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Abstract: Land environment is one of the most commonly and importantly used synthetical
natural environments in a virtual test. To recognize the ground truth for the construction of
virtual land environment, a deep transfer hyperspectral image (HSI) classification method based
on information measure and optimal neighborhood noise reduction was proposed in this article.
Firstly, the information measure method was used to select the most valuable spectrum. Specifically,
three representative bands were selected using the combination of entropy, color matching function,
and mutual information. Based on the selected bands, a patch containing spatial-spectral information
was constructed and used as the input of the convolutional neural networks (CNN) network. Then,
in order to address the problem that a large number of labeled samples were required in deep learning
method, the HSI classification method based on deep transfer learning was proposed. In the proposed
method, the transfer of parameters ensured the classification performance with small training samples
and reduced the training cost. Moreover, the optimal neighborhood noise reduction was used as the
post-processing method to effectively eliminate the salt-and-pepper noise and further improve the
classification performance. Experiments on two datasets demonstrated that the proposed method in
this article had higher classification accuracy than similar methods.

Keywords: CNN; hyperspectral image classification; information measure; transfer learning;
neighborhood noise reduction

1. Introduction

In recent years, hyperspectral image (HSI) analysis has been widely used in various fields [1],
such as the monitoring of land cover change [2,3] and the environmental science and mineral
development [4]. As an advanced machine learning technology, deep learning has been widely used
in image classification to learn the hierarchical features of a deep neural network from low-level
to high-level [5]. The image classification methods based on the convolutional neural networks
(CNN) have shown the ability to detect local features of the hyperspectral input data and obtain the
classification results with high accuracy and stability. Rachmadi et al. proposed an adaptation of a
convolutional neural network (CNN) scheme proposed for segmenting brain lesions with considerable
mass-effect, to segment white matter hyperintensities (WMH) characteristic of brains with none or
mild vascular pathology in routine clinical brain magnetic resonance images (MRI) [6]. Krizhevsky et
al. proposed a large, deep convolutional neural network to classify the 1.2 million-high resolution
images in the ImageNet LSVRC-2010 contest into the 1000 different classes [7]. In addition to the
application in common image classification, many CNN-based hyperspectral image classification
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methods have been developed in recent years. Ma et al. proposed a context deep-learning algorithm for
learning the features, which can better characterize the information than the extraction algorithms with
predefined features [8]. Zhang et al. proposed a region-based diversified CNN, which can semantically
encode context-aware representations to obtain valuable features and improve the classification
accuracy [9]. Chen et al. first proposed the Stack Automated Encoder (SAE) framework to incorporate
the features with the special-spectral information. Firstly, the validity of SAE was verified by the
classical spectral information-based classification method. Secondly, a new classification method
based on spatial principal component information was proposed [10]. Slavkovikj et al. proposed a
CNN framework for hyperspectral image classification in which spectral features were extracted from
a small neighborhood [11]. Makantasis et al. proposed an R-PCA CNN classification method [12],
in which PCA was first used to extract the spatial information, and then CNN was used to encode
spectral and spatial information. The CNN classification methods with the combined spectral and
spatial information have shown better classification performance.

The hyperspectral image contains all of the spectral information of the ground objects, with the
typical high-dimensional features. However, the spectral information with high redundancy may
interfere with the classification process and reduce the classification accuracy. Therefore, it is very
important to reduce the spectral dimensionality of the hyperspectral image before the classification
process. Two typical dimensionality-reduction methods have been reported, i.e., feature extraction and
band selection methods. The feature extraction method mainly included principal component analysis
(PCA) [13], linear discriminant analysis (LDA) [14], and multidimensional scaling [15]. The band
selection method mainly included examining correlations [16], calculating mutual information [17,18],
etc.. In recent years, information-based band selection has been a very popular research topic, in which
the Shannon entropy or its changes, such as mutual information (MI), were usually used as the basis
of image information measure. Bajcsy proposed a band selection method under the constraints of
classification accuracy and computational requirements, in which the optimal number of bands was
determined by the unsupervised method of entropy [19]. Adolfo proposed a clustering method
for automatic band selection based on the mutual information in multispectral images [20]. Wang
proposed a supervised classification method for band selection based on spatial entropy [21]. Le Moan
et al. proposed a new spectral image visualization method to achieve band selection by the first-order,
second-order, and third-order information measure [22]. Manel proposed a frequency band selection
method based on the hierarchical clustering of spectral layer, and used mutual information measure
to reduce the dimensions of the image. Then a new c-means clustering algorithm was proposed to
integrate the spatial spectrum information [23]. Hossain et al. proposed a dimensionality reduction
method (PCA-nMI) that combined principal component analysis (PCA) with normalized mutual
information (nMI) under two constraints [24]. The proposed method maximized the general correlation
and minimized the redundancy in selected subspaces.

