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Abstract: eHealth systems provide medical support to users and contribute to the development
of mobile and quality health care. They also provide results on the prevention and follow-up of
diseases by monitoring health-status indicators and methodical data gathering in patients. Telematic
management of health services by means of the Internet of Things provides immediate support and it
is cheaper than conventional physical presence methods. Currently, wireless communications and
sensor networks allow a person or group to be monitored remotely. The aim of this paper is to develop
and assess a system for monitoring physiological parameters to be applied in different scenarios,
such as health or sports. This system is based on a distributed architecture, where physiological data
of a person are collected by several sensors; next, a Raspberry Pi joins the information and makes
a standardization process; then, these data are sent to the Cloud to be processed. Our Cloud system
stores the received data and makes a data fusion process in order to indicate the athlete’s fatigue
status at every moment. This system has been tested in collaboration with a small group of voluntary
tri-athletes. A network simulation has been performed to plan a monitoring network for a bigger
group of athletes. Finally, we have found that this system is useful for medium-term monitoring of
the sports activities.

Keywords: eHealth; sport; biomonitoring; sensor networks; Cloud; data fusion

1. Introduction

The World Health Organization (WHO) defines eHealth as the electronic transfer of health
resources and health care. This definition encompasses three main areas: (1) delivery and
exchange of health information for health professionals and consumers through the Internet and
telecommunications; (2) use of information technology and eCommerce to improve public health
through education and training; and (3) practical use of electronic commerce (eBusiness) in the
management of health systems.

Internet and new communication technologies offer a new framework for the dissemination of
information, interaction and collaboration between institutions, health professionals and users [1].
eHealth, therefore, provides new methodologies for the use of health resources such as information,
money and medicines, in order to improve and streamline these resources [2].

Nowadays a form of eHealth is already in operation in developed countries for monitoring both
sick and healthy patients, employing telematic equipment to log physiological signals. This equipment
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is mostly confined to hospitals, intensive care units (ICUs), primary and outpatient care. However,
eHealth is an emerging and a promising field with great perspectives, e.g., telemedicine, which allows
professionals to monitor individuals or groups of people, such as athletes, the disabled, patients with
chronic illnesses, or the elderly. Also, in the case of risk groups or sectors of the population with
disadvantaged economic and social situations, telemonitoring has a huge potential for analyzing
pandemics, possible birth defects, phobias and other possibilities. A study about the role of eHealth in
optimizing preventive care in the primary care setting has been recently published [3].

Currently, there is increasing interest in eHealth applications as the medical field is one of the
most fertile areas for the use of such technology [4,5]. There are many different electronic devices
based on System-on-Chip that allow a patient or a group of patients to be monitored by gathering
information on their biosignals in order to keep a check on their well-being [6]. Through the FP7
(Seventh Framework Programme) and H2020 (Horizon 2020) [7] the European Commission has
funded several projects aimed at eHealth monitoring. Among different them, the most important
for our purposes are eHealthMonitor, aimed at developing a platform for individualized personal
healthcare services [8], and iCARDEA, aimed at designing an intelligent platform for personalized
remote monitoring of cardiac patients with electronic implant devices [9]

Other Spanish national projects, like Telemac, HELP or METABO [10,11] have been developed in
order to monitor patients with COPD (Chronic Obstructive Pulmonary Disease), Parkinson’s disease
or diabetes. By using several sensors, they have monitored different subjects, tracking and controlling
treatments, lifestyle, physiology or physical activity, with the aim of providing and improving the
information and necessary control over a disease, and ensuring a better quality-of-life for the patient,
as well as increased life expectancy. The results have been positive, as monitoring has improved
treatments and consequently the quality-of-life of patients [11], although the cost of these systems
is high.

This paper aims to provide and evaluate a system that facilitates communication between medical
professionals and patients or athletes. A telemonitoring system based on an eHealth sensor board [12]
has been implemented and provides follow-up on athletes and measures vital physiological parameters,
such as pulse, blood pressure, electrocardiogram, electromyogram, oxygen saturation in blood, airflow,
skin galvanic response, position, temperature and the parameters of interest for follow-up on athlete
training or the patient. In addition, a database with a data model that fulfills all the requirements of
protection and data safety has been designed and hosted by a web server, where the physiological
data provided by authorized personnel are stored for use at any given time [13]. Also, a data fusion
procedure was used to send a unified information and estimate the most probable state of the patients.
This work was aimed at monitoring sports activities, but it could be used in other more complex
scenarios, such as the case of developing countries with few economic resources and technology.
Finally, a WiFi-based network using different sensor devices has been measured in order to evaluate
the network requirements for a complete sport team (although it could also be applied for any other
medical application with multiple patients).

