
electronics

Article

AnScalable Matrix Computing Unit Architecture for
FPGA, and SCUMO User Design Interface

Asgar Abbaszadeh 1,† , Taras Iakymchuk 2,† , Manuel Bataller-Mompeán 2,† ,
Jose V. Francés-Villora 1,† and Alfredo Rosado-Muñoz 2,*,†

1 Integrated Circuits Design Laboratory, Faculty of Electrical Engineering, Sahand University of Technology,
Tabriz 5331711111, Iran; a_abbaszadeh@sut.ac.ir (A.A.); jose.v.frances@uv.es (J.V.F.-V.)

2 Processing and Digital Design Group, Department of Electronic Engineering, University of Valencia,
46100 Burjassot, Spain; taras.yakymchuk@uv.es (T.I.); manuel.bataller@uv.es (M.B.-M.)

* Correspondence: alfredo.rosado@uv.es
† These authors contributed equally to this work.

Received: 30 November 2018; Accepted: 11 January 2019; Published: 15 January 2019

Abstract: High dimensional matrix algebra is essential in numerous signal processing and machine
learning algorithms. This work describes a scalable square matrix-computing unit designed on
the basis of circulant matrices. It optimizes data flow for the computation of any sequence
of matrix operations removing the need for data movement for intermediate results, together
with the individual matrix operations’ performance in direct or transposed form (the transpose
matrix operation only requires a data addressing modification). The allowed matrix operations
are: matrix-by-matrix addition, subtraction, dot product and multiplication, matrix-by-vector
multiplication, and matrix by scalar multiplication. The proposed architecture is fully scalable with
the maximum matrix dimension limited by the available resources. In addition, a design environment
is also developed, permitting assistance, through a friendly interface, from the customization of the
hardware computing unit to the generation of the final synthesizable IP core. For N × N matrices,
the architecture requires N ALU-RAM blocks and performs O(N2), requiring N2 + 7 and N + 7 clock
cycles for matrix-matrix and matrix-vector operations, respectively. For the tested Virtex7 FPGA
device, the computation for 500× 500 matrices allows a maximum clock frequency of 346 MHz,
achieving an overall performance of 173 GOPS. This architecture shows higher performance than
other state-of-the-art matrix computing units.

Keywords: matrix-computing unit; matrix processor; matrix arithmetic; circulant matrices; FPGA;
hardware implementation

1. Introduction

Matrix arithmetic is usually the core computation of complex signal processing algorithms [1].
Digital images are stored in matrix format, and then, any filtering, modification, decision, or recognition
needs matrix algebra. In complex neural network algorithms, the weights are presented in matrix format,
and the inputs are multiplied by a matrix of weights [2]. Adaptive filters in control systems such as
Kalman filters need matrix algebra. Many other fields such as navigation systems, wireless communication
systems, or graph theory, among others, have also a great deal of matrices.

Numerous scalable implementations of dense matrix-by-matrix multiplication [3–5] and dense
vector-matrix multiplication [6] exist. However, most of them use external memories to save input
matrices and then extra FIFOs to fetch matrix elements from memories, requiring extra registers to
save temporary results [7,8]. This usually increases latency and power consumption. An approach for
dense matrix-matrix multiplication based on circulant matrices was proposed in [9], allowing matrix
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multiplication time to be O(N2) without any FIFO and internal registers required to prefetch matrix
elements and save temporary results.

In some cases, flexible architecture proposals go beyond multiplication, permitting different
matrix operations [10]. Some of these Matrix Computing (MC) architectures have been targeted
toward applications such as big data [11] or polynomial matrix multiplications [12]. In some cases,
matrix computation parallelization is targeted at multiprocessor systems [13].

However, the matrix computation architectures proposed to date are aimed mainly at the
performance of a single matrix operation, failing to optimize the data flow for a sequence of operations.
Note that, generally, the result of matrix-based digital signal processing algorithms relies on a sequence
of matrix operations (e.g., multiplication, then addition, then subtraction, transpose, etc.), where
intermediate results are used as the operand for a new matrix operation again and again, until the
end of the computation (see Section 3 for an example case). To address a sequence of operations,
matrix computing architectures generally need moving data from the intermediate result matrix to
the input operand memory in order to be able to undertake the following operation of the sequence.
Additionally, a more serious drawback appears when the result of a matrix operation must be sent
to external memory to be used as the operand for the next matrix operation. In these cases, a serious
overhead appears when considering the complete sequence of matrix operations. Thus, to optimize the
performance of computing a sequence of matrix operations, the data flow is as important as optimizing
the performance of each matrix operation individually.

This work aims to design a matrix-computing unit on the basis of a circulant matrix multiplication
architecture, allowing one to preserve the efficiency of the circulant matrix multiplication while
extending it to other operations and optimizing the data flow to compute a sequence of matrix
operations. There exists an extensive literature about the use of GPUs for matrix operations. Despite
the proposed architecture improving many proposals running on GPUs, this work is not intended
to serve as an alternative to GPU computing. The use of a GPU requires high power and a desktop
computer, while a single-chip FPGA solution offers low power and small size, with applications in
many different fields where small and portable devices are required.

This work aims to design a matrix-computing unit taking advantage of the efficiency of the
circulant matrix multiplication [9] while extending it to other operations and optimizing the data flow
to compute a sequence of matrix operations. The main contributions of this paper are as follows:

• We propose a universal square matrix-computing unit, based on a circulant matrix structure.
It computes matrix-by-matrix, matrix-by-vector, vector-by-matrix, and scalar-by-matrix
operations in the same hardware. This architecture is able to compute multiplication, addition,
subtraction, and dot product.