In the application of the deep neural networks to the classification of hyperspectral images,
there were some difficulties in the process of model training, such as the high demand for training
samples and the time complexity of computing models. Transfer learning can address the above
difficulties to some extent. In transfer learning, the learned knowledge or experience from the
source tasks is applied to the object tasks. Based on transfer learning, Li et al. proposed a CNN
framework for the anomaly detection [25] and the training of multi-layer CNNs using the differences
between adjacent pixels generated from the source image dataset. The experimental performance
showed that the proposed algorithm was superior to the classical Reed-Xiaoli [26] and the most
advanced representation-based detectors, such as sparse representation-based detectors (SRD) [27]
and cooperative representation-based detectors [28]. Wang proposed two architectures to extract the
general features of remote scene classification from the pre-trained CNNs [29]. Wang Liwei et al.
proposed a hyperspectral image classification method by applying transfer learning in deep residual
networks [30], and shared the shallow network weight parameters of deep residual networks. At the
same time, in order to address the over-fitting problem in the process of transfer shallow network
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parameters from the large source dataset to the small object dataset, the strategy of fine-tuning the
residual network was proposed, in which the deep layer of deep residual network was randomly
initialized and retrained in the object dataset.

The method studied in this article is to construct a virtual land environment for virtual test, which
is also one of the research fields of the author’s team. In order to build a virtual land environment which
can be used as the basis of other natural environment modeling and sensor sensing, the most important
thing is to accurately acquire the information of ground truth. So, we propose a scheme to construct the
virtual land environment using multi-source satellite’s earth observation data. The method proposed
in this paper is the key step of ground truth recognition. In this article, the hyperspectral image
classification method based on CNN was investigated. In addition, the information measure was
used to select the bands and reduce the dimensionality of hyperspectral images, thus, reducing the
redundant information. At the same time, the spatial-spectral features were extracted to improve
the classification performance of hyperspectral images. Furthermore, the classification method based
on deep transfer learning and neighborhood noise reduction was used to achieve high classification
accuracy for small-sized samples and reduce the training complexity of the object dataset.

2. The Related Work

The method studied in this article is to build a virtual land environment, which belongs to the
field of virtual tests. Virtual test technology is a new test technology. Because of its low cost, high
efficiency and ability to support test in a complex environment, virtual test technology has been more
and more widely used, such as automobile test [31], building design [32], weapon system test [33] and
so on. The virtual test is inseparable from the virtual environment, so in order to meet the needs of
the virtual test in a complex environment, it is an important research content to study the modeling
theory and method of all kinds of complex environments. The synthetic natural environment, which
is composed of land, atmosphere, ocean and space environment, is the space for various human
activities [34]. The virtual land environment is one of the important components of the virtual natural
environment. The current virtual land environment, which is often used in virtual reality [35] and
visual simulation [36], is mainly concerned about visualization and pays attention to the immersion.
However, the new virtual test puts higher demands on the virtual land environment, as follows.

(1) Providing support for the construction of other types of natural environment. The synthetic
natural environment is an interrelated and interactive organic whole, especially the interaction
between the land environment and the atmospheric environment. For example, the MM5 atmospheric
model needs six types of land environmental data, such as land surface type, water body, vegetation
composition, etc. [37].

(2) Providing a sensing basis for virtual sensors. For example, when using infrared imaging
sensors to detect the ground, it is necessary to support the high-precision three-dimensional land
environment with the information of ground truth, material, etc.

Based on the above analysis, the virtual land environment used in the virtual test is more important
to be used as the modeling basis of other natural environments and the sensing basis of various sensors.
What is more, it is a three-dimensional land environment which contains various information, such
as ground truth, objects material, color, texture, etc. Therefore, as shown in Figure 1, we propose
a scheme to construct a virtual land environment using multi-source satellite earth observation
data, which is a joint application of multi-sensor data [38]. Based on hyperspectral, multispectral,
panchromatic, and other optical earth observation data and radar earth observation data, such as InSAR,
the construction of virtual land environment is completed through four steps: Temporal-spatial-spectral
fusion (A), ground truth recognition (B), elevation extraction (C) and synthesis (D). Among them,
ground truth recognition (B) is a key step, which is responsible for providing accurate information,
such as ground truth, material, etc for the virtual land environment. The HSI classification method
proposed in this article belongs to this step, and the ground truth information is obtained through the
classification of HSI.
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Figure 1. The process of constructing a virtual land environment using multi-source satellite Earth
observation data.

