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Abstract: Cost-effective delivery of massive data content is a pressing challenge facing modern
mobile communication networks. In the literature, two primary approaches to tackle this challenge
are service-tier differentiation and personalized proactive content caching. However, these two
approaches have not been integrated and studied in a unified framework. This paper proposes an
integrated proactive content delivery scheme that jointly exploits the availability of multiple service
tiers and multi-user behavior prediction. Three optimal algorithms and one heuristic algorithm
are introduced to solve the cost-minimization problems of multi-user proactive content delivery
under different modelling assumptions. The performance of the proposed scheme is systematically
investigated to reveal the impacts of proactive window size, service-tier price ratio, and traffic cost
model on the system performance.
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1. Introduction

The rapid proliferation of smart phones and mobile Internet has driven an explosive growth of
mobile data traffic demand. According to Cisco’s report [1], global mobile data traffic will reach 49
exabytes per month by 2021. Among various types of mobile applications, content delivery (e.g., web
browsing, video streaming) consumes the majority of the mobile data traffic. A Cisco report [1]
estimated that video content will account for 78% of the world’s total mobile traffic in 2021. However,
the high price of mobile data plan (e.g., cost per Mbyte) is still one of the main factors prohibiting
the ubiquitous adoption of mobile video applications. Therefore, significant research interests have
been attracted in designing a mobile content delivery network that is cost-friendly to massive content
delivery services.

Contradicting the high price of mobile data plan, the overall utilization of the mobile
communication network’s capacity is relatively low. This is because the mobile traffic demand varies
significantly across space and time [2–5], while the network is typically built to accommodate the peak
traffic demand. Consequently, a large amount of “redundant capacity” (i.e., the difference between the
actual traffic load and the network capacity) is not used during off-peak hours [6], resulting in a low
overall utilization of the network. It is widely anticipated that improving the network utilization can
help to reduce the cost per bit for mobile operators and ultimately the price per bit for mobile users.
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A wide range of different approaches have been studied to improve the network capacity
utilization. These approaches can be broadly categorized into two types: network-centric approach
and price-centric approach. The former focuses on improving the technical efficiency of the network,
which can ultimately reduce the operational expenses (OPEX) and/or capital expenses (CAPEX) of
mobile operators. Within this category, “green radio” [7–9] aims to dynamically adjust the number
of powered-on base stations (BSs) to match the actual traffic demand, so that the OPEX (mainly the
cost of electricity consumption) can be reduced. Another approach called “proactive mobile edge
caching” [10–18] aims to push popular (i.e., frequently requested) content in advance and cache them
in the mobile edge network or even in end-user devices, so that on-demand traffic is off-loaded to the
edge network or to off-peak hours. In practice, Netflix’s content delivery network (CDN), named Open
Connect, can deploy servers at Internet exchange points (IXPs) and inside Internet service providers
(ISPs) without operating either a backbone network or data centers, and pre-load contents on its servers
during off-peak times to reduce the amount of transit traffic [19]. Furthermore, the hybrid CDN–P2P
solutions, integrating P2P into the current CDN architectures, were proposed to maximize throughput
and reduce expenses [20]. This load-balancing approach helps to ease the pressure of network capacity
expansion, so that the CAPEX can be reduced.

The second category is the price-centric approach. The rationale is to introduce diverse
communication service tiers [21,22] with differentiated prices to end users. The service tiers and
prices are allowed to be changed flexibly, such that the network utilization can be improved via market
dynamics. Within this category, time-based data pricing schemes [23–30] (i.e., different traffic pricing
during different hours in a day) are designed to attract users through special discounts in off-peak
hours. This coarse-grain approach can help to smooth the temporal variation of traffic load, but is
unable to balance the spatial traffic variation. Moreover, traffic from cheaper data plans may affect the
quality-of-service (QoS) of traffic from normal data plans, resulting in a degraded quality-of-experience
(QoE) for normal users in off-peak hours.