• The proposed matrix-computing unit is scalable. It has been designed for square matrices of
arbitrary size, the maximum matrix size only limited by the available memory in the device.

• The proposed architecture shows a great data flow optimization. The results of a matrix operation
are available as input for the next matrix operation without data movement, avoiding delays and
reducing clock cycles.

• The proposed architecture is able to perform arithmetic operations in direct or transposed forms
by a simple modification in the addressing of the memory; it can be thought of as an immediate
execution of the transpose operation without delay penalty.

• We propose an FPGA-based implementation of the matrix-computing unit. It is a flexible FPGA
core, reusable for performing complex algorithms.

• We develop a graphical user design tool to assist the user in defining a customized matrix
computation core IP according to his/her needs.

Despite that the proposed matrix computation architecture can be implemented in VLSIor FPGA,
increasing the capacity and reconfigurability of Field Programmable Gate Arrays (FPGA) makes these
devices the best candidates to implement high-throughput and complex signal processing algorithms
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quickly. The large number of high-speed I/O pins, local memories, and DSP blocks enable FPGA to
perform fast massive parallel processing. In addition, FPGA are more efficient in power consumption
and processing speed than general-purpose processors, and VLSI is the option for high-volume
production. With such characteristics and the ubiquity of the matrix-based digital signal processing
algorithms, FPGA devices have become a usual platform for fast matrix processing architectures.

This paper is organized as follows. The circulant matrix multiplication process is described in
Section 2. Section 3 describes the proposed arithmetic algorithms for different matrix operations, using
a circulant matrix architecture. Section 4 discusses the proposed hardware architecture, and Section 5
describes the developed SCUMO (Scalable Computing Unit for Matrix Operations) design user
interface. Implementation results and discussion occupy Section 6, and Section 7 concludes the work.

2. Circulant Matrices and Matrix Multiplication

The proposed matrix-computing unit is built on the basis of circulant matrices to compute matrix
operations efficiently. This section describes the multiplication process as the basis for the rest of
the computations.

Consider two N × N matrices P and G. The multiplication result R = PG is an N × N matrix.
Elements of R are computed according to Equation (1).

Ri,j =
N

∑
k=1

Pi,kGk,j (1)

Then, the first column of the resulting matrix can be computed as shown in Equation (2).

R1,1 = P1,1G1,1 + P1,2G2,1 + · · ·+ P1,NGN,1

R2,1 = P2,1G1,1 + P2,2G2,1 + · · ·+ P2,NGN,1

:
RN,1 = PN,1G1,1 + PN,2G2,1 + · · ·+ PN,NGN,1

(2)

Let ~Pc
i and ~Rc

i denote vectors containing the ith column of the P and R matrices and ~Pr
i and

~Rr
i represent vectors containing the ith row of the P and R matrices. Equation (2) can be rewritten as in

Equation (3).
~Rc

1 = G1,1~Pc
1 + G2,1~Pc

2 + · · ·+ GN,1~Pc
N (3)

This formulation changes the vector-by-vector multiplication operation to a summation of
vector-by-scalar operations, which is simpler to compute in hardware. The extension to all columns
of the R matrix is described in Equation (4).

~Rc
i = G1,i~Pc

1 + G2,i~Pc
2 + · · ·+ GN,i~Pc

N (4)

This approach can be used for different matrix multiplication possibilities, as shown in Table 1,
by changing the computation indices. Note that, in all cases, computation is made by a cycle of
scalar-by-vector operations.

To compute all possible states of multiplication of two input matrices, it is necessary to access
all elements of the ~Pc

i and ~Pr
i vectors at the same time. In conventional methods, the main problem

concerns the matrix elements’ access, typically stored in a memory where it is not possible to access all
elements of ~Pc

i simultaneously. To overcome this problem, the circulant matrix structure is used [9].
The circulant form of an N × N matrix is a matrix whose elements in each row are rotated to right
one element relative to the preceding row [14]. Equation (5) represents an N × N matrix in circulant
form, and Figure 1 shows the physical memory locations for 3× 3 matrix elements in normal and
circulant forms.



Electronics 2019, 8, 94 4 of 20

P =


P1,1 P1,2 P1,3 . . . P1,N
P2,N P2,1 P2,2 . . . P2,N−1

...
...

...
. . .

...
PN,2 PN,3 PN,4 . . . PN,1

 (5)

Table 1. Matrix-by-matrix multiplication possibilities using scalar-by-vector operations.

Operation Resulting Matrix Formula

R = PG ~Rc
i = ∑N

k=1 Gk,i~Pc
k

R = PGt ~Rc
i = ∑N

k=1 Gi,k~Pc
k

R = PtG ~Rc
i = ∑N

k=1 Gk,i~Pr
k

R = PtGt ~Rc
i = ∑N

k=1 Gi,k~Pr
k

R = GP ~Rr
i = ∑N

k=1 Gi,k~Pc
k

R = GtP ~Rr
i = ∑N

k=1 Gk,i~Pc
k

R = GPt ~Rr
i = ∑N

k=1 Gi,k~Pr
k

R = GtPt ~Rr
i = ∑N

k=1 Gk,i~Pr
k

Figure 1. Physical placement of 3× 3 matrix elements in memory columns in normal (top) and circulant
(bottom) forms. Yellow and red marked memory locations represent the first column and the first row
of a matrix. Grey blocks are labeled, from left to right, RAM0, RAM1, RAM2, since they correspond to
memory blocks in hardware.