In the virtual test, according to the test requirements, a specific space range of virtual land
environment is usually constructed, which may use the earth observation data obtained by different
sensors. At the same time, the method of ground truth classification based on machine learning needs
a large number of marked data as training samples. It is not easy to prepare a large amount of marked
data for the images of different scenes obtained by different sensors. Therefore, transfer learning is
adopted in this article. After training the classification network in all kinds of typical scenes, we can
transfer to a specific scene and do a little training.

3. Dimensionality Reduction of Hyperspectral Image Based on Information Measure

3.1. Spectral Band Preprocessing Based on Entropy and Color Matching Function (CMF)

Based on the information theory, Shannon first proposed the concept of entropy in 1948 [39],
in which the amount of information with uncertainty, i.e., the probability of the occurrence of discrete
random events was measured. The greater amount of information indicated a smaller redundancy.
The information measure based on Shannon’s communication theory has been proven very effective in
identifying the redundancy of high-dimensional datasets.

The entropy of a random variable is defined as

H(X) = −
n∑

i=1

pX(xi) logb[pX(xi)], (1)

where xi is the event of X, pX(xi) is the probability density function of X, and b is the logarithmic order.
Assume X and Y are two random variables, where X has n values and Y has m values. Then their

joint entropy is

H(X, Y) = −
n∑

i=1

m∑
j=1

pX,Y

(
xi, y j

)
log pX,Y

(
xi, y j

)
, (2)

where pX,Y
(
xi, y j

)
is the joint probability density function of X and Y.

When these measurements are applied to hyperspectral images, it is generally assumed that each
channel (spectral band) is equivalent to a random variable X, and each pixel in the channel is an event
xi. In the preprocessing step for the spectral band of the hyperspectral image, the channel with less
information is eliminated based on Shannon entropy, which are described as follows:
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Firstly, the entropy H(Bi) of each spectral band of the hyperspectral image is calculated.
The random variable Bi is the i-th spectral band (i = 1, 2, ... n), xi is the pixel of the i-th spectral band,
and pBi(xi) is the probability density function of the band Bi.

H(Bi) = −
n∑

i=1

pBi(xi) logb

[
pBi(xi)

]
. (3)

Secondly, the local average entropy of each spectral band is defined as Equation (4), where m is
the window size, indicating the size of the neighborhood.

Hm(Bi) =
1
m

m/2∑
p=−m/2

H
(
Bi+p

)
. (4)

Finally, the bands Bi that meet the following conditions are retained.

H(Bi) ∈
[
Hm(Bi) × (1− σ), Hm(Bi) × (1 + σ)

]
, (5)

where σ is the threshold factor. The spectral band with higher or lower entropy than the range of σ of
the local average entropy Hm(Bi) is considered to be irrelevant.

The blue line in Figure 2 is the entropy curve, in which the horizontal axis represents the spectral
dimension and the vertical axis represents the entropy of each spectral band. The smoothness of
the entropy curve determines the window size m and the threshold factor σ. If the entropy curve
is smooth, the change of the adjacent spectral band information, i.e., the uncertainty of the band
information is small; thus, the number of bands outside the relevant range, i.e., the probability of
having an uncorrelated band, is also small. In this condition, few spectral bands are redundant, thus,
smaller σ and m values should be chosen to improve the ability of excluding redundant bands. On the
contrary, if the entropy curve fluctuates greatly, the change of the adjacent spectral band information,
i.e., the uncertainty of the band information, is large; thus, the number of bands outside the correlation
range, i.e., the probability of having an uncorrelated band, is also large. In this case, more spectral
bands are redundant, thus, larger σ and m values should be chosen to exclude the redundant bands
and retain the bands with valid information.
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Figure 2. Exclusion of the unrelated spectral bands of the Indian pines dataset.