The rest of this paper is organized as follows: the Section 1 shows an introduction about the
problem that this paper solves. Section 2 describes the multisensor eHealth monitoring system
(architecture of the multisensor system and its calibration, database and data model and the multisensor
cloud data fusion). Section 3 shows the performance of the proposed system when working with
several athletes and we compare our system with other works. Finally, Section 4 presents the conclusion
of this paper and some future works.

2. eHealth Monitoring System

In this section, we show how the eHealth monitoring system is implemented. This section is
divided into two subsections: the first one explains the system-on-chip platform used to develop our
monitoring system. Finally, the last subsection exposes the multisensor cloud data fusion technique
used to determine the athlete’s fatigue status.
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Our system is based on a distributed architecture (see Figure 1), where physiological data of
a person are collected by several sensors, next a System-on-Chip platform joins the information and
makes a standardization process, then these data are sent to Cloud to be processed. The Cloud system
stores the received data and makes a data fusion process in order to know the athlete’s fatigue status
at every moment. These information will be sent through secure protocols (e.g., HTTPS) to remote
supervisors in order to check the state of the monitored user.

Figure 1. Scheme of our eHealth monitoring system.

2.1. Multisensor System-on-Chip Platform

The use of System-on-Chip (SoC) platforms is widespread in monitoring applications. In order to
develop our eHealth monitoring system, we have used an SoC platform, named Raspberry Pi (RPi),
and an interface stage for the different sensors. The RPi platform is based on Broadcom BCM2835
System on a Chip, including an ARM1176JZF-S 700 MHz processor, a Graphic Processing Unit (GPU)
and 512 MB of RAM, with a SD slot card memory [12]. We installed in the RPi a WiFi adapter TP-Link
TL-WN725N with IEEE 802.11 b/g/n standard.

The sensor interface is the eHealth Cooking Hacks monitoring shield, which allows physiological
and medical applications to be conducted. This shield can connect different sensors, such as pulse
and oxygen saturation in blood sensor (SPO2), airflow sensor (spirometer-based), body temperature
sensor (PTC), electrocardiogram sensor (ECG), galvanic skin response sensor (skin conductance)
(GSR), electromyography sensor (EMG), blood pressure (sphygmomanometer) sensor, and position
sensor (accelerometer).

We installed in the RPi a Raspbian Operating System [12], which is a GNU/Linux version optimized
for RPi hardware, based on a Debian distribution. These nodes are in charge of carrying out the
standardization process. This process is necessary because it is very important that the data arrive
as uniform as possible to be able to perform fusion tasks in real time in the cloud. These RPi
hardware are connected to our cloud system using an infrastructure connection with APs (Access
Points) or with wireless mesh network. This type of partial mesh network (see an example in
Figure 2) introduces self-organization and self-configuration in the proposed system, which can
reduce installation overhead. The ability to self-configure enables dynamic distribution of workloads,
particularly in the event that a few nodes should fail. This in turn contributes to fault-tolerance and
reduced maintenance costs. In order to implement the wireless mesh network, we used the Babel
routing protocol, which is loop free, proactive and based on a distance vector algorithm. Babel is
implemented in the Quagga routing software suite [14], with GPL license.

We also configured a Cloud-based system, called ThingSpeak [15], in order to gather the information
from the different sensors into one system, connected to the Internet. This system allows storing and
automatic synchronization of the information from the different biosensors on each patient being
monitored. Also allows data processing for data fusion with a Matlab interface.

Also a PHP (Hypertext Preprocessor) webserver with MySQL database [16] was installed in
another computer. This computer connects the patient information with the processed biosensing
information coming from the IoT system.A PHP script on the server poses the appropriate query to
ThingSpeak database in order to gather the biosensors’ data, process, and then record and store these
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data on the database with the corresponding patient data. This information is available to authorized
personnel. The database has been implemented on a Relation-Entity (R-E) scheme.