An alternative price-centric approach is service-based data pricing schemes [31–38], which allow
the mobile operator (i.e., mobile ISP) to offer differentiated communication service tiers associated with
different prices. Paper [31] derived the optimal service qualities and associated prices for an ISP with
the consideration of capacity constraints and user characteristics. Paper [32] addressed the problem
of ISP service tier design based on specific requirements of the applications such as web browsing
and video streaming. Financial portfolio theory was applied to develop an optimization model in [33].
Various technical, economical, and social aspects of Internet service differentiation were discussed
in [34–38]. Generally speaking, compared with time-based data pricing schemes, service-based data
pricing schemes offer more flexibility and greater commercial incentive. Therefore, the 5th generation
(5G) mobile communication network has incorporated new technologies, such as network slicing, to
enable mobile ISPs to offer differentiated service tiers.

The above-mentioned studies on mobile content delivery have mostly taken a perspective from
the mobile ISPs, who are essentially data pipes and have limited knowledge about user behavior and
preference. In a parallel research field of content recommendation [39–42], it has been established that
the content providers (CPs), such as YouTube and Netflix, can play an active role in content delivery.
The reason is that CPs hold the data of users’ content preferences and historical access behavior. For
general human behavior [39,40], especially for wireless data users [41,42], there is substantial evidence
showing that their content consumption behaviors are fairly predictable at a fine-grain timescale (from
minutes to hours). Such personalized, fine-grain information enables CPs to predict users’ content
demand, so that traditional proactive caching schemes can be personalized and become more effective.
As a result, CP-centric personalized content delivery, as an alternative to the traditional ISP-centric
content delivery, has attracted increasing research interests lately.
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Previous studies on mobile content delivery have either taken an ISP-centric perspective or a
CP-centric perspective. To our best knowledge, studies that unify both perspectives are still rare. In
this paper, we propose a content delivery scheme that integrates both perspectives. Our scheme can
simultaneously exploit the availability of differentiated services tiers and the predictability of user
behavior. The main contributions of our paper are as follows. First, we propose a proactive content
delivery scheme with service-tier awareness and user behavior prediction for the purpose of cost
reduction. Second, considering a baseline scheme of proactive content delivery with one time-slot, we
derive the optimal content delivery policy that can minimize the long-term cost. Third, considering a
generalized scheme of multi-time-slot proactive content delivery, we propose a near-optimal heuristic
algorithm for cost reduction. The performances of the proposed schemes are systematically evaluated
to reveal key insights into the impacts of various system parameters on the cost.

The remainder of this paper is organized as follows. Section 2 describes the system model.
Sections 3 and 4 formulate and analyze the problems of proactive content delivery in single-time-slot
and multi-time-slot cases, respectively. Numerical results are presented in Section 5. Finally,
conclusions are drawn in Section 6.

2. System Model

2.1. Model of Communication Service Tiers

We consider a system consisting of a CP, an ISP, and N users. The content data is delivered from
the CP to users via the ISP, as shown in Figure 1. For simplicity, we assume that the ISP offers two
service tiers: a primary traffic (PT) service and a secondary traffic (ST) service. For concreteness, we
further assume that the ST only utilizes the redundant capacity of the network [6]. This assumption has
two implications. First, ST has a strictly lower priority than PT, therefore the unit cost of ST (e.g., dollar
per kilo bytes) is also cheaper than PT. The ratio of ST cost over PT cost is denoted as β, where
0 ≤ β ≤ 1. Second, the capacity of ST is upper bounded by the redundant capacity of the network.
The total system capacity is dependent on the infrastructure deployment and network planning of the
ISP. Once a network is rolled out, the system capacity is relatively stable. Redundant capacity is given
by the difference between the system capacity and the primary traffic volume. Because the primary
traffic volume fluctuates over time, the redundant capacity also changes dynamically. In practice,
redundant capacity can be estimated by subtracting the pre-defined system capacity by the primary
traffic load, which can be measured in real-time. We note that our paper focuses on the problem of
proactive content delivery, which has a time-scale of seconds or minutes. Within such a time scale,
the volume of redundant capacity can be treated as fixed. Therefore, our model captures the daily
traffic fluctuation by a single parameter Crt, which indicates the currently available redundant capacity,
i.e., the upper limit for ST at time t.
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Figure 1. Illustration of the system model.

