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Abstract: A longitudinal attitude decoupling algorithm based on the fuzzy sliding mode control for
a small coaxial rotor unmanned aerial vehicle (UAV) is presented in this paper. The attitude system
of a small coaxial rotor UAV is characterized by nonlinearity, strong coupling and uncertainty, which
causes difficulties pertaining to its flight control. According to its six-degree-of-freedom model and
structural characteristics, the dynamic model was established, and a longitudinal attitude decoupling
algorithm was proposed. A fuzzy sliding mode control was used to design the controller to adapt to
the underactuated system. Compared with the uncoupled fuzzy sliding mode control, simulation
results indicated that the proposed method could improve the stability of the system, presented with
a better adapting ability, and could effectively suppress the modeling error and external interference
of the coaxial rotor aircraft attitude system. The proposed method also has the advantages of high
accuracy, good stability, and the ease of implementation.

Keywords: coaxial-rotor; UAV; aircraft; longitudinal motion model; decoupling algorithm;
sliding mode control

1. Introduction

In recent years, due to small unmanned aerial vehicles’ (UAV) characteristics regarding maneuverability,
flexibility and location difficulties, research on this type of UAV has drawn wide attention. With the
unprecedented development of small aircrafts, the autonomous flight control of UAVs has become a
research priority in the field of aviation [1]. Compared with fixed-wing aircrafts, the coaxial rotor uses
a pair of coaxial reversing rotors which compensate for each other’s torque, instead of balancing the
yaw moment of the aircraft without the tail rotor [2]. Therefore, the aircraft has a compact structure,
a small radial size, and a higher power efficiency. The data indicate that it is 35–40% smaller than the
single rotor structure with a tail rotor, and in the same hovering conditions, the coaxial-rotor consumes
5% less energy than the single rotor [3]. In addition, with the reduction of the radial size of the aircraft
along the rotor, the inertia of the aircraft decreases and its controllability and maneuverability are
enhanced. The design without the tail rotor has also eliminated some hidden problems [4]. Research
on coaxial-rotor helicopters has already had significant achievements, but the small coaxial-rotor
UAV has received special attention in recent years. The small size of the aircraft and the different
maneuvering modes brings about differences in control methods. The operation mode of the coaxial
vehicle is different from that of an ordinary vehicle which is also a typical underactuated system [5].
For the small coaxial-rotor UAV, the six-degree-of-freedom non-linear coupling problem is prominent,
and decoupling is important for stability and control of the vehicle.
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The general attitude control system of the UAV coordinates and controls the longitudinal, lateral
and heading channels. The design of the longitudinal channel controller is the most critical and complex
of the three channels, and its control rate significantly affects the UAV’s flight performance [6,7]. In the
literature [8], the decoupling control method is used to design the aircraft control system. Both
the adaptability and control effect of the system, however, need improvement. In Reference [9],
by combining the advantages of feedback linearization and variable structure control, the attitude
controller of the aircraft was designed. However, it was unable to effectively weaken the sliding mode
chattering of the system, and the controller parameters could not be adjusted in real time according to
the disturbance, which caused poor control performance. Reference [7] proposed a control law which
was designed using the adaptive backstepping method and which did not require any knowledge of
aircraft aerodynamics. Simulation results showed good performance of the feedback law, but the actual
implementation was complicated and difficult to achieve. In Reference [10], a fuzzy logic control of
the longitudinal motion of an aircraft based on the Takagi–Sugeno modeling approach was presented,
and while the stability and tracking effect were good, the problem of system coupling had not been
solved well and the control precision needed improvement. There are many studies of the decoupling
controls of aircraft, but few are focused specifically on coaxial aircrafts [11].

The main role of this paper is to propose a decoupling algorithm that improves the reliability
of the attitude control for the longitudinal motion stability of the coaxial rotor UAV. In order to
satisfy the stability requirements of a coaxial-rotor UAV’s longitudinal motion [12], a suitable control
algorithm and controller needed to be designed. Before this, we required a dynamic model which
featured a qualified and effective vehicle longitudinal motion [13]. In accordance to the lab-developed
coaxial rotor UAV, a rigorous and effective non-linear mathematical model of longitudinal motion was
established, and an under-actuated controller was designed using the fuzzy sliding mode. Simulation
results showed that the position control performance of the aircraft was improved when the decoupling
algorithm was applied to the coaxial rotor longitudinal motion control system. The position and
attitude were significantly improved [14] and the method was simple and effective.