Figure 2. Partial mesh network implemented in our system.

2.2. Multisensor Cloud Data Fusion

As we can see in the previous subsection, our proposal is based on a multisensor network,
but this does not mean that all sensors provide the same valid information to determine the correct
state of the athlete. There are always some sensors that provide more important information to know
the state of the athlete. It is true that, data integration of sensors provides better results than working
only with the information of each one separately [17]. For these reasons, we have to select a suitable
method to perform a correct data fusion.

Our multi-sensor data fusion algorithm is based on the Dempster–Shafer inference theory of
evidence [18]. This method is used when the sum of information, provided by the data sources
(sensors), cannot be associated with 100% of the probability of success. This algorithm captures and
combines certainty using the Dempster’s rule, which finds the intersection or conjunction of events
identified by information sources and their associated probabilities [19]. There are three important
functions in Dempster-Shafer theory: the basic probability assignment function (m), the Belie f function
(Bel), and the Plausibility function (Pl).

Being use our data fusion algorithm, our system will be able to determine the state of fatigue
and/or events (denoted as D) related to monitoring process in athletes. As we can see in the previous
subsection, our system has 8 sensors. The information of sensor i is represented by mi ∈ [0, 1],
which assigns values to each of the subsets of the discernment set D (set of events considered), ignoring
how these values are divided into the subset (see Figure 3).

The combination is done by Dempster’s orthogonal sum, for 8 sources is:

m(A) =
8⊕

i=1

mi(A) =


0, if A = ∅

1
1−k ∑

B1
⋂

B2
⋂

. . . B8=A
m1(B1)m2(B2). . . m8(B8), if A 6= ∅

1, if A = D

(1)

where A, B1, . . . , Bn are subsets of D and k is:

k = ∑
B1

⋂
B2

⋂
. . . B8=∅

m1(B1)m2(B2). . . m8(B8) (2)
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Also the definition of two parameters like belief and plausibility, defined as for all the athletes
(set A):

Bel(A) = ∑
B⊂A

m(B) (3)

and
Pl(A) = ∑

B
⋂

A=∅
m(B) = 1− Cre(A) (4)

Defining D = {E1, E2, . . . , Er} as the set of states to evaluate, we can establish the final decision
according to the following criteria:

• Maximum credibility rule: the most probable state is the one with more credibility,

Ek = arg max
1≤i≤r

Bel(Ei)

• Maximum plausibility rule: the most probable state is the one with more plausibility,

Ek = arg max
1≤i≤r

Pl(Ei) = arg min
1≤i≤r

Cre(Ei)

In our system, we have defined five states (E1, E2, E3, E4 and E5), where fatigue increases
according to the state. The state E1 corresponds to the rest state and E5 is associated to high fatigue
state. Our system works with instant values and with a moving average with four minutes window.
The use of these values allow the system to know the status of the athlete in real time and also evaluate
their recovery phase, a very important aspect in athletes.
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• 

• 

• 

• 

• 

• 

• 

• 
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Def. of 

m 

Def. of 
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m 
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Figure 3. Fusion process with Dempster-Shafer’s technique.

Table 1 shows a health-status classification in terms of the pulsioxymeter ranges, the thermometer
ranges, the GSR device ranges and the air exhalation sensor ranges (in terms of breathing amplitude
and breathing rate). After a measurement session with three athletes, the interval values obtained for
eight parameters in each state (Ek) are shown in Table 2. Depending on the optimum values of the
parameters, each mi value is obtained by considering a mapping function limited to 1 [20].

According to the Dempster-Shafer’s model described, the average values of the measured
parameters, shown in Table 2, establish the maximum plausibility at the fatigue state E3 with a value
of 0.93.
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Table 1. Range of values for health-status classification in adult athletes (bps = breathes per second;
Air ampl. is limited by the system to 2.5 V).