An optimal matrix elements’ storage is possible by obtaining the circulant matrix and storing each
of the obtained columns in a different RAM memory, thus requiring N memory blocks (0, ..., N − 1).
As seen in Figure 1, the elements of each column or row vector are saved in different memory blocks,
and all elements of each row or column are simultaneously accessible since these memory blocks are
fully independent of read or write. The read address of the elements of a column vector i in different
memory blocks can be written as Ai = (A0 + i) mod N, where A0 is the address of the element in the
first memory and i the read address in the next memory block (i = 2...N − 1). Thus, we can produce



Electronics 2019, 8, 94 5 of 20

one address for the element in the first memory, and then, the addresses for the other columns can
be computed from that initial address. Therefore, by incorporating an internal address increment for
that address according to the memory block position, only one address bus is required for all memory
blocks, greatly reducing the interconnection lines and, thus, reducing the resource usage. For instance,
accessing all elements in column ~Xc

2 from Figure 1 means that each memory block must read values in
Addresses 2, 0, 1 from memories RAM0, RAM1, RAM2, respectively. Thus, a complete matrix column
can be read in a single clock cycle, ready to be multiplied by an scalar value.

An additional advantage of matrix memory storage as a circulant matrix lies in the fact that the
transpose matrix can be read by changing the addressing order, i.e., a matrix row can be simultaneously
read in a single clock cycle. In the general case of a matrix X as shown in Figure 1, an ~Xr

i row can be
accessed by reading from the same address location in all memory blocks, i.e., Ai − 1. As an example,
reading ~Xr

2 requires accessing Address 1 in all memory blocks. This form of access to elements in row
or column form is selected in each block from an external line, as explained in Section 4.

This scheme can be efficiently implemented in hardware for matrix element access by using
modulo N counters. In case of matrix operations, we assume that one matrix (e.g., P) is stored in RAM
memories in circulant form and the other matrix (G) is externally fed, assuming that a single value
from G is entered into the computation system every clock cycle. As explained earlier, all operations
are converted to vector-by-scalar operations, and thus, operating with matrices P and G means that
P row or columns are simultaneously accessed and individual G values are serially entered into
the architecture.

Once the partial row or column computation result is obtained, it must be internally stored. This is
done in the existing RAM memories by defining each RAM memory to be 2N in size. Then, one half
of the memory stores one column operand from P, and the second half stores the vector-by-scalar
computation result. After completing the process, the second half of the memory contains the matrix
result, which is ready to be used as a matrix operand in the next operation by switching the read
address to the second half and storing the new result in the first half. Alternating this memory paging
method, no delay penalty between successive matrix operations exists.

Let us explain the multiplication process of two N × N matrices P and G. The product PG is
computed by addressing P values beginning from N − 1 down to zero for the first row, N − 2 down
to (N − 1 mod N) for the second row, and zero down to (1 mod N) for the Nth row, i.e., one element
for each RAM memory is read. Once all P values are simultaneously read, they must be multiplied
by the same G matrix element, as shown earlier. This is achieved by including N arithmetic units
(referred to as ALU), which multiply each P value by the G value in a concurrent form to obtain all
partial products described in Equation (4). Lastly, the addition of the partial products generates the
final result.

To illustrate the process, the computing algorithm for the first column of R = PG for 3 × 3
matrices is presented in Algorithm 1. This algorithm performs all required computations described in
Equation (3) for N = 3. It is assumed that Grow and Gcol are row and column addresses of the required
G matrix element, which are externally fed in its corresponding order. Three ALU units are included
to compute parallel multiplications, and P matrix elements are stored in circulant form, distributed in
the RAM memories according to the addresses indicated in Table 2.

Table 2. Memory contents and internal address position of P matrix elements in RAM memory blocks
used in a matrix of size N = 3, in circulant form.

A0 RAM0 A1 RAM1 A2 RAM2

0 P1,1 0 P1,2 0 P1,3

1 P2,3 1 P2,1 1 P2,2

2 P3,2 2 P3,3 2 P3,1
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Algorithm 1 Sequence of operations for 3× 3 matrix multiplication (N = 3). By using concurrent
arithmetic operations, one column result can be obtained after three clock cycles (Ncycles for the
general case). The complete computation result is achieved in N2 cycles for N × N matrices.

. First clock cycle :

Grow = 1, Gcol = 0,→ G2,1 f rom matrix G is f ed
A0 = 2,→ P3,2 f rom RAM0 is selected
A1 = (A0 + i) mod N = 0,→ P1,2 f rom RAM1 is selected
A2 = (A0 + i) mod N = 1,→ P2,2 f rom RAM2 is selected
ALU1

1 = P3,2G2,1

ALU1
2 = P1,2G2,1

ALU1
3 = P2,2G2,1

. Second clock cycle :

Grow = 2, Gcol = 0,→ G3,1 f rom matrix G is f ed
A0 = 1,→ P2,3 f rom RAM0 is selected
A1 = (A0 + i) mod N = 2,→ P3,3 f rom RAM1 is selected
A2 = (A0 + i) mod N = 0,→ P1,3 f rom RAM2 is selected
ALU2

1 = P2,3G3,1 + ALU1
3 = P2,3G3,1 + P2,2G2,1

ALU2
2 = P3,3G3,1 + ALU1

1 = P3,3G3,1 + P3,2G2,1

ALU2
3 = P1,3G3,1 + ALU1

2 = P1,3G3,1 + P1,2G2,1

. Third clock cycle :

Grow = 0, Gcol = 0,→ G1,1 f rom matrix G is f ed
A0 = 0,→ P1,1 f rom RAM0 is selected
A1 = (A0 + i) mod N = 1,→ P2,1 f rom RAM1 is selected
A2 = (A0 + i) mod N = 2,→ P3,1 f rom RAM2 is selected
ALU3