Within each service tier, the total traffic cost C(L) is a function of the traffic load L. The cost
is interpreted as the cost to the ISP for secondary service provision (i.e., transmit more data using
redundant capacity). It is assumed that such a cost of the ISP is proportional to the cost of CP to access
communication services provided by the ISP. Two cost models are considered in our paper. One is the
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simple case of volume-based or linear cost, which means the cost per unit traffic remains unchanged
regardless of the traffic load L. In this case, we have Cl(L) = kl L, where the cost is linearly proportional
to the traffic load. Another case is quadratic cost, where Cq(L) = kqL2. This is a commonly used
model in the literature [18] to reflect the fact that the cost to the ISP to support higher data rates scales
non-linearly with the data rate. Such a nonlinear scaling is rooted in Shannon’s capacity formula: once
the physical bandwidth is fixed, the data rate can be improved by increasing the transmit power, but
with diminishing returns. In the literature, the cost–traffic volume function is commonly approximated
by a quadratic function for analytical convenience [18].

2.2. Model of User Behavior

We assume that time is slotted into unit intervals and indexed by t. It is assumed that the CP is
able to make probabilistic predictions on the users’ content request behavior based on historical trace.
The prediction tells that user n (n ∈ {1, 2, . . . , N}) will consume a total of ξn,t amount of data at time
slot t with probability pn,t, where 0 ≤ ξn,t < ∞ and 0 ≤ pn,t ≤ 1. A random binary variable is used to
indicate whether the nth user’s request actually occurs at time t, i.e.,

In,t =

{
1, pn,t,

0, 1− pn,t
(1)

It is assumed that multiple users’ arrival and content consumption behaviors are independent
from each other. Furthermore, user demands are assumed to be cyclic-stationary. This assumption
is supported by various measurements showing that the user demand fluctuates in a periodic
pattern [40,43] (e.g., on a daily basis). As a result, we can group multiple time slots into a cyclic
period. The number of time slots in a period is denoted as T. It follows that

ξn,t = ξn,t+T , pn,t = pn,t+T , ∀n, t (2)

2.3. Protocols of Proactive Content Delivery

We propose a protocol that is simultaneously aware of the service tiers and user behavior
predictions. This requires certain degrees of collaboration and information sharing between the
ISPs and CPs. At time slot t, the protocol uses the PT service tier to satisfy users’ instantaneously
content demand in the current slot. This is called reactive content delivery (RCD). Meanwhile, if
redundant capacity is available, the protocol will proactively push a portion of the forecasted content
demand in the upcoming several time slots using the ST service tier. This is called proactive content
delivery (PCD). As the process iterates, the content demand at time t will be partly delivered by RCD
via the PT service tier and partly by PCD via the ST service tier. Unlike traditional proactive caching
schemes, the main difference here is that RCD and PCD are associated with the PT service tier and ST
service tier, respectively.

Suppose that PCD is conducted over a length of W time-slots, where 1 ≤ W ≤ T and τ ∈
{1, 2, . . . , W}. When W = 0, the content delivery mechanism is purely reactive, which serves as our
baseline case. The case of W = 1 is called single-slot PCD (SPCD), while the more general case of
1 < W ≤ T is called multi-slot PCD (MPCD). We use xn,t(τ) to denote the portion of data expected for
user n at time t + τ but is proactively pushed to the user at time-slot t. Here τ denotes how many time
slots are ahead for proactive caching. The main parameters in this paper are summarized in Table 1.
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Table 1. Main parameters used in our model.