BPM/SPO2 (%) Temp. (◦C) GSR (V) Air Ampl. (V)/Rate (bps)

E5 120–220/85–90 36.5–38.2 2.0–2.5 >1.7/>0.6
E4 90–120/90–95 36.2–37.5 1.1–1.9 0.8–1.7/0.3–0.6
E3 70–90/95–98 35.1–37.1 0.5–1.8 0.5–1.4/0.4–0.6
E2 60–70/98–100 35.1–37.1 0.3–0.8 0.3–1.1/0.2–0.4
E1 40–60/98–100 35.1–37.1 0.1–0.5 0.3–0.6/0.1–0.4

Table 2. Average values of measurements with different sensors (bps = breathes per second)

BPM/SPO2 (%) Temp. (◦C) GSR (V) EMG(µV) Air Ampl. (V)/Rate (bps)

Avg. 82/97.2 35.33 0.57 453 0.7/0.42

3. System Performance

In this section we are going to show the behavior of our system when we have a network bigger
than three athletes. Moreover, we have done a comparison between related work and our proposal,
where we show the main features of each work and their differences with the proposed eHealth
monitoring system.

3.1. Test Bench

In order to check the performance of our system, we have simulated a network with 8 athletes,
and all of them are connected to an AP. This AP connects to the cloud all the users for saving data
and making the data fusion process. Finally, the cloud have a secure web server, which show the
information processed in the cloud to the doctors, coaches, etc. The architecture of the network is
shown in Figure 4. All patients or athletes send information to a private cloud, which can be accessed
from external networks. Access is protected through a user authentication based on RADIUS and the
information use HTTPS. In this way, we ensure that only registered users can access information and
the encrypted information travels securely across the network.

In this test we have used Riverbed Modeler as network simulator [21]. Riverbed Modeler Suite is
a set of tools for designing, modeling and simulating local and global networks, computer systems,
applications and distributed systems. This software gives end users—designers and engineers—
a graphical environment for performance evaluation and creation of event simulation networks.
This software can be used for different tasks, including model creation, testing communication
protocols, interaction protocol analysis, network optimization and also it is possible to implement
using packet validation of analytical models. This means that the user can create separate models of
network nodes and packet formats to define their own components and sequence statistics simulations
and their own characteristic servers [22].

The data sent by the nodes (RPi) are the data collected in the previous section. We have selected
several periods, where we can observe various states of fatigue. Here, we show the key values
measured for the network undertaken to evaluate the performance of the monitoring system when
eight patients or athletes were monitored over one hour period, as previously mentioned. These values
enable us to make an estimation of the technological resources needed to implement the system.
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Figure 4. Network architecture. AP: Access point, WAN: Wide Area Network.

3.2. Load

Load represents the total load (in bits/s) submitted to wireless LAN layers by all higher layers
in all WLAN nodes in the network. In this case we can see that the simulated network provides an
average global load of approximately 65,000 bps for all patients.

The average load of each patient is approximately 7000 bps. This statistic represents the total
data traffic received by the entire WLAN station from the higher layers of the MACs that are accepted
and queued for transmission. This statistic does not include any higher layer data, which are rejected
without queuing due to full queue or large size of the data packet. Any data traffic that is relayed by
the Access Point (AP) from its source to its destination within the Basic Service Set (BSS) is counted
twice for this statistic, since such data packets are double-loads for the BSS, as both the source node
and the AP have to contend for their transmission via shared medium. Figure 5 shows the traffic data
load in the network for each athlete and the global load, made up from all the contributions.

In Figure 6, we can observe the load provided by our system to a patient and the load provided
by one of the sensors that is monitoring that patient. As we can see the average patient load is around
7000 bps with many peaks. These peaks in traffic are because each sensor is sampling at various times
and so several sensors may be sending information producing traffic peaks. However, as we can see,
there are times when the sensors are not picking or sending information, but are in standby mode to
save energy. In all cases, the information captured or sent is low.

Figure 7 shows the end-to-end delay and WLAN-Media Access Delay. The end-to-end delay
represents the delay of data received by traffic sinks across all nodes. In this case, we can see that this
delay is lower than 1 millisecond in all samples, so suggesting that there is an acceptable delay period
for real time monitoring of patients.

WLAN - Media access delay represents the global statistic for total queuing and contention delays
of the data, management, and delayed request frames transmitted by all WLAN MACs in the network.
For each frame, this delay is calculated as the duration from the time when it is inserted into the
transmission queue, which is arrival time for higher layer data packages and creation time for all other
frame types, to the time when the frame is sent to the physical layer for the first time. Hence, it also
includes the period for successful Reset To Send/Clear To Send (RTS/CTS) exchange, backoff periods
and collision delays. This delay should be less than the previous one as it is calculated on layer 2.
For this reason, the average value is 0.00018 s, as we can see in Figure 7.
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Figure 5. Load in the network in bits per second.