1 = P1,1G1,1 + ALU2
3 = P1,1G1,1 + P1,3G3,1 + P1,2G2,1

ALU3
2 = P2,1G1,1 + ALU2

1 = P2,1G1,1 + P3,1G3,1 + P2,2G2,1

ALU3
3 = P3,1G1,1 + ALU2

2 = P3,1G1,1 + P3,3G3,1 + P1,2G2,1

After three clock cycles (one round), data are saved in memory, and the computation of the second
column starts. In three rounds, all R elements of the resulting matrix are obtained by shifting partial
products between columns in a ring from left to right. In the general case, an N × N multiplication is
obtained after N2 clock cycles. The resulting elements of matrix R are stored in the unused area of
memory blocks (second half of the memory block) in circulant form, which allows its use in further
matrix operations, e.g., multiplication of matrix R by a new G′ matrix externally fed into the system.

3. Matrix Computing Unit Proposal

The architecture of the proposed matrix-computing unit has been designed to optimize both the
performance and the data flow of the complete sequence of matrix operations. To do that, an extension
of the circulant matrix multiplication architecture [9] is proposed. This architecture permits keeping
the matrix multiplication computationally efficient and, at the same time, exploiting some relevant
data flow benefits to improve the performance of the whole computation sequence:

− Instant transpose operation (zero overhead for transpose): The matrix stored in the unit can be
used as an operand in direct or transposed form by a simple modification in the addressing.
This is done without data movement. Thus, transpose operation can be thought of as an
instantaneous operation.
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− No data movement between operations (internal intermediate storage): The unit contains a
temporary N × N matrix storage. This is done by doubling the size of RAM memory blocks
where the result of the operation is stored in circulant form, ready to be used as one of the
matrix operations in the next operation. This mechanism enables chaining matrix operations,
avoiding the need of writing intermediate results in a memory out of the unit before the end of
the sequence, preventing delay penalties of data movements.

Together with matrix multiplication, the proposed computational architecture allows the
following operations: matrix addition, matrix subtraction, matrix dot product, and scalar-by-matrix
multiplication. In all cases, it is possible to choose if the internal matrix uses its direct or transposed
form for the next operation. Algorithm 2 illustrates a case example computed by the proposed unit.
As seen in the algorithm, no extra time for new computations is required since a continuous data feed
is done while computing.

Algorithm 2 Use of the proposed matrix-computing unit to solve an example matrix expression.
The sequence of matrix operations required to achieve the final result is shown.

Example expression:

R = k · (C · (A · B)t + D)
t

Step 1: Load matrix (A) into the unit.
Load coefficients of matrix A into the unit.

Step 2: Multiplication (B) with the inner matrix.
Load B coefficients while computing tmp1 = A · B
Resulting tmp1 matrix stays inside the unit when finished.

Step 3: Multiplication (C) with the (transpose) inner matrix.
Address control signals to read inner tmp1 as the transpose.
Load C coefficients while computing tmp2 = C · tmp1t

No overhead cycles spent to transpose the inner matrix.
Resulting tmp2 matrix stays inside the unit when finished.

Step 4: Add (D) with the inner matrix.
Load D coefficients while computing tmp3 = tmp2 + D
Resulting tmp3 matrix stays inside the unit when finished.

Step 5: Scalar (k) by (transpose) inner matrix multiplication.
Address control signals to read inner tmp1 as the transpose.
Computes input scalar k by inner matrix multiplication.
No overhead cycles spent to transpose the inner matrix.
Resulting tmp4 = k · tmp3t = k · (C · (A · B)t + D)

t

stays inside the unit when finished.

Step 6: Operation: Read inner matrix (computation result).
Resulting matrix coefficients are read from the unit.

Matrix multiplication was described in Section 2. Let us describe how the same hardware
architecture can serve to compute other matrix computations.

3.1. Transpose Matrix

Algorithms 3 and 4 show the cases of address generation for PG and PtG, respectively. Indices
k and l are iterations, and Grow and Gcol are the row and column addresses of the required G matrix
element. For direct matrix multiplication, a circulant addressing mode is used, and matrix elements
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are read column-wise. In transpose mode, normal addressing mode is used, and matrix elements are
read row-wise. In case of multiplication by a transposed matrix Gt, Gcol and Grow addresses should be
swapped. The row addresses become column address, and vice versa. As can be seen, obtaining the
direct or transposed only form requires a different reading order of P elements.

Thus, it is not necessary for the core to be able to compute all GP, GtP, GPt, GtPt operations,
because after loading the G matrix in the internal memory, the result can be computed in the same
form as PG, but only changing, through control signals, how the elements of the internal matrix are
read to operate (e.g., in direct or transpose form). This ability has been added to increase the flexibility
of the system. d to operate with (e.g., in direct or transpose form). This ability has been added to
increase the flexibility of the system.

Algorithm 3 Addressing scheme for PG computation.
Pwrite = 1
Pread = 1
for k=1:N do

for l=1:N do
A0 = (N − k− l + 1) mod N
Grow = (k + l − 1) mod N
Gcol = k− 1

. Computation is per f ormed here...
end for

end for

Algorithm 4 Addressing scheme for PtG computation.
Pwrite = 1
Pread = 0
for k=1:N do

for l=1:N do
A0 = ((k mod N) + l − 1) mod N
Grow = (k + l − 1) mod N
Gcol = k− 1

. Computation is per f ormed here...
end for

end for

This flexibility can be used to adapt the computations. Based on matrix-by-matrix multiplication
properties, some equivalences as shown in Equation (6) can be done. To compute these multiplications,
one may prefer to use its transposed form in the operation and then compute the transpose of the result.
An interesting property in the circulant form of a matrix is that both Pi,j and Pj,i elements are stored
in the same memory column. By changing the writing address from circulant form to normal form
(Pwrite = 0), the transposed operation is controlled. For example, GP computation using Pwrite = 0
offers the same result as computing PtGt using Pwrite = 1.