This paper is organized as follows: In Section 2, according to the self-developed coaxial vehicle,
the modeling and derivation processes are given. In Section 3, the decoupling algorithm design is
introduced. The controller design and stability analysis based on the fuzzy sliding mode control are
described in Section 4. Finally, the simulation results and comparison with the decoupling algorithm
are shown in Section 5.

2. Aircraft Longitudinal Flight Model

There is a large degree of coupling among the control inputs of the aircraft. The general method
is to regard these coupling quantities as external disturbances, but this method introduces large errors.
To solve this problem, we used the method of controlling the correlation coefficient of the input,
by selecting the appropriate correlation coefficient so that coupling among the control inputs would be
handled better.

2.1. Rotor System Modeling

In order to establish a simplified model that could both reflect the aerodynamic characteristics
of a coaxial-rotor and be suitable for controller design, we first made the following assumptions:
The blade was rigid, the blade root truncation effect was ignored, and the tip loss and the flapping
hinge extension were assumed without considering the unsteady effect [15]. The structure design and
force analysis of the coaxial-rotor are shown in Figure 1.

Based on the blade-element theory, the integral expression of the rotor pulling force and torque
could be obtained:

T = Nb
2π

∫ 2π
0

∫ R−e
0 (lcv − dsv)drdψ f

Q = Nb
2π

∫ 2π
0

∫ R−e
0 (lcv − dsv)rdrdψ f

(1)
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where Nb is the number of blades, R is the radius of the rotor, e is the amount of hinge extension
of blade swing, ψ f is the local azimuth, r is the local radial coordinates, l and d respectively are
local lift and resistance, and cv and sv are the correction terms related to the aircraft and the flying
environment [16]. The approximate inflow ratio of a blade-element was:

λ = λin + λ f s =
vin
ΩR
− vb

ΩR
(2)

where vin is the induced velocity, Ω is the rotor speed, vb is the rotor speed, is the body speed, and λin
and λ f s are the inflow ratio corresponding to the induced velocity and body velocity, respectively.
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Figure 1. (a) The structure design and (b) force analysis of the coaxial-rotor Rotorcraft.

To solve the problem of interference between coaxial rotors, the Pitt–Peters dynamic inflow
method was used to model the induced velocity. The specific method was to connect the dynamic
variation of the induced velocity with the variation of aerodynamic parameters through a first-order
linear differential equation. We could then clarify the relationship between the pull coefficient and the
induced velocity through integral calculation. The method was simple and in good agreement with
the experimental data. The proposed model could be well applied to the simulation and controller
designs. According to the dynamic inflow model, the relationship between the induced velocity and
the pull coefficient was as follows:

M
.
λin + VL−1λin = C (3)

where M, V and L are the parameter matrix of inflow dynamics, respectively, λin = (λ0 + λs + λc)
T

represents the time-averaged, first-order horizontal, and vertical components of the induced inflow
ratio. C = (CT + Cl + λm)

T represents the pull torque, roll torque and pitch torque coefficients of the
rotors. The interaction of the induced velocity is expressed as:

λi = λin,i + Kjiλin,j + λ f se1 (4)

where i, j are the upper and lower rotors and Kji is the parameter matrix, indicating the influence of
the induced velocity between the upper and lower rotors related to the distance between the rotors,

airfoil, and flight state, while e1 =
(

1 0 0
)T

.
Considering that the interaction of the induced velocity mainly affected the channels of total

distance and heading, the induced velocity in the plane of the propeller disk was almost unaffected.
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Assuming that the induced velocity was uniformly distributed in the plane of the propeller disk, the
average inflow ratio and the differential inflow ratio were defined respectively as:

λa =
1
2 (λu + λl)

λr =
1
2 (λu − λl)

(5)

From the formulas above, the pull and torque coefficients could be obtained using integral
calculation (τ is the rotor flapping time constant):

CTi =
σa0

2

(
1
3 θi − 1

2

)
λi

CQi = λiCTi +
σ
8 CD

(6)

So, the single rotor thrust and torque were presented:

Ti = ρA(ΩiR)
2CTi

Qi = ρAΩi
2R3CQi

(7)

where subscript i represents the upper rotor (u) or the lower rotor (l), θi is the pitch, c is the chord
length of the blade, A is the paddle area, a0 is the slope of the lift line of the airfoil, CD is the airfoil
drag coefficient, ρ is the air density, and σ = (Nbc)/(πR) is the real degree of the paddle.