Variable Definition

N Number of users
T Number of time-slots in a cyclic period
W Window size for proactive content caching
ξn,t User n’s demand at time-slot t (unit: MB)
pn,t User n’s arrival probability at time-slot t
In,t Random variable of user n’s demand at time-slot t
Crt System’s redundant capacity at time-slot t (unit: MB)

xn,t+1 Portion of proactively delivered data to be consumed at time-slot t + 1 (unit: MB)
xn,t(τ) Portion of proactively delivered data to be consumed at time-slot t + τ (unit: MB)

β Ratio of the cost of the ST service tier over the PT tier

3. Proactive Content Delivery with Single Time-Slot

3.1. Problem Formulation

This section considers the case of proactive content delivery with single time-slot, where forecasted
user demands can be sent one time-slot ahead using the ST service tier. At a given time- slot t, the cost
is composed of two parts. One is the cost generated by RCD through the PT service tier, and the other
part is the cost generated by PCD through the ST service tier. The time-average expected cost can be
written as:

ηs(x) =
1
T

T

∑
t=1

E

[
C

(
N

∑
n=1

(ξn,t − xn,t)In,t

)
+ β · C

(
N

∑
n=1

xn,t+1

)]
(3)

where we define a N × T matrix x, the elements of which are xn,t, ∀n, t. In Equation (3), xn,t+1

represents the portion of proactively pushed data for the next time slot t + 1, and the expectation is
taken over the random variable In,t. The received data for each user should not exceed the user’s
demand at time t, i.e.,

0 ≤ xn,t ≤ ξn,t (4)

and the total amount of proactively pushed data cannot exceed the upper limit of the redundancy
capacity at the current time-slot t, i.e.,

N

∑
n=1

xn,t+1 ≤ Crt (5)

The main objective is to minimize the total cost over the feasible space of x. The optimization
problem can be formulated as

min
x

ηs(x)

s.t.



0 ≤ xn,t ≤ ξn,t ∀n, t
xn,t = xn,t+T ∀n, t

N
∑

n=1
xn,t ≤ Crt ∀n, t

In,t ∈ {0, 1} ∀n, t

(6)

For comparison purposes, also consider the baseline case of pure RCD. The time-average expected
cost in this case is given by

η =
1
T

T

∑
t=1

E
[
C
(
∑N

n=1 ξn,tIn,t

)]
(7)

where ∑N
n=1 ξn,tIn,t is the actual traffic load requested at time t. In this case, the system is purely reactive

to the users’ request and there is no decision variable to be optimized.
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3.2. Linear Cost Model

Assuming the linear cost model, we can substitute Cl(L) into Equation (3) to yield

ηl
s(x) = 1

T

T
∑

t=1
E
[

kl

(
N
∑

n=1
(ξn,t − xn,t)In,t

)
+ β · kl

(
N
∑

n=1
xn,t+1

)]
(a)
= 1

T

T
∑

t=1

N
∑

n=1
kl((β− pn,t)xn,t + ξn,t pn,t)

(8)

We note that the property of cyclic-stationary user demand (i.e., xn,t = xn,t+T) is used in Equation
(8) to give ∑T

t=1 xn,t+1 = ∑T
t=1 xn,t. From Equation (8), we can see that the optimization problem in

Equation (6) becomes a linear programming problem, such that the problem can be easy solved by
classic methods such as the dual interior point method.

A closer look at Equation (8) reveals a key insight that both the cost and the PCD decision variable
x are determined by the relative difference between the cost ratio β and users’ arrival probabilities pn,t.
When pn,t > β, PCD for the nth user is beneficial for cost reduction; when pn,t < β, PCD for the nth
user becomes harmful because there is a higher likelihood that the pushed data will not be actually
consumed by the user, so that the resource used for PCD is wasted. When pn,t = β, PCD for the nth
user makes no difference.