The color matching function (CMF) in CIE 1931 standard chromaticity observer [40] described
the human eye visual color characteristics. This function was used to achieve the complete process of
preliminary selection of spectral bands based on the calculation of entropy. At a specific wavelength,
the CMF determined the number of the three primary lights (red, blue and green), which must be
mixed in a certain order to achieve the same visual effect as the corresponding monochrome light at
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that wavelength. By applying the CIE color matching to hyperspectral images in the visible range,
hyperspectral images can be represented by the corresponding color matching [41].

As shown in Figure 3, the wavelength of the first effective spectral band was λ = 360 nm, and the
wavelength of the last effective spectral band was λ = 830 nm. Then a linear interpolation was
performed between the first and last effective spectral band.
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of the CMF of the red light. When the CMF coefficient is above the threshold, the corresponding
spectral bands were preserved. It was challenging to set the value of the parameter t without a specific
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3.2. Band Selection Based on Mutual Information

Mutual Information (MI) is a measure of the useful information, which is defined as the amount
of the information contained in a random variable about another random variable. The MI between
two random variables X and Y is defined as

I(X, Y) =
∑

i = 1 . . . n
j = 1 . . .m

pX,Y

(
xi, y j

)
log

pX,Y(xi,y j)
pX(xi)·pY(y j)

= H(X) + H(Y) −H(X, Y)

(7)

where pX(xi) is the probability density function of X, pY(yi) is the probability density function of Y,
and pX,Y

(
xi, y j

)
is the joint probability density function of X and Y. H(X) is the entropy of the random

variable X, and H(Y) is the entropy of the random variable Y, which is calculated by Equation (1).
H(X, Y) is the joint entropy of two random variables X and Y, which can be calculated by Equation (2).

Furthermore, Bell proposed the mutual information of three random variables X, Y and Z, as
shown in the following [42]:

I(X, Y, Z) = H(X, Z) + H(Y, Z) −H(X, Y, Z)
= −H(Z) − I(X, Y)

(8)

where H(X, Y, Z) is the third-order joint entropy of three random variables X, Y and Z.
The above principle is equally applicable in hyperspectral images. The information of one channel

can increase the mutual information between the other two channels. In this case, as the overlapped
information between the two channels is less, the interdependence degree between the two random
variables is lower, and the amount of contained information is greater. In the dimensionality reduction
of hyperspectral images, it is necessary to consider both criteria, i.e., the largest amount of information
and the least amount of redundancy.

Pla proposed the application of standardized mutual information [43]. In this article, we used
the k-th order normalized information (NI) of the band S = {B1, · · · , Bk} as the standardized mutual
information, in which NI is defined as

NIk(S) =
K × I(S)
k∑

i=1
H(Bi)

, (9)

where I(S) is the mutual information of the bands B1 to Bk, and H(Bi) is the entropy of the band Bi.
Three parts, Sett

R, Sett
B and Sett

G, were obtained by setting threshold t for the CMF coefficients of
the three primary colors. As the value of the mutual information NI3(S) was smaller, the amount of
contained information in the selected spectral bands was larger, and the dimensionality reduction effect
on the hyperspectral image was better. The spectral bands, xR, yB, zG (xR ∈ Sett

R,yB ∈ Sett
B,zG ∈ Sett

G),
were obtained to minimize NI3(xRN∗ , yBN∗ , zGN∗) and selected as the most valuable bands.

3.3. Two Strategies for CNN Inputs

Three spectral bands, xR, yB, zG, were selected for the dimensionality reduction of hyperspectral
image based on the information measure, and three grayscale images were obtained. There were two
strategies to enter the CNN network, as shown in Figure 5. In the first strategy, the three spectral
bands xR, yB, zG were directly used to extract the neighborhood around the pixel and classify the
pixel into a patch of m × m × 3, which was put into the CNN for classification. This method was
also called the information measure classification method (IM for short) because it directly used the
dimensionality reduction results based on the information measure. In the second strategy, all the
spectral information of the pixel was superimposed and classified on the above patch to form a patch
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of m×m× 6. All the spectral information of the central pixel of the patch was extracted, combined,
intercepted, and reshaped. Then three layers of spectral information were obtained, which had the
same shape and size as the three-dimensional spatial-spectral information extracted by the IM method.
Then, the patch generated by the IM method and the new m×m× 6 patch were superimposed and
put into CNN for classification. In this article, the proposed method was called the information
measure-spectral (IM-SPE for short) classification method.
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Figure 5. The principle of dimensionality reduction based on the integration of information measure
and spectral information.