2.2. External Force Modeling

In the steady state of hovering, the external force of the aircraft was determined by the lift F1 and
F2, the gravity G, and the aerodynamic resistance, FD:

F = F1 + F2 + G + FD (8)

2.2.1. The Lift of the Rotor System

The lift of the designed aircraft was provided by the upper and lower rotors. Since the swash
plate related to the upper rotor, the upper rotor provided both lift and lateral force, while the lower
rotor only provided lift. The following could be obtained from Formulas (2) and (7):

F1 = ρA(ΩuR)2CTu cos δ

F2 = ρA(Ωl R)
2CTl

(9)

2.2.2. The Gravity of Aircraft

The mass of aircraft is m, and the body gravity was expressed by the body coordinate system data:

G = mg

 − sin θ

cos θ sin φ

cos θ cos φ

 (10)

2.2.3. The Aerodynamic Resistance

According to the empirical formula of aerodynamics, the resistance of the fuselage in the hovering
state could be expressed as:

FD =
1
2

ρV2 A f usCD f us (11)

where V is the relative fly-forward speed of the aircraft, A f us is the equivalent cross-sectional area of
the body, and CD f us is the resistance coefficient of the whole body.
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2.3. Establishing the Longitudinal Posture Model


−m

..
x = −(F1 cos δ + F2 − FD) sin φ + ε0F1d sin δ cos φ

−m
..
z = (F1 cos δ + F2 − FD) cos φ + ε0F1d sin δ sin φ−mg

Ixx
..
φ = F1d sin δ

(12)

Take x1 = −x, x2 =
.
x, z1 = −z, z2 =

.
z, u1 = (F1 cos δ + F2 − FD)/m, u2 = (F1d sin δ)/Ixx,

ε = ε0 Ixx
m . Formula (12) [17,18] could be written as:

.
x1 = x2
.
x2 = −u1 sin φ + εu2 cos φ
.
z1 = z2
.
z2 = u1 cos φ + εu2 sin φ− g
.
φ = ϕ
.
ϕ = u2

(13)

where x1(t), z1(t) and φ(t) are the mass center and deflection angles of aircraft, u1 and u2 are the control
inputs, g is the gravitational acceleration, and ε0 represents the parasitic force of lateral displacement
generated by rolling torque and ε0 6= 0 [19]. The system’s output was:

y(t) =
[

x1(t) z1(t) φ(t)
]T

(14)

3. Design of the Decoupling Algorithm

Formula (13) was a strong non-linear coupling model [20]. In order to transform the model into
the under-driven standard form, the following method was used to decouple the model [21,22].

3.1. Eliminate the Control Coupling of
.
x2 and

.
z2

In order to eliminate the control coupling of
.
x2 and

.
z2, the following decoupling algorithm could

be designed: [
u1

u2

]
=

[
− sin φ ε cos φ

cos φ ε sin φ

]−1[
um1

um2 + g

]
(15)

where um1 and um2 are the control items to be designed. Next, Formula (13) could be changed:
..
x1 = um1
..
z1 = um2

ε
..
φ = um1 cos φ + (um2 + g) sin φ

(16)

3.2. Eliminate the Coupling of um1 and um2

In order to eliminate the coupling of um1 and um2 in ε
..
φ, the following decoupling algorithm could

be designed: 

xm = x1 − ε sin φ

zm = z1 + ε cos φ

um1 =

(
um3 − ε

.
φ

2
)

sin φ + εum4 cos φ

um2 = −
(

um3 − ε
.
φ

2
)

cos φ + εum4 sin φ− g

(17)
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where um3 and um4 are the control items to be designed, then Formula (16) could be changed:
..
xm = um3 sin φ
..
zm = −um3 cos φ− g
..
φ = um4

(18)

3.3. Eliminate the Coupling of sin φ and cos φ

In order to eliminate the coupling of sin φ and cos φ, the following decoupling algorithm
was designed:

We took q1 = xm, q2 =
.
q1, q3 = zm, q4 =

.
q3, q5 = tan φ, and q6 =

.
q5, and when φ was very small,

we took sin φ ≈ φ. Then we could obtain the following:

..
q5 =

um4 cos2 φ + 2
.
φ

2
cos3 φ sin φ

cos4 φ
(19)

We took h1 = um3 cos φ, h2 = tan′′ φ. Then we could get um4 = h2 cos2 φ− 2
.
φ

2
tan φ. Now, h1 and

h2 were the control items to be designed. Then, Formula (18) could be changed as:
.
q1 = q2
.
q2 = q5h1
.
q3 = q4


.
q4 = −h1 − g
.
q5 = q6
.
q6 = h2

(20)

3.4. Transform the Control Model into an Under-Driven Standard Form

The under-driven standard form could be obtained:

.
y1 = y2
.
y2 = f1

(
y1 y2 y3

)
.
y3 = y4
.
y4 = f2

(
y1 y2 y3

)
+ bh + d

(21)

where f2

(
y1 y2 y3

)
=

[
−g
0

]
, b =

[
−1 0
0 1

]
, h =

[
h1

h2

]
, and d is the control disturbance.

In order to make
∂f1

(
y1 y2 y3

)
∂y3

invertible, which would be helpful for the design of the control

law, we took y2 =

 q2 + q4q5∫ t
0

q3dt

, y1 =


q1 +

∫ t
0

q4q5dt

∫ t
0

(∫ t
0

q3dt

)
dt

, y3 =

[
q3

q5

]
, y4 =

[
q4

q6

]
, and

f1

(
y1 y2 y3

)
=

[
−gy3(2)

y3(1)

]
.

4. Design of the Controller

The structure of the controller [16] is shown in Figure 2.
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4.1. Design of the Control Law

In order to design the control law for Formula (21), we took y1d as the reference instruction of y1,
and the error variables were as follows [19]:

e1 = y1 − y1d , e2 = y2 −
.
y1d

e3 = f1 −
¨
y1d , e4 = ∂f1

∂y3
y4 − y1d

(3) (22)

Next, we designed the sliding surface:

s = c1e1 + c2e2 + c3e3 + e4

where ci > 0 and i = 1, 2, 3.
When

.
s = 0, we could obtain h = ueq and c1

.
e1 + c2

.
e2 + c3

.
e3 +

.
e4 = 0.

The equivalent switch control items could thus be obtained [23]:

ueq = −
(

∂f1
∂y3

b
)−1

(c1y2 − c1
.
y1d

+ c2f1 − c2
¨
y1d + c3

∂f1
∂y3

y4

− c3y1d
(3) + ∂f1

∂y3
f2 − y1d

(4))

(23)

where
.
y1 = y2,

¨
y1 = f1, y1

(3) =
.
f1 = ∂f1

∂y3
y4 and y1

(4) =
¨
f1 = ∂f1

∂y3

.
y4

The switching control item was then designed:

usw1 = −
(

∂f1

∂y3
b
)−1

[K(t)sgn(s) + λs + E1(t)] (24)

where E1(t) is unknown interference. Both E1(t) and K(t) will be described in more detail in Section 4.2.
The control law could be designed as follows:

h = ueq + usw (25)

4.2. Stability Analysis of the Control System

Taking Formulas (23)–(25) into
.
s, the following could be obtained:

.
s = c1

.
e1 + c2

.
e2 + c3

.
e3 +

.
e4

= c1(y2 −
.
y1d) + c2(f1 −

¨
y1d) + c3

(
∂f1
∂y3

y4 − y1d
(3)
)

+ d
dt

[
∂f1
∂y3

]
y4 +

∂f1
∂y3

f2 − y1d
(4)

= −K(t)sgn(s)− λs + ∂f1
∂y3

d
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We took K(t) = α
¯
d + ρ, where

¯
d(1) ≥

∣∣∣∣d(1)∣∣∣∣, ¯
d(2) ≥

∣∣∣∣d(2)∣∣∣∣, ρ(1) > 0, ρ(2) > 0, and α > 0.