3.3. Quadratic Cost Model

When the cost is a quadratic function of the traffic load, the costs increase rapidly as the load
increases. In this case, PCD becomes more useful because it helps to smooth the traffic load and reduce
fluctuations over time. Substituting Cq(L) into (3) yields:

η
q
s (x) = 1

T

T
∑

t=1
E

[
kq

(
N
∑

n=1
(ξn,t − xn,t)In,t

)2

+ β · kq

(
N
∑

n=1
xn,t+1

)2
]

= 1
T

T
∑

t=1
kq

(
N
∑

n=1
(ξn,t − xn,t)

2 pn,t +
N
∑

n=1
∑

m 6=n
(ξn,t − xn,t)pn,t(ξm,t − xm,t)pm,t

+β
N
∑

n=1
x2

n,t+1 + β
N
∑

n=1
∑

m 6=n
xn,t+1xm,t+1

)
= 1

T

T
∑

t=1
kq

(
N
∑

n=1
(pn,t + β)x2

n,t +
N
∑

n=1
∑

m 6=n
(pn,t pm,t + β)xn,txm,t − 2

N
∑

n=1
ξn,t pn,txn,t

−2
N
∑

n=1
∑

m 6=n
ξm,t pm,t pn,txn,t +

N
∑

n=1
ξ2

n,t pn,t +
N
∑

n=1
∑

m 6=n
ξn,tξm,t pn,t pm,t

)
(9)

We can see that in this case, we no longer have a simple intuitive solution for x. However, it can
be proved that the problem in Equation (9) is a convex optimization problem (see Appendix A). Hence,
the optimal solution can be readily solved using standard convex optimization techniques.

4. Proactive Content Delivery with Multiple Time-Slots

4.1. Problem Formulation

As a generalization from the single-time slot case, portions of user’s predicted demand can be
pushed to users by multiple time-slots ahead through the ST service tier. The time-average expected
cost in this case is given by:



Electronics 2019, 8, 50 7 of 15

ηm(x) =
1
T

T

∑
t=1

E

[
C

(
N

∑
n=1

(
ξn,t −

W

∑
τ=1

xn,t−τ(τ)

)
In,t

)
+ β · C

(
N

∑
n=1

W

∑
τ=1

xn,t(τ)

)]
(10)

where the decision variable x is a N × T ×W matrix, whose elements are given by xn,t(τ), ∀n, t, τ.
Here, what differs from the single-time-slot case is that user n’s cached data at time t is the accumulated
data pushed from the previous W time-slots. PCD for each user is constrained by the individual user
demand, i.e.,

xn,t−τ(τ) ≥ 0,
W
∑

τ=1
xn,t−τ(τ) ≤ ξn,t

(11)

in addition, the total amount of PCD data of all users at any time-slot t cannot exceed the current
redundant capacity, i.e.,

N

∑
n=1

W

∑
τ=1

xn,t(τ) ≤ Crt (12)

the optimization problem can then be formulated as:

min
x

ηm(x)

s.t.



xn,t(τ) ≥ 0 ∀n, t, τ

xn,t(τ) = xn,t+T(τ) ∀n, t, τ
W
∑

τ=1
xn,t−τ(τ) ≤ ξn,t ∀n, t, τ

N
∑

n=1

W
∑

τ=1
xn,t(τ) ≤ Crt ∀n, t, τ

In,t ∈ {0, 1} ∀n, t

(13)

4.2. Linear Cost Model

Substituting the linear cost function Cl(L) into Equation (10) we get

ηl
m(x) = 1

T

T
∑

t=1
E
[

Cl

(
N
∑

n=1

(
ξn,t −

W
∑

τ=1
xn,t−τ(τ)

)
In,t

)
+ β · Cl

(
N
∑

n=1

W
∑

τ=1
xn,t(τ)