PG = (GtPt)t

PGt = (GPt)t

PtG = (GtP)t

PtGt = (GP)t

(6)
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3.2. Matrix Addition, Subtraction, and Dot Product Operation

Matrix addition, subtraction, and dot product operations share the same algorithm for address
generation. The only difference lies in the ALUoperation, which must be set to add, subtract,
or multiply, accordingly. These operations require O(N2) arithmetic operations. Algorithm 5 shows the
addressing scheme for these operations. Input signal Ssel controls the write operation into memories.
Based on the transpose property of a circulant form of the matrix, only the Pread input should be
set to zero. For the addition or dot product with the Gt operand, the values of Gcol and Grow must
be swapped.

Algorithm 5 Addressing scheme for P± G and P · G computation.
Pwrite = 0
Pread = 0
for k=1:N do

for l=1:N do
A0 = k− 1
Grow = k− 1
Gcol = l − 1
Ssel = 1 << l

. Computation is per f ormed here...
end for

end for

3.3. Scalar-by-Matrix and Vector-by-Matrix Multiplication

To perform the scalar-by-matrix multiplication, we have two possible operations for a given scalar
S and an N×N matrix: SP and SPt. It performs in N clock cycles. For each clock cycle, all the elements
of one row will be multiplied by S. Algorithm 6 shows the addressing scheme for SP computation.
To compute SPt, the Pread input must be set to one.

Algorithm 6 Addressing scheme for SP computation.
Pwrite = 0
Pread = 0
for k=1:N do

A0 = k− 1
. Computation is per f ormed here...

end for

For the multiplication of an N × N matrix P by an N × 1 vector V, two operations are possible:
PV and PtV. The algorithm computing PV and PtV is similar to Algorithms 3 and 4, respectively.
The difference is that k = 1 for both algorithms. For the multiplication of an 1× N vector V by an
N × N matrix P, we also have two operations: VP and VPt. The algorithm computing VP and VPt is
similar to Algorithms 4 and 3, respectively. In this case, k = 1 for both algorithms, the value for Gcol
and Grow should be swapped, and Pwrite = 0.

4. Hardware Architecture for the Matrix Computation Core

The proposed hardware architecture supporting all aforementioned matrix operations is presented
in Figure 2. It consists of a systolic ring of ALU-RAM blocks containing two parts: a memory block
and an arithmetic unit. Each P matrix column is stored in circulant form, and the Finite State Machine
(FSM) block receives external configuration modes and controls the data flow: address generation,
data shifting, synchronization of control signals to modules, etc.
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For the general case, an N × N matrix requires N memory blocks and N ALUs in order to assess
all Rij elements in N2 clock cycles. It is important to note that Rij elements are calculated by successive
shift-multiply-add operations, passing intermediate results in a ring from left to right.

To operate, it is always assumed that one matrix (referred o as P) is internally stored in the
memory blocks in circulant form, and the second operand matrix (G), vector (V), or scalar (S) is stored
in an external memory, or externally fed by another hardware, upon issuance of the required address
(from the FSM by Grow and Gcol signals). The proposed architecture uses the G_DATA port to feed
G, V, and S data, but also for data loading through the ALU, so that new matrix data values can be
stored in RAM to act as the P operand. The main principles used in this architecture are the locality of
the computation and the use of global control signals to reduce delays and optimize logic resources.
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Figure 2. Hardware computation structure for matrix arithmetic operations. ALU-RAM blocks
(shown in columns) are chained for iterated computational the FSM controls the data flow where
one matrix operand is stored in RAM blocks and the second operand, either matrix, vector or scalar,
is externally fed from a memory (G-mem) or any other external hardware.

The FSM is controlled by the user via a 5-bit data bus (OP_TYPE) indicating the desired operation
to the computing unit (load, unload, or arithmetic operation to be performed). After that, the FSM
generates: a sequence of control signals WE, EN, OPCODE, ROW, COL, etc.; the addresses and control
signals for the systolic ring; Grow and Gcol signals; and determines the operation of the ALU blocks.
The user can write the operand on the fly, as long as a constant write latency is guaranteed.

The FSM block is fully modular to decrease the complexity of address generation. It consists of
five sub-blocks to generate address and control signals for different operations. These sub-blocks are:
loading, unloading, multiplication, addition (also valid for subtraction), and scalar multiplication.
By using the modular approach, new functionalities can be added without modification of the
existing hardware. The multiplication sub-block controls both matrix-by-matrix and matrix-by-vector
multiplication. The addition sub-block controls addition, subtraction, and dot product operations.
The rest of the sub-blocks are used for a single operation.