Figure 6. Load produced by a patient and a sensor node.

Figure 7. End-to-end delay & Media Access delay.
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3.3. Data Drop

Data drop represents the higher layer data traffic dropped by the all the WLAN MACs in the
network as a result of consistently failing retransmissions. On the one hand, data dropped by buffer
overflow is due to: (a) full higher layer data buffer, or (b) the size of the higher layer package, which is
greater than the maximum allowed data size defined in the IEEE 802.11 standard. On the other
hand, data dropped by the retry threshold exceeded the number of the higher layer packages that are
dropped because the MAC could not receive any ACKs for retransmitting those packages or their
fragments, and the packages’ short or long retry counts reached the MAC’s short retry limit or long
retry limit, respectively.

In Figure 8, we show the data dropped by the global network formed by eight patients. We can
see that the average data dropped by buffer overflow is 14,475 bps and 11,145 bps in the case of average
data dropped by the exceeded retry threshold. These data decrease. If we focus our attention on one
patient, in this case the average data dropped by buffer overflow is around 230 bps and there is no
data dropped through exceeding the retry threshold.

Figure 8. Data dropped by buffer overflow and retry threshold exceeded.

3.4. Throughput

Throughput represents the total number of bits (in bits/s) forwarded from wireless LAN layer to
higher layers in all WLAN nodes of the network (Figure 9). In our case, we represented this information
for the global network, using one patient and one sensor node. The average throughput for the network
simulated is 40,450 bps. This throughput decreases when we focus on one patient, in this case being
approximately 3220 bps. Finally for one sensor node the average throughput is 546 bps.

3.5. Comparison between Other Sports Monitoring Systems

In this section, we compare our system with other sports monitoring systems implemented on
the literature (see Table 3). We have made a comparison taking into account general aspects of the
systems. In this case, we have studied: if the systems are or not oriented to be implemented in teams,
which are the wireless technology used and if they can make a multi-hop topology, what parameters
could measure, their scalability, if the systems use some kind of security, it they are based on cloud
technologies and finally the cost of the systems.
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Figure 9. Throughput in bits/s.

Table 3. Comparison between other sports monitoring systems. HRL: heart rate laps, Acc.: acceleration,
AirE: air exhalation, T: temperature.

Vales-Alonso Le Sage et al. Llosa et al. Zulkifli et al. Hong et al. Garcia et al. Rowlands et al. Malhi et al. Our Systemet al. [23] [24] [25] [26] [27] [28] [29] [30]

Team’s sport No No Yes Yes No Yes Could be No Could beoriented

Wireless ZigBee Wi-Fi ZigBee ZigBee Bluetooth ZigBee Wi-Fi/3G ZigBee Wi-FiTechnology

Multi-hop system Yes No No Yes No Yes No Yes Yes

Parameters HRL Laps Speed Heart rate Acc. Heart rate
Acc.

Heart rate SPO2, ECG

measured Acc. Location AirE Acc. T T, AirE
T, ECG Impact GSR, EMG, Acc.

Secure No No No No No Yes No No Yes

Scalability Medium Low Medium Medium Low Medium Medium Medium High

Cloud based No No No No No No Yes No Yes

Cost-effective No No No No No No No Yes Yes

According to Table 3, our system is able to measure 7 parameters followed by the work [24],
which can measure 4 parameters. Our system has to take into account some important parameters
like GSR and EMG in order to know in a better way the evolution process of an athlete. Our system is
oriented to work with one athlete, but there would not be any problem to monitor several users at
the same time because as we have seen in the previous section, the amount of data sent to the cloud
is small. For this reason, the network technology and server’s capacity is enough to work without
problems. This is an important feature because when we are working with personal information,
privacy is factor. Our system is cloud based, so the updating process of the data is automatic and
therefore the specialists can always consult all the data collected. Finally, we can see that our system,
along with [26], is cost-effective. This is an important characteristic in order to implement these types
of systems without having a high budget.

Table 3 shows the comparison of our system with other solutions. Our system presented in this
paper stands out because it can measure 7 parameters, it uses security to send the information, it could
be implemented in teams due to its easy scalability and cost-effective. Finally, its management through
the cloud facilitates its integration across platforms.