The spectral information was processed as follows: Assume that the size of hyperspectral data
was I1 × I2 × I3. At first, the one-dimensional spectral information of the central pixel with the size
of 1 × 1 × I3 was superimposed by n times to obtain the one-dimensional spectral information of
1× (n× I3). Then a one-dimensional spectral vector equal to m×m was intercepted and reshaped to a
two-dimensional spectral matrix of m × m. Then a m×m× 6 spatial-spectral patch was obtained by
superimposing three spectral information layers and combining the superimposed information with
the three spatial-spectral information extracted by the IM method.

4. Hyperspectral Image Classification Method Based on Deep Transfer Learning

The classification of hyperspectral image based on deep transfer learning can be used to better
solve the problem that the sample data is insufficient or relatively small. The specific classification
principle is shown in Figure 6.



Electronics 2019, 8, 1112 9 of 23Electronics 2019, 8, 1112 9 of 24 

 

Conv 1 Pooling 1 Conv 2 Pooling 2 S
o

ft
m

ax
_

li
n

ea
r

F
u

ll
-c

o
n

n
ec

te
d

 1

F
u

ll
-c

o
n

n
ec

te
d

 2

FC

Features of 

source dataset

Classes of source dataset

The first layer The second layer

Conv 1 Pooling 1 Conv 2 Pooling 2 S
o

ft
m

ax
_

li
n

ea
r

F
u

ll
-c

o
n

n
ec

te
d

 1

F
u

ll
-c

o
n

n
ec

te
d

 2

FC

Parameters transfer on 

shallow layers

Random initialization of 

deep layers  parameters 

Features of 

object dataset The first layer The second layer

Classes of object dataset

 

Figure 6. Principle of hyperspectral image classification based on deep transfer learning. 

Training was performed on the source dataset to obtain the network model and parameters. The 

shallow layer structure and parameters were directly transferred to the object dataset, and the deep 

layer parameters were randomly initialized. Taking the CNN network structure of Figure 6 as an 

example (including two convolutions and pooling layers, and two fully connected layers), if the 

source hyperspectral dataset is highly similar to the object hyperspectral dataset, the adjustment of 

the deep parameters should be in the following order: The last fully connected layer (full-

connected2), the first fully connected layer (full-connected1). If the source hyperspectral dataset is 

not highly similar to the object hyperspectral dataset, the convolutions and pooling layers (conv2 and 

pooling2) that extract the deep features may also need the random re-initialization of the weighting 

parameters. Specifically, in the proposed hyperspectral image classification process based on deep 

transfer learning in this article, the following two situations were mainly considered: 

In the first situation, the object dataset has a small number of samples and is similar to the source 

dataset. In this case, first, the last fully connected layer of the pre-trained layers should be removed, 

and then a fully connected layer that matches the number of feature classes of the object dataset is 

added. The weight parameters of other pre-training layers are kept unchanged, and only the weights 

of the newly added layers are randomly initialized. When the sample size of the object dataset is 

small, only the new-added fully connected layer is trained using the object dataset to avoid the 

problem of over-fitting. In details, the learning rate of the previous layers of CNN to 0 and only the 

last fully connected layer on the object dataset is trained. 

In the second situation, the object dataset has a large number of samples, but the number of 

samples relative to the source dataset is small, and the relative dataset are similar to the source 

dataset. In this case, first, the last fully connected layer of the pre-training network layers should be 

removed, and then a fully connected layer that matches the number of feature classes of the object 

dataset is added. Only the weights of the newly added layers are randomly initialized, while the 

weight parameters of other pre-training layers are kept unchanged. Since the object dataset has a 

large amount of data and is not prone to overfitting, the entire network can be retrained. Meanwhile, 

the features extracted by the original convolutional layer can be used to speed up the training for the 

object dataset. The entire network can be trained by the specific method through setting the learning 

rate of the front layeres of the CNN to 0.001. 

The classification process of hyperspectral image based on deep transfer learning is shown in 

Figure 7.  

Figure 6. Principle of hyperspectral image classification based on deep transfer learning.