The CIRC/ROW data comprise a 3-bit bus containing Pread, Pwrite, and WE signals going to
memory blocks. As the input matrix P and the results are saved in the same memory block, the
BANK_SELECT signal determines if the P matrix elements are in the upper bank or lower bank of the
memory block (alternatively, P data are in the upper block, while R data in the lower block, or vice
versa). There are N CSEL signals, which enable or disable the read/write of memory blocks. All ALU
blocks share the NORMALIZE signal, which enables normalization of the multiplication results based
on fixed point arithmetic. It is important to note that CSEL signals are the only specific signals of the
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ALU-RAM blocks; all the others are common bus signals. This property eases routing problems as a
reduced number of interconnection lines is required. Moreover, there is no multiplexing in data and
address paths, which reduces delays and increases the maximum possible frequency of the system.
After finishing the selected operation, the FSM raises the signal OP_DONE high, and the user can
offload resulting data from the core or start a new operation.

Figure 3 shows the internal architecture of the proposed ALU-RAM column architecture.
A true dual-port memory block primitive must be used to store the P operand and the resulting
R matrix elements with independent data in and data out ports. Thus, its size must be 2N, at least.
In addition to the memory, an additional logic element is required: the module “circulant address
generator”. It is based on the received address from the FSM and the mode of operation (direct or
transpose) and calculates the physical memory address to be read as described in previous sections.
Finally, the ALU-RAM block includes an ALU able to perform P = A; P = AB; P = D + A; P =

AB +C; P = D− A; P = −(D− A), where P is the ALU output, A is the global data input, and B and
D are connected to the output port of the memory block. Input C is connected to the ALU output of the
adjacent ALU-RAM block on the left, serving as a propagation line of the systolic ring. In the same way,
the output of each ALU-RAM block is connected to the input C of the adjacent ALU-RAM block on the
right (chaining thus ALU-RAM blocks), as well as to the RAM data input port, for memory storage.

Circulant 
Address 

Generator

BRAM

ADDRESS

Pread

Pwrite

D

Normalizer

B

P
A
C

Bank Select

CSEL

WE

OutputALU (N-1) Output

Normalize

Global Data Input

OPCODE

Figure 3. Single ALU-RAM column interconnection structure. The RAM block is divided logically
into two equal banks, one storing the current operand and the other saving the result of operation.
The circulant address generator provides read and write addresses for both banks and modifies the
address provided by the FSM in case of required direct or transposed matrix elements.

Once defined, the architecture was coded in the VHDL hardware description language. When coding,
the main aim was to define a versatile, parameterizable and synthesizable code accepting all possible
architecture possibilities, such as matrix size or data bit-length. The resulting code is synthesizable in
any FPGA device; the optimal implementation was done in those FPGA devices including RAM Blocks
(usually referred to as BRAM) and ALU blocks (usually referred as DSP blocks). In this case, the best
performance and resource usage can be expected. Despite its generality, Xilinx FPGA was used for
this implementation.
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5. SCUMO Software Design Tool

There is general agreement that software is now a dominant part of the embedded design
process. Digital circuits are becoming more complex, while time-to-market windows are shrinking.
Designers cannot keep up with the advancements in engineering unless they adopt a more
methodological process for the design of digital circuits. For this reason, according to computational
intelligence paradigms, CAD tools are required to take advantage of the technological advances and
provide added value to embedded systems so that the design cycle can be shortened, to be competitive
in the market and to accelerate their use by multiple users. Actually, the use of CAD tools supporting
complex hardware design systems is not new in hardware/software codesign [15,16] and software
applications. It supports the design and configuration of custom hardware implementations [17–19].

As the proposed matrix computation core allows multiple configuration possibilities, a CAD tool
with a graphical user interface based on MATLAB has been developed. This tool, called SCUMO
(Scalable Computing Unit for Matrix Operations), allows introducing configuration parameters,
automatically generating hardware description code (VHDL) for FPGA implementation, and also
creating hardware test benches for design verification. Thus, the generated code is ready to be used
by the FPGA commercial tool provided by the device manufacturer for final implementation and
simulation. SCUMO controls the FPGA implementation tool in the background, launching the process
and collecting resulting data to be displayed in the user interface.

The first step in the use of SCUMO consists of the user introduction of the desired arithmetic matrix
operations to be performed by the core. All arithmetic operations are given in a box, and the user must
choose among them. A total of eight arithmetic operations is offered. After selecting all configuration
options, the software tool creates the implementation code and test bench; then, the FPGA synthesis
process is launched (background execution of proprietary Xilinx FPGA tools). Finally, synthesis results
are collected and shown in the software to show all relevant information about the implementation
process in the SCUMO user interface.

Figure 4 shows the main user screen where the work flow (“Work Flow Panel”) is indicated by
tick marks. This panel informs the user about the completion of the different required steps leading to
hardware implementation. Additionally, the panel assists in following the proper order of execution,
since the work flow must be executed following a strict order (otherwise, a message box informs the
user). While one of the steps is being executed, a wait bar appears to inform the user that no other
actions can be executed.

Figure 4. MATLAB GUI interface for the SCUMO tool.

Six actions require the user’s intervention to configure the computation core:
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1. Operation selection: The user must select those matrix operations to be executed in the hardware
computation core.

2. Bit length: The software tool analyzes the selected operations and calculates the optimum bit
length in QX.Y format.

3. VHDL project synthesis: The user must select one of the FPGA devices offered in a list and
synthesis options.

4. Report analysis: The synthesis process considering all previous configurations is launched.
5. Console window reports: The synthesis reports are shown to the user.
6. IP core generate: A wrapping of the core is finally done in order to pack the generated code and

make it available for further integration with more complex designs or to be used as a standalone
module in an FPGA.