)]
= 1

T

T
∑

t=1
kl

(
N
∑

n=1

(
ξn,t −

W
∑

τ=1
xn,t−τ(τ)

)
pn,t

)
+ β · kl

(
N
∑

n=1

W
∑

τ=1
xn,t(τ)

)
(b)
= 1

T

T
∑

t=1
kl

N
∑

n=1

(
W
∑

τ=1
xn,t(τ)(β− pn,t) + ξn,t pn,t

) (14)

In (14), the equality (b) follows by ∑T
t=1 ∑W

τ=1 xn,t−τ(τ) = ∑T
t=1 ∑W

τ=1 xn,t(τ). We can see that the
optimization problem reduces to a linear programing problem. Similar to the case of single time-slot,
the effectiveness of PCD still depends on the relative difference between the traffic cost ratio β and
user n’s arrival probability pn,t. However, the proactive data user n received from different time-slot,
i.e., xn,t−τ(τ), depends on the redundant capacity of the previous W time-slots. This requires proper
monitoring of real-time redundant capacity over multiple time slots.
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4.3. Quadratic Cost Model

Substituting the quadratic cost function Cq(L) into Equation (10), we have

η
q
m(x) = 1

T

T
∑

t=1
E

[
kq

(
N
∑

n=1

(
ξn,t −

W
∑

τ=1
xn,t−τ(τ)

)
In,t

)2

+ βkq

(
N
∑

n=1

W
∑
τ

xn,t(τ)

)2
]

= 1
T

T
∑

t=1

{
E

[
kq

N
∑

n=1

(
ξn,t −

W
∑

τ=1
xn,t−τ(τ)

)2

I2
n,t

+ kq
N
∑

n=1
∑

n 6=m

(
ξn,t −

W
∑

τ=1
xn,t−τ(τ)

)(
ξm,t −

W
∑

τ=1
xm,t−τ(τ)

)
In,tIm,t

]
+ βkq

(
N
∑

n=1

W
∑
τ

xn,t(τ)

)2
}

= 1
T

T
∑

t=1

{
kq

N
∑

n=1

(
ξn,t −

W
∑

τ=1
xn,t−τ(τ)

)2

pn,t

+kq
N
∑

n=1
∑

n 6=m

(
ξn,t −

W
∑

τ=1
xn,t−τ(τ)

)(
ξm,t −

W
∑

τ=1
xm,t−τ(τ)

)
pn,t pm,t + βkq

(
N
∑

n=1

W
∑
τ

xn,t(τ)

)2
}

(15)

This yields a complicated non-linear optimization problem and there is no straightforward
proof for its convexity. However, because the utility function can be easily evaluated in closed-form,
general purpose heuristic search algorithms such as the pattern search [44] can be used to solve the
problem effectively.

5. Simulation Results

This section presents numerical results to our previous analysis. For illustration purposes, we set
T = 10 and N = 3. User n’s demand at time t is drawn from a uniform distribution on [0, 500]; the
arrival probability of user n at time t follows a uniform distribution on [0, 1]. The scaling constants in
the linear and quadratic cost models are given by kl = 2 and kq = 0.005, respectively. The case of pure
RCD, where there is no proactive caching, is also presented as a performance benchmark.

5.1. Case of Single Time-Slot

Using the linear cost model, Figure 2 shows how the time-average expected cost and the redundant
capacity utilization changes as a function of the ST/PT cost ratio β. The results are obtained by solving
the linear optimization problem defined in Section 3.2 and averaging over 100 realizations. It is
observed that a smaller value of β leads to a lower cost and a higher utilization of the redundant
capacity. This is expectable because a smaller value of β would better encourage the use of PCD using
the ST service tier. When β = 1, which means the two service tiers have the same cost, there is no
performance gain to use PCD at all. Moreover, we can see that larger amount of redundant capacity
helps to reduce the cost because more user demand can be accommodated via the ST service tier.
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Figure 2. (a) The time-average expected cost as a function of the ST/PT cost ratio β; (b) the redundant
capacity utilization as a function of the ST/PT cost ratio β (linear cost model, varying redundant
capacity Crt).