Training was performed on the source dataset to obtain the network model and parameters.
The shallow layer structure and parameters were directly transferred to the object dataset, and the
deep layer parameters were randomly initialized. Taking the CNN network structure of Figure 6 as an
example (including two convolutions and pooling layers, and two fully connected layers), if the source
hyperspectral dataset is highly similar to the object hyperspectral dataset, the adjustment of the deep
parameters should be in the following order: The last fully connected layer (full-connected2), the first
fully connected layer (full-connected1). If the source hyperspectral dataset is not highly similar to the
object hyperspectral dataset, the convolutions and pooling layers (conv2 and pooling2) that extract the
deep features may also need the random re-initialization of the weighting parameters. Specifically,
in the proposed hyperspectral image classification process based on deep transfer learning in this
article, the following two situations were mainly considered:

In the first situation, the object dataset has a small number of samples and is similar to the source
dataset. In this case, first, the last fully connected layer of the pre-trained layers should be removed,
and then a fully connected layer that matches the number of feature classes of the object dataset is
added. The weight parameters of other pre-training layers are kept unchanged, and only the weights
of the newly added layers are randomly initialized. When the sample size of the object dataset is small,
only the new-added fully connected layer is trained using the object dataset to avoid the problem of
over-fitting. In details, the learning rate of the previous layers of CNN to 0 and only the last fully
connected layer on the object dataset is trained.

In the second situation, the object dataset has a large number of samples, but the number of
samples relative to the source dataset is small, and the relative dataset are similar to the source dataset.
In this case, first, the last fully connected layer of the pre-training network layers should be removed,
and then a fully connected layer that matches the number of feature classes of the object dataset
is added. Only the weights of the newly added layers are randomly initialized, while the weight
parameters of other pre-training layers are kept unchanged. Since the object dataset has a large amount
of data and is not prone to overfitting, the entire network can be retrained. Meanwhile, the features
extracted by the original convolutional layer can be used to speed up the training for the object dataset.
The entire network can be trained by the specific method through setting the learning rate of the front
layeres of the CNN to 0.001.
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The classification process of hyperspectral image based on deep transfer learning is shown in
Figure 7.Electronics 2019, 8, 1112 10 of 24 
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Figure 7. Hyperspectral image classification process based on deep transfer learning. 

5. Optimal Neighborhood Noise-Reduction Method 

In order to reduce the salt-and-pepper noise in the initial classification results, an optimal 

neighborhood noise reduction method based on the eight-neighbor mode label was proposed in this 

article. The optimal neighborhood noise reduction method was used to reprocess the initial 

classification result of the hyperspectral image. In the method, the hyperspectral image classification 

label data was used as the input, and the central pixel label was compared to the label of its eight-

neighborhood pixel. 

If L(𝑖,𝑗)  is used to represent the classification result label of a central pixel p(𝑖,𝑗)  of the 

hyperspectral image, the class labels of the central pixel p(𝑖,𝑗) and the eight neighborhood pixels are 

shown in Figure 8. 

As shown in Figure 8, based on the traversal of all the pixel labels of the hyperspectral image, 

the class label L(𝑖,𝑗) of one central pixel p(𝑖,𝑗) and the class labels of the eight neighborhood pixels 

were combined into a 3×3 matrix. The 3×3 matrix was transformed into a 1×9 one-dimensional vector. 

Then the mode M of the nine labels and the number m of the mode labels were calculated. The 

threshold was set to N (0 ≤ N ≤ 9), and the pixel label of the hyperspectral image that did not need to 

Figure 7. Hyperspectral image classification process based on deep transfer learning.

5. Optimal Neighborhood Noise-Reduction Method

In order to reduce the salt-and-pepper noise in the initial classification results, an optimal
neighborhood noise reduction method based on the eight-neighbor mode label was proposed in this
article. The optimal neighborhood noise reduction method was used to reprocess the initial classification
result of the hyperspectral image. In the method, the hyperspectral image classification label data was
used as the input, and the central pixel label was compared to the label of its eight-neighborhood pixel.