We took the Lyapunov function as V = 1
2 sTs, so:

.
V = sT .

s = sT
[
−(α

¯
d + ρ)sgn(s)− λs + ∂f1

∂y3
d
]

= −(α
¯
d + ρ)‖s‖ − λ‖s‖2 + sTE(t)

≤ −ρ‖s‖ − λ‖s‖2 ≤ 0

(26)

where the gain of the switching K(t) was the cause of chattering, and the control disturbance can
be expressed as E(t) = ∂f1

∂y3
d, which was used for ensuring that the necessary sliding mode presence

conditions were met. When s = 0, we could obtain e4 = c1e1 + c2e2 + c3e3. We took the following:

A =

 0 1 0
0 0 1
−c1 −c2 −c3


A is the Hurwitz function, and λ represents the Eigenvalues of A, λ > 0.

Taking E1 =
[
e1 e2 e3

]T
, the error equation of the state could be written as

.
E1 = AE1.

Taking Q = QT > 0, we could get the Lyapunov equation ATP + PA = −Q. The solution was
P = PT > 0. We took the Lyapunov function as the following:

.
V1 =

.
E

T
1 PE1 + ET

1 P
.
E1 = (AE1)

TPE1 + ET
1 P(AE1)

= ET
1 ATPE1 + ET

1 PAE1 = ET
1

(
ATP + PA

)
E1

= −ET
1 QE1 ≤ −λmin(Q)

∣∣∣∣E1
∣∣|22 ≤ 0

where λmin(Q) is the minimum eigenvalue of positive definite matrix, Q.
From

.
V1 ≤ 0, we could obtain: e1 → 0 , e2 → 0 , e2 → 0 , then y1 → y1d , y2 → y2d , and

y3 → y3d . From the stability of the sliding mode, we could obtain y4 → y4d . In the end, x → xd ,
z→ zd , and φ→ φd .

4.3. Establish the Fuzzy System

The condition for the existence of sliding mode was sT .
s < 0, and when the system reached the

sliding surface, it would remain on the sliding surface [24]. From Formula (26), we could see that
in order to ensure that the system movement reached the gain of the sliding surface, K(t) needed
to be sufficient to eliminate the impact of uncertainty. Then we could ensure the existence of the
sliding condition.

The idea of the fuzzy rules was represented as follows:
If sT .

s > 0, then K(t) should increase;
if sT .

s < 0, then K(t) should be reduced.
From the two types above, we could design the fuzzy system using sT .

s and ∆K(t). In this system,
sT .

s is the input, and ∆K(t) is the output. The fuzzy sets of the system were defined as follows:

sT .
s =

{
NB NM ZO PM PB}

∆K =
{

NB NM ZO PM PB}

where NB represents the negative big, NM is the negative middle, ZO is the zero, PM is the positive
middle, and PB is the positive big. The input and output membership functions of the fuzzy system
are shown in Figures 3 and 4. The upper bound of K̂(t) was estimated using the integral method:
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K̂(t) = G1

∫ t

0
∆Kdt (27)

where G1 is the proportion coefficient, determined according to experience. The control law was:

usw2 = −
(

∂f1

∂y3
b
)−1[

K̂(t)sgn(s) + λs + E(t)
]

(28)
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5. Simulation Analysis

The physical parameters of the system model were obtained through the three-dimensional model
established in the CAD software Inventor, and the model reference coefficients were calculated in
accordance to the physical parameters and the modeling results. The parameters are shown in Table 1.

Table 1. The main symbols and parameters.

Parameter Description Value Unit

ρ Local air density 1.14 kg/cm2

g Local gravitational acceleration 9.804 m/s2

R Rotor radius 0.20 m
A Area of rotor plane 0.126 m2

m Weight 1 kg
d Distance between upper rotor and the gravity center 0.20 m
e Amount of hinge extension of blade flapping 0.05 m

Ixx Inertia about x-axis 9.16× 10−4 kg/m2

CTu Trust coefficient of upper rotor 9.42× 10−3 rad−1

CTl Trust coefficient of lower rotor 6.77× 10−3 rad−1

CQu Torque coefficient of upper rotor 6.14× 10−4 rad−1

CQl Torque coefficient of lower rotor 6.01× 10−4 rad−1

For the controlled Formula (13), we took ε = 10 and g = 9.8, and set a predetermined track as
xd = t, zd = sin t and φd = 0.