Using the quadratic cost model, Figure 3 shows how the time-average expected cost and the
redundant capacity utilization changes as a function of the ST/PT cost ratio β. The results are obtained
by solving the convex optimization problem defined in Section 3.3. The general trend observed in
Figure 3 is similar to that in Figure 2, i.e., a smaller value of β leads to a lower cost and a higher
utilization of the redundant capacity. However, a key difference to Figure 2 occurs when β approaches
1, where PCD is shown to be useful for cost reduction even when the cost of ST and PT are the same.
For example, at Crt = 400 and β = 1, the time-average cost can be reduced by nearly 32% (as opposed to
0% in Figure 2) and the redundant traffic utilization is about 43% (as opposed to 0% in Figure 2). This
is because the PCD can help to smooth the user demand in time, while a more balanced user demand
yields a lower cost under the quadratic cost model.
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capacity Crt).

5.2. Case of Multiple Time-Slot

Figure 4 shows three figures related to the performance of multi-time-slot PCD under the linear
cost model. The results are obtained by solving the linear optimization problem defined in Section 4.2.
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The general conclusions drawn from Figure 4 are the same as that in Figure 2, i.e., PCD is not useful
when there is no cost difference between ST and PT service tiers. Apart from this, Figure 4a–c further
reveal the impact of proactive window size on the performance. It is observed that increasing the
window size does help to further reduce the cost, but the improvement is limited and becomes
insignificant when W is greater than five. In Figure 4c, we can see that when the value of β increases,
the effectiveness of cost reduction by increasing W decreases. This suggests that when the costs of the
two service tiers are comparable, increasing the proactive window size W will become less effective for
cost saving.
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Finally, Figure 5 shows three figures related to the performance of multi-time-slot PCD under the
quadratic cost model. The results are obtained by solving the non-linear optimization problem defined
in Section 4.3 using pattern search. Compared with Figure 4, Figure 5 shows that using PCD is always
useful for cost reduction regardless of the values of β. Even when β = 1, the cost can still be reduced
by 53% thanks to the load smoothing effect. Moreover, increasing the window size also helps for load
smoothing, and is hence considered beneficial for all values of β. Table 2 further demonstrates the
smoothing effect of multi-time-slot PCD on network traffic load. Given Crt = 400 and β = 0.5, the
variances of the actual traffic across different time slots is shown as a function of the window size. We
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can see that increasing W helps to reduce the variance of the traffic load, but has diminishing returns
especially when W becomes greater than five.
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Table 2. The variance of traffic demand.

W 1 2 3 5 8 10

Variance
(×104) 8.3188 5.7479 5.0893 4.2842 3.4933 3.3491

The above simulation results show that both single time-slot and multiple time-slot PCD can
bring good performance gain for CP. The performance gain increases with lower cost rate β and
larger window size W. However, the performance gain is fundamentally constrained by the volume of
redundant capacity. In practice, this means close cooperation must be established between CP and
ISP so that the volume of redundant capacity in the current network can be measured and shared in
real time. For the ISP, our model helps to improve the overall utilization of network infrastructure
and generate additional revenue. For CP, our model helps to attract users and promote content
consumption by reducing the cost of content delivery per bit. In summary, our model can offer a
win-win situation for ISP and CP.
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6. Conclusions