If L(i, j) is used to represent the classification result label of a central pixel p(i, j) of the hyperspectral
image, the class labels of the central pixel p(i, j) and the eight neighborhood pixels are shown in Figure 8.
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As shown in Figure 8, based on the traversal of all the pixel labels of the hyperspectral image,
the class label L(i, j) of one central pixel p(i, j) and the class labels of the eight neighborhood pixels were
combined into a 3×3 matrix. The 3×3 matrix was transformed into a 1×9 one-dimensional vector. Then
the mode M of the nine labels and the number m of the mode labels were calculated. The threshold was
set to N (0 ≤N ≤ 9), and the pixel label of the hyperspectral image that did not need to be classified was
set to 0. The central pixel is considered to be noise when the following conditions are met: The class
label L(i, j) of the central pixel is not equal to the mode of the nine pixel labels, the mode label is not 0,
and the number of the mode labels is m ≥ N. Since the label of 0 means that the pixel does not need to
be classified, the mode label with the value of 0 is excluded to avoid the edge misjudgment. If the
central pixel p(i, j) is confirmed to be noise, it is replaced with the mode label of the eight neighborhood
pixels. The initial value of the threshold N is generally set to 5. When the central pixel label L(i, j) is not
equal to the mode label of the nine pixels, the mode label is not 0, and the number of the mode labels is
m ≥ 5, the central pixel is considered to be noise. The threshold N can be modified according to actual
conditions. If the threshold is too large, the noise-reduction effect may not be obvious; if the threshold
is too small, the actual information may be misjudged as noise.

The pseudo-code of the optimal neighborhood noise reduction process is shown as follows:

Input: The classification result dataset X of the hyperspectral image, the label of 0 for the pixels that do not
need to be classified, and the threshold N=5
Output: The noise-reduced classification result data set X of the hyperspectral image and classified image with
noise reduction.
Load classification result dataset X
for i=1; i< X.shape[0]; i++

for j=1; j<X.shape[1]; j++

loop traversing each pixel label L(i, j)
Transforming the 3×3 matrix composed of the central pixel label L(i,j) and its eight neighborhood pixel labels
into a 1×9 one-dimensional vector
Calculating the mode M and its number m of central pixel label and the eight neighborhood pixels labels.
if the class label L(i, j) of the central pixel is not equal to the mode number M of the nine labels
if the mode label is not 0 and the number of the mode label is m≥N
The central pixel p(i, j) is noise
Replace the central pixel label L(i, j) with the mode label M to remove the noise
end if
end if
Update the hyperspectral image classification result label L(i, j) of each pixel p(i, j)
end loop L(i, j)
end for
end for
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6. Experiments and Analysis

6.1. Dataset

In order to verify the proposed method in this article, the experiments were conducted on the
datasets with similar characteristics. The selected dataset included the Indian Pines dataset, the Salinas
dataset, the Pavia University dataset, and the Pavia Center dataset. Both the Indian Pines dataset
and the Salinas dataset were acquired by AVIRIS sensors. The corrected spectral dimensions for both
datasets were 200 and 204, respectively, which were very close. The real ground objects were divided
into 16 classes [44]. The Pavia University dataset and the Pavia Center dataset were collected by
ROSIS sensors. The corrected spectral dimensions of these two datasets were 103 and 102, respectively,
and the real ground objects were divided into nine classes [45]. The datasets are gotten from the
website (http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes).

The Indian Pines dataset and the Salinas dataset were similar, and the Pavia University dataset
and the Pavia Center dataset were similar. In addition, the former two datasets had a smaller sample
size than the latter two datasets. Therefore, the Salinas dataset and the Pavia Center dataset were used
as the source datasets in the transfer learning method, while the Indian Pines dataset and the Pavia
University dataset were used as the corresponding object datasets. First, the structures and parameters
of the shallow network were obtained and validated from the training on the Salinas dataset and
Pavia Center dataset. Then the obtained structure and parameters were transferred to the Indian Pines
dataset and Pavia University dataset with relatively small sample sizes. Finally, the structure and
parameters of the network were fine-tuned.

There was a big difference between the Indian Pines dataset and the Pavia University dataset,
which could be used to validate the proposed classification method fully. The Indian Pines dataset
had a small sample size and can mainly reflect the vegetation information, including rich species and
mostly regular block distribution, rich spectral information and low spatial resolution. The Pavia
University dataset had a large image size and can mainly reflect the landscape information of the urban
landscape. Although there were few species, the shape of the object was irregular, and the spatial
resolution was high.

6.2. Experiments and Result Analysis

6.2.1. Experiments of Dimensionality Reduction Methods

In order to test the effectiveness of the proposed methods in the dimensionality reduction and
noise reduction for the hyperspectral images, the classification performance of IM, IM_SPE methods,
and these methods superimposed with optimal neighborhood noise-reduction method (IM_DN,
IM_SPE_DN methods) were tested and compared with that of the spectral information based CNN
classification method (SPE) [46], the spatial information based CNN classification method (PCA1, PCA
first principal component) [47], the CNN classification method based on the integration of the spectral
information and the first principal component of the spatial information (PCA1_SPE), and the CNN
classification method based on PCA’s first three principal components of the spectral information
(PCA3) [48]. We use OA, AA and Kappa coefficients to evaluate the performance of different methods.