4. Conclusions and Future Work

In this work, we have designed, implemented and analyzed a monitoring system for physiological
parameters. This system is based on a distributed architecture, where physiological data of a person
are collected by several sensors; next, a Raspberry Pi joins the information and makes a standardization
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process; then, these data are sent to the Cloud to be processed. Our Cloud system stores the
received data and makes a data fusion process in order to indicate the athlete’s fatigue status at every
moment. This system has been tested in collaboration with a small group of voluntary tri-athletes.
A network simulation has been performed to plan a monitoring network for a bigger group of athletes.
Finally, we have found that this system is useful for medium-term monitoring of the sports activities.
The technology employed in implementing the system is cost-effective.

In this study, we have focused on checking valid physiological parameters for athletes, for patients,
the elderly, etc. These physiological parameters can be analyzed in order to assess training and the
physical capacity of sportsmen and women. Their follow-up is important during training so as to
prevent overload and injury during the sports season. The parameters analyzed allow us to undertake
a timed follow-up, which presents no inconvenience to the athletes and allows us to send the data
obtained by telematics means. Moreover, the introduction of new parameters is possible using this
system and the decision to do so depends on the needs of the final application.

The performance of an e-Health board has been tested within this system, monitoring the activity
of a small group of tri-athletes. From the obtained results, we can see that the e-Health equipment
provides a register/logging of the different physiological constants and other bioparameters of interest
to monitor sports activity. The sensors employed present normal functioning within the desired and
expected parameters and they are equivalent to the obtained from standard devices. Besides, we have
added a data fusion algorithm based on Dempster-Shafer inference to determine the state of fatigue
in athletes from the normalized data of the sensors. This algorithm is implemented on the cloud in
order to reduce the time processing of each RPi and in case of a team monitoring to perform a data
combination at the team level. The fact of having the whole process of merging data in the cloud
allows us a greater scalability of the system. The communication layer works properly and allows
the interchange of information among the athletes, the trainer and the medical doctor/s (if required).
Therefore, the system fulfills the required communication protocols in order to safeguard the data and
security system and to avoid intrusions.

Having said that and with these results, the functionality of the system is valid, as, besides analyzing
the validity of the system in terms of how the network functions, based on throughput and delay, and
assessing the overall quantity of erroneous bits in the simulation, it is also valid in terms of how the
different sensors function. We believe that when this system is used during the training session of
a sportsman/woman, either indoor or outdoor, the data that the trainer or medic receives on blood
pressure, cardiac rhythm, oxygen pressure, sweating, temperature, ECG (EMG would have to be
undertaken on finishing the training because it cannot be done at the same time as ECG) will allow him
or her to obtain information on the physical activity that the athlete is undertaking at that moment, and,
therefore, to assess whether the effort load is appropriate or not for that particular athlete. The EMG
analysis can also provide him or her with information on muscular activity.

In this context, the eHealth system fulfills the necessary requirements for the study of the athlete’s
activity, as well as improving the communication between the athlete, trainer and doctor (if there is
one) through the information gathered in the cloud.

One limitation of the designed system is that the loss of data that occasionally takes place in
some samples of the most critical sensors (as it is in ECG). As we have mentioned above, this can
be solved by using a SoC platform with several cores in the processor (for example using RADXA
Roca Pro platform with 4 cores at 1.6 GHz or the improved version of the RPi, i.e., RPi 2, that also
provides 4 cores at 900 MHz). This will provide a quicker and more simultaneous sampling, using all
the sensors. In this case, the platform used is cheaper than the latter proposed one.

This designed system could be used for simultaneously monitoring groups of patients. From the
evaluation of the simulation performance, we can conclude that the system functions well with low
network resources. We estimate that for the 8 athletes/patients network, the use of a WiFi 802.11n
network with 1 Mbps would be sufficient. In the sports application proposed, these sampling periods
for the 8 patients/athletes used in this study would be sufficient to describe and follow up the evolution
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of athletes during training sessions. The designed system has been used by sports professionals who
have validated its use and functioning for sports teams with few resources that need to optimize and
control the performance of their athletes.

Finally, the use of an SoC platform with several cores in the processor and the use of multithread
programming could improve the use of several sensors at the same time and improve the performance
in order to enlarge the number of athletes/patients.
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