Figure 5 shows the selection list (list box) where the user includes the type of matrix, vector,
or scalar operations that are required to be included in the hardware core. Depending on the arithmetic
operations chosen, the bit length must be properly selected to avoid overflow problems. For this
reason, a specific step is included (Figure 6) so that the user can upload sample data files including
the expected values of P and G to be calculated by the hardware core, and the tool will estimate the
most adequate bit length for the design (integer and fraction part of the QX.Ydata format type) and
the estimated mean squared error that the hardware implementation will have when compared to a
PC-based floating point counterpart. Additionally, the introduced data files can be used as a simulation
test bench in the hardware design simulation tool (ISE simulator or ModelSim, in this case).

Figure 5. Operation selection option in the software design tool.

Figure 6. Bit length option in the software design tool.
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After selection of a specific Xilinx FPGA device, the “VHDL Project Synthesis” option launches
the Xilinx synthesis tool by using tcl/tkcommands, which allow one to inform the synthesis tool about
all selected parameters required to carry out the synthesis of the core.

The “Reports Analysis” option shown in Figure 7 deploys all related information after the end
of the synthesis process. A list box allows the user to navigate through timing analysis and device
utilization information collected from all the synthesis tool-generated information, including the
maximum clock frequency of operation.

Figure 7. Report analysis option in the software design tool.

The user can obtain further detailed information in the “Console Window Reports” option
(Figure 8) where more detailed translate, mapping, and place and route information can be obtained.
At last, the hardware computation core can be generated by selecting the “IP core generate” option
(Figure 9). All parameters and interfacing signals are included in the created files, ready to use as part
of bigger designs or standalone computing device.

Figure 8. Console window reports option in the software design tool.
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Figure 9. MATLAB GUI interface of the IP core generation option.

6. Implementation Results

In order to analyze the proposed architecture, the selected design in the SCUMO software used
the XC7VX485TFFG1157 Xilinx Virtex 7 FPGA device with 18-bit fixed-point precision (QX.Y format
where X + Y = 18). The obtained system was tested using Xilinx ISE 14.2.

In this design, the DSP48E primitives were used as the ALU block described above. Each one of
these high performance block is an arithmetic block containing a 48-bit pre-adder, a 23× 28 multiplier,
and a 48-bit MAC-adder. Table 3 shows the required resources and maximum available clock frequency
for five different matrix sizes. As seen, the number of DSP48E and block RAM slices was directly
related to matrix size. Selecting more than 18 bits doubled the need for DSP slices and increased the
amount of necessary logic.

The last row in Table 3 (referred to as “Slices vs. Size”) shows the ratio between the number of
logic resources (slices) and the matrix size. It can be observed that this ratio was relatively constant for
different matrix sizes, which means that no extra logic was generated when matrix size increased.

Concerning the maximum clock frequency of operation, in the case of a 500× 500 matrix, a
clock speed of 346 MHz was achieved, which means an overall performance of 173 GOPS since 500
operations were being executed at every clock cycle. The maximum clock frequency decreased with
the matrix size due to some long delay lines. However, the frequency decrease ratio was low when
compared to the matrix size increment: 404.4 MHz and 346.1 MHz was obtained for matrix size of 10
and 500, respectively.

Table 3. Resources used by different hardware cores synthesized in a xc7vx485tffg1157 Virtex7 device
with an 18-bit data size.

Matrix Size 10 25 100 250 500

Slice Regs 556 1312 4655 11,461 21,836

LUTs 948 2354 9345 22,744 43,912

BRAM18 10 25 100 250 500

DSP48E 10 25 100 250 500

fmax 404.4 404.4 364.0 355.1 346.1

Slice vs. Size 55.6 52.5 46.6 45.8 43.7

Table 4 shows the number of clock cycles necessary for different operations of the matrix-
computing unit. As is shown, matrix-by-matrix multiplication, addition, subtraction, dot product,
vector-by-matrix, and scalar-by-matrix multiplications were performed in N2 + 7 clock cycles. It is
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important to note that the global core latency was only seven clock cycles, regardless of matrix size.
This latency comes from the following sources:

− One clock cycle at the sequential arithmetic sub-units in the DSP block.
− One clock cycle at the addition operation.
− One clock cycle at the multiplication operation.
− Two clock cycles at the outputs of BRAM memories.
− Two clock cycles at the FSM unit.

While the latency issue can be important for small matrices, the delay of seven clock cycles became
negligible for large sizes.

Something similar arose for loading (storing matrix values in RAM blocks) and unloading (reading
matrix values in RAM blocks) operations, requiring N2 + 8 and N2 + 6 clock cycles for completion,
respectively. In addition, Table 4 shows the peak frequency at which the unit can repeatedly perform
each operation (considering the required number of cycles and the maximum frequency of operations
for each matrix size).

Table 4. Number of clock cycles and peak clock speed for different operations allowed by the
computation core.

Matrix Size 10 25 100 250 500

Loading (cycles) 108 633 10,008 62,508 250,008

Unloading (cycles) 106 631 10,006 62,506 250,006

Matrix mult(cycles) 107 632 10,007 62,507 250,007

Matrix add(cycles) 107 632 10,007 62,507 250,007

Vector mult (cycles) 17 32 107 257 507

Scalar mult (cycles) 17 32 107 257 507

Loading (kHz) 3744 638.9 36.4 5.7 1.4

Unloading (kHz) 3815 640.9 36.4 5.7 1.4

matrix mult (kHz) 3779 639.8 36.4 5.7 1.4

Matrix add (kHz) 3779 639.8 36.4 5.7 1.4

Vector mult (kHz) 23,788 12,637.5 3401.9 1381.7 682.6

Scalar mult (kHz) 23,788 12,637.5 3401.9 1381.7 682.6

From the obtained results, it can be determined that the proposed matrix computing architecture
extended the circulant matrix multiplication architecture [9] to other operations while keeping the
architecture benefits: exploiting local interconnections, data storage, and computations to reduce
delays and communication overhead. This fact avoids typical communication bottlenecks in a classical
fully-parallel system.