In order to make A become the Hurwitz function, we took the control law parameters
c1 = 27, c2 = 27, c3 = 9 and λ = 0.10. The initial state of the controlled system was taken
as
[

5 0 0.5 0 0.1 0
]
. We used the control law (Formula (25)) and saturation function

method, and took the thickness of the boundary layer ∆ to be 0.10.
According to the structural characteristics of the coaxial-rotor UAV, a dynamic model of the

longitudinal motion was established. The dynamic model of the aircraft was then decoupled, the fuzzy
control and sliding mode controls were combined, and then a fuzzy sliding mode control based on
the decoupling algorithm was designed for the coaxial-rotor. The control method was then simulated
by MATLAB/Simulink. The results showed that the control method could track the command signal
more quickly and efficiently compared to the method of the traditional sliding mode control. It could
quickly reduce the yaw attitude angle deviation and the steady-state error could reach almost zero,
and with a strong self-adaptive ability, it could achieve a better control effect. The response speed,
tracking accuracy, and efficiency of the system were significantly improved.

The proposed control method could improve the stability of the system, which could effectively
restrain the modeling errors and external disturbances of the aircraft’s attitude system. This method
had the advantages of high control precision, strong robustness, and ease of implementation in engineering.
In future studies, we will focus on the design of the decoupling algorithm under the influence of more
inputs and interferences, and will apply this algorithm to specific engineering practices.

Figures 5 and 6 show the performance of position tracking in the horizontal direction while the
two control methods were used. The instruction given along x was a straight-line motion. The former
figure indicates the position tracking with the decoupling algorithm and fuzzy control. The latter
indicates the fuzzy control without the decoupling algorithm. From these figures, we could see that
the performance of the control method with the decoupling algorithm and fuzzy control was faster,
more accurate, and more stable than the general sliding mode control, ensuring that the aircraft would
be more stable in actual movement and in improving the flight.
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Figures 7 and 8 show the performance of the position tracking in the vertical direction while the
two control methods were used. The instruction given along z was a sinusoidal motion. The former
figure indicates the position tracking with the decoupling algorithm and fuzzy control, and the latter
indicates the general sliding mode control. From these figures we could see that the time required for
the two methods to track from the initial position to the specified trajectory was almost the same, but
the performance of the control method with the decoupling algorithm and fuzzy control was smoother,
and the tracking error was also smaller. Thus, the flight of the aircraft would be more stable.

The angle tracking with the decoupling algorithm and fuzzy control are shown in Figure 9, and
when compared with the angle tracking (Figure 10) without the decoupling algorithm and fuzzy
control, it could be seen that in the former the tracking errors decreased while the response times were
basically the same, and the movement accuracy and resistance to disturbances of the system improved.
The system had better tracking performance. The impact of these disturbances, controller outputs
chattering, external disturbances, and noise of the measurement were significantly reduced after the
decoupling algorithm and fuzzy controller are added.
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Figures 11–13 show the speed tracking and angular speed tracking with the decoupling algorithm
and fuzzy control. It could be seen that the change trajectory was smooth, and the time required to
reach a stable state from the initial state was very short. Figures 14 and 15 show the control input
of the system. We could see that the control input curves were smooth and no chattering occurred.
Theoretical analysis and experimental simulation results showed that the fuzzy sliding mode control
based on the decoupling algorithm could improve the stability of the system, had a better self-adaptive
ability, and effectively restrained the modeling errors and external disturbances of the co-rotating
twin-rotor aircraft attitude system.Electronics 2018, 7, x FOR PEER REVIEW  15 of 18 
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6. Conclusions

According to the structural characteristics of the coaxial-rotor UAV, a dynamic model of
longitudinal motion was established. The dynamic model of the aircraft was then decoupled, the
fuzzy control and sliding mode controls were combined, and a fuzzy sliding mode control based on
the decoupling algorithm was designed for the coaxial-rotor. The control method was then simulated
by MATLAB/Simulink. The results showed that the control method could track the command signal
more quickly and efficiently compared to the method of the traditional sliding mode control. It could
quickly reduce the yaw attitude angle deviation and the steady-state error could reach almost zero.
With a strong self-adaptive ability, it could achieve a better control effect. The response speed, tracking
accuracy, and efficiency of the system had been significantly improved.

The proposed control method could improve the stability of the system, which could effectively
restrain the modeling errors and external disturbances of the aircraft’s attitude system. This method
had the advantages of high control precision, strong robustness, and ease of implementation in
engineering. In future studies, we will focus on the design of the decoupling algorithm under the influence
of more inputs and interferences, and will apply this algorithm to specific engineering practices.
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