This paper proposes a personalized PCD scheme that aims to minimize the total cost of
content delivery by means of multiple service-tier transmission and multi-user behavior prediction.
The problem of personalized PCD has been systematically investigated in single-time-slot and
multi-time-slot cases, under both linear and quadratic cost models. Three optimal algorithms and one
heuristic algorithm have been presented to solve the respective optimization problems. Simulation
results have demonstrated the effectiveness of the proposed PCD scheme and revealed the impacts of
proactive window size, service-tier cost ratio, and traffic cost model on the cost of content delivery. We
conclude that personalized PCD over multiple service tiers can effectively reduce the cost when the
cost is sensitive to the total traffic load and/or the type of service tiers.
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Appendix A

Substituting Equation (9) into Equation (6), the problem of single-slot cost optimization becomes:

min
x

1
T

T
∑

t=1

{
N
∑

n=1
kq(β + pn,t)x2

n,t +
N
∑

n=1
∑

m 6=n
kq(pn,t pm,t + β)xn,txm,t

−
N
∑

n=1
2kq

(
ξn,t pn,t + ∑

m 6=n
ξm,t pn,t pm,t

)
xn,t

}
+ cons

s.t.



0 ≤ xn,t ≤ ξn,t ∀n, t
xn,t = xn,t+T ∀n, t
N
∑

n=1
xn,t ≤ Crt ∀n, t

In,t ∈ {0, 1} ∀n, t

(A1)

where, cons = kq
T ∑T

t=1 ∑N
n=1
(
ξ2

n,t pn,t + ∑m 6=n ξn,tξm,t pn,t pm,t
)
. The value of cons mainly depends on pn,t

and ξn,t, so cons is independent of the variables and not relevant for the minimization of the objective
function. We can see this is a quadratic programming problem. In order to prove the convexity of the
objective function, we define Qt as its Hessian matrix, whose elements are given by:

[Qt]n,n = kq(pn,t + β)

[Qt]m,n = kq(pm,t pn,t + β), n 6= m

[qt]n = −2kq

(
ξn,t pn,t + ∑

m 6=n
ξm,t pn,t pm,t

) (A2)

Proof: suppose that [Q̃t]n,n = pn,t, [Q̃t]m,n = pm,t pn,t (n 6= m and n, m ∈ {1, 2, . . . , N}), then:

Q̃t = PT
t
^
QtPt (A3)

where, Pt = diag{p1,t, . . . , pN,t},
[
^
Qt

]
nn

= 1
pn,t+1

,
[
^
Qt

]
nm

= 1. Let us set vector b =[ √
β
√

β . . .
√

β
]T

, then we have Q̂t = Q̃t + bbT , and:

Qt = kqQ̂t (A4)
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Therefore whether Qt is a positive definite matrix can be determined by the nature of Q̂t. First,
Q̃t can be proved to be a positive definite matrix. Here gn is defined as the n-order principal minor
determinant of Q̃t, n ∈ {1, 2, . . . , N}, i.e.,

gn =

∣∣∣∣∣∣∣∣∣∣
α1 1 · · · 1
1 α2
...

. . .
1 αn

∣∣∣∣∣∣∣∣∣∣
(A5)

where αn = 1
pn,t+1

> 1, and then:

gn =

(
α1 +

n

∑
k=2

1− α1

1− αk

)
n

∏
k=2

(αk − 1) (A6)

We have gn > 0, ∀n, i.e., all principal minor determinants of
^
Qt are positive, thereby

^
Qt is a

positive definite matrix, meaning that
^
Qt is also positive definite. According to Sylvester’s theorem:

det(X + cr) = det(X)(1 + rX−1c) = det(X) + radj(X)c (A7)

we can write: ∣∣Q̂t
∣∣ = ∣∣∣Q̃t + bbT

∣∣∣ = ∣∣∣Q̃t

∣∣∣∣∣∣1 + bTQ̃t
−1b

∣∣∣ (A8)

Because Q̃t is positive definite as shown above, we can get
∣∣Q̂t
∣∣ > 0, therefore it can be concluded

that the objective function’s Hessian matrix Qt is a positive definite matrix, which ends our proof that
the optimization problem in Equation (A1) is a convex quadratic programming problem.
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