The extension of additional matrix operation performed by the architecture did not affect the
matrix multiplication performance, having 173 GOPS of overall performance when computing 500×
500 matrices. Moreover, the proposed architecture can be a competitor for Graphic Processing Units
(GPU) when the matrix size is <1000. In the bibliography, GPU performance ranged from 26.4 [20] to
350 GFLOPS [21], but this performance was greatly reduced for intermediate matrix sizes, as in [21],
where performance dropped from 350 GFLOPS to under 50 GFLOPS when the matrix size was <1000.
Besides, the circulant matrix multiplication had better performance than the rest of the FPGA-based
approaches operating with matrix sizes N > 50, as [22], who claimed the fastest result for 180× 180
matrix multiplications. However, the circulant architecture overcame (see Table 4) this performance by
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various orders of magnitude. Other implementations for N < 50 matrix size are hardly comparable
because they tended to use N2 processing elements [23–25].

There exist numerous references dealing with the acceleration of individual matrix operations,
but very few consider the implementation of a matrix-computing unit integrating successive and
different types of matrix operations. In this sense, the most relevant implementation up to date
has been carried out by Wang et al. [10], who included matrix addition, subtraction, dot product,
dot division, and matrix multiplication. In this case, Wang obtained, for matrix multiplication,
an average performance of 19.1 and 76.8 GFLOPS on the Stratix III and Stratix V platforms, respectively.
As the proposed circulant matrix processor performs 173 GOPS, a superior performance can be claimed.
Note that this performance is not affected by the configured word-length (except some extra latency
cycles when using more than 18 bits, due to its pipelined design). This performance is also higher than
the obtained by Wang et al. [10] for matrix multiplication on an Intel i7 3770K processor running a
64-bit Windows 7 operating system, obtaining an average performance of 117.3 GFLOPS. On the other
hand, our proposed matrix processor surpasses all other matrix processor implementations in the
bibliography, as [26] that required 21,970 cycles to compute a 64× 64 matrix multiplication, while our
circulant matrix processor required only 4013 cycles, being more than five-times faster.

The circulant matrix-computing unit extended matrix multiplication with addition, subtraction,
dot product, vector-by-matrix, and scalar-by-matrix operations. The performance measures in Table 4
reveal an optimized performance with low latency on all of them. Other works in the bibliography did
not indicate the performance for other operations except matrix multiplication. The operation having
a record-breaking performance, making a difference in our circulant matrix-computing unit, was the
transpose operation, which we claim to be immediate because it was done by a simple modification
in the addressing of the internal matrix. It can be compared with the transpose operation in [26],
requiring 2,813,396 cycles to compute a 64 × 64 matrix multiplication, while our circulant matrix
processor instantaneously did it.

Some authors proposed specific matrix multiplication architectures targeting convolutional neural
networks [5]. In this case, they reported 59.7, 87.8, and 64.9 GFLOPS for matrix computations requiring
105.4, 111.9, and 149.5 million multiplications, respectively. Our work reports 173 GOPS for 125 million
multiplications (matrix size of 500). A scalable matrix multiplication architecture was proposed in [22],
reporting 12.18 GFLOPS for a 512× 512 matrix computation, mainly limited by the use of external
off-chip RAM memory. Some authors proposed a combined CPU + FPGA architecture where matrix
multiplication tasks were shared [27]; in this case, the architecture can achieve 4.19 GFLOPS for 2K× 2K
matrices by means of block-matrix streaming of data between the CPU and FPGA. Considering our
proposed architecture, assuming a 300-MHz clock rate for 2K× 2K, a 60-0GOPS performance would
be achieved.

Concluding, the obtained results show remarkable benefits of using the proposed circulant
matrix-computing unit. It is an efficient and very deterministic matrix processor allowing one to
optimize the computation of a complete sequence of matrix operations with a very low latency and
clock cycle overhead.

7. Conclusions

In this article, we propose a scalable matrix-computing unit architecture for the computation of
sequences of matrix operations. It is motivated by the increasingly central role of signal processing
and machine learning algorithms, which require the computation of matrix algebra equations.
Works proposed until now have typically focused on accelerating individual matrix operations.
We show that it is possible to optimize both the data flow of the sequence of operations and the
performance of individual operations using a circulant matrix storage with systolic ring topology.
The FPGA hardware implementation shows that the circulant architecture exhibited O(N2) and a
deterministic performance of N2 + 7 clock cycles for all matrix-matrix operations. The architecture
also permits chain matrix operations without data movement of intermediate results, or even using the
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transpose matrix of an operand with just a simple address modification. These data flow improvements
are fundamental for the performance of the computation in a sequence of matrix operations.

The SCUMO design environment assists in the hardware options configuration, from definition
to the generation of the final IP core. This architecture can be successfully implemented for large
matrices: N×N matrices only require N ALU-RAM blocks. Currently, sizes of up to 9000× 9000 could
be implemented, and in general, the architecture can be extended up to the limits of the hardware
device. The resulting implementation achieves 173 GOPS for the 500× 500 matrices tested, running at
346 MHz.

We plan to improve this architecture including the possibility of choosing floating or fixed point
precision and adapting the control unit to handle rectangular matrices. Note that our proposal can
adapt to rectangular matrices by just changing the data control sequence. Moreover, it is likely that
the circulant matrix architecture will support the inverse matrix architecture, adding it as a new
matrix operation.
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