (40, 20, −30◦), (c) (80, 20, 150◦), and (d) (70, 20, −30◦).

The hardware implementation of the FNFN with four fuzzy logic rules needed to use about
507,064 logic gates. Table 5 illustrates the resource requirements for the control architecture of backing
up the truck with FNFN implementation. In this table, “Available” represents the various resources of
the chip present; “Used” represents the resources utilized in our implementation, and “Utilization”
represents the percentage of resources utilize. Experimental results showed that the proposed method
obtained perfect control capability.

Table 5. Resource requirements of FNFN implementation the backing control of a car.

Device Selected XC4VLX60

Logic Gate Utilization Available Used Utilization

Slices 26,624 26,352 98%
4 input LUTs 53,248 50,117 94%

Slice Flip Flops 53,248 50,607 9%
GCLKs 32 1 3%

Bonded IOBs 640 61 9%
Gate counts 6,000,000 507,064 8.5%

7. Conclusions and Future Works

This study presented the hardware implementations of FNFN using Xilinx FPGAs for solving
nonlinear control problems. The proposed FNFN uses a functional link neural network as the
conclusion part of a fuzzy rule, which has a nonlinear combination of inputs. In addition, an efficient
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learning algorithm was proposed to construct the architecture of the FNFN using structure learning,
and adjust the parameters using parameter learning. The main advantage of the FNFN is a reduced
computational cost in the training stage, while maintaining the approximation performance of the
multi-layer perceptron network. However, FNFN has the disadvantage of an increased number of
rules as it cannot automatically generate the optimum rule numbers and merge similar rules. In order
to have high speed processing and real-time operating capability, using hardware implementation
is necessary.

To evaluate the control performance of the proposed FNFN, two experiments including the
temperature control of a water bath and the backing control of a car were performed. Finally,
the performances of the experimental results successfully confirmed the validity of using FPGA
implementation for the FNFN controller. In future work, we will decrease the resource requirements
for designing the model and implement the learning algorithm in FPGA. In addition, a type-2 fuzzy
set incorporates uncertainty about the membership function into fuzzy set theory. Many reported
results have shown that the type-2 neural fuzzy network is better able to handle uncertainties than
the type-1 neural fuzzy network. In future work, we will consider type-2 fuzzy sets to improve the
structure of the type-1 neural fuzzy network and implement this using hardware.
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