(1) Experiments on Indian pines dataset
The classification performance on the Indian pines dataset is shown in Table 1. From Table 1,

for the Indian pines dataset, the PCA1_SPE, PCA3, IM, and IM_SPE classification methods provided
the best classification accuracy. Moreover, the OA, AA and Kappa coefficients of IM and IM_SPE
methods were superior to those of SPE, PCA1, PCA1_SPE, and PCA3 methods, which indicated that the
information measure-based classification method (IM and IM_SPE) had better performance than the
spectral information-based classification method (SPE) and the PCA-based classification method (PCA1,
PCA1_SPE and PCA3). Among all classification methods, the IM_DN and IM_SPE_DN methods had
the best OA, AA, and Kappa coefficients, due to the combination of the dimensionality reduction based

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
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on information measure and the optimal neighborhood noise reduction. It has been demonstrated
that the optimal neighborhood noise reduction method had a significant effect on the treatment of
salt-pepper-noise of the classification results, and can greatly improve the classification accuracy.

Table 1. The classification results on Indian pines dataset (%).

Class SPE PCA1 PCA1_SPE PCA3 IM IM_SPE IM_DN IM_SPE_DN

1 92.30 79.33 99.97 97.80 92.38 98.91 93.48 98.91
2 89.10 94.05 91.85 97.18 97.78 98.20 98.76 98.71
3 87.43 94.02 94.90 98.34 96.17 96.91 96.90 97.46
4 88.39 94.98 90.80 98.27 97.51 95.44 97.74 96.56
5 96.59 95.96 97.13 97.01 95.54 99.36 96.17 99.58
6 97.81 98.47 98.35 98.20 96.84 99.01 97.41 99.08
7 91.07 98.18 98.19 98.21 99.95 98.18 99.96 98.18
8 98.06 99.76 99.95 99.77 99.89 99.78 100.00 99.89
9 79.98 77.49 100.00 74.97 79.95 72.48 82.46 72.48
10 90.28 96.37 95.01 96.73 98.17 95.97 98.96 96.62
11 91.08 94.67 95.61 97.09 98.50 98.35 99.00 99.23
12 87.61 94.18 96.24 95.87 97.78 98.62 98.35 99.16
13 99.23 97.52 99.24 98.70 99.45 99.50 99.71 99.76
14 95.81 98.24 98.90 99.45 99.47 99.45 99.59 99.65
15 78.79 94.08 97.09 98.12 99.69 99.30 99.71 99.84
16 96.76 96.74 93.54 98.30 91.92 98.36 93.01 99.45
OA 85.31 92.39 93.06 95.79 96.39 96.90 97.36 97.82
AA 91.28 94.01 96.67 96.50 96.31 96.74 96.95 97.16
Kappa 83.23 91.33 92.08 95.21 95.88 96.46 96.99 97.52

Figure 9a–i show the classification results of the SPE, PCA1, PCA1_SPE, PCA3, IM, IM_SPE,
IM_DN, and IM_SPE_DN methods on the Indian pines data set. Figure 9i shows the ground truth of
Indian pines dataset.Electronics 2019, 8, 1112 14 of 24 
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From Figure 9, the classification accuracy of the IM and IM_SPE methods was superior to that of the
SPE, PCA1, PCA1_SPE and PCA3 methods on the Indian pines dataset. In addition, the dimensionality
reduction method based on information measure played an important role in improving the image
classification performance. The salt-pepper-noise of the hyperspectral image was significantly reduced
by IM_DN and IM_SPE_DN methods, indicating that the optimal neighborhood noise reduction
method can provide a more accurate classification effect.

(2) Experiments on Pavia University dataset
The classification performance of the SPE, PCA1, PCA1_SPE, PCA3, IM, IM_SPE, IM_DN,

and IM_SPE_DN methods on the Pavia University data set is shown in Table 2. From Table 2, the OA
values of the IM and IM_SPE methods were 6.49% and 7.04% higher than the SPE method on the
Pavia University dataset, respectively. Compared with the PCA1 method, the OA values of the
IM and IM_SPE methods were increased by 3.76% and 4.31%, respectively. Compared with the
spatial-spectral fusion methods (PCA1_SPE and PCA3), the OA values were increased by 0.2%~3.43%
and 0.75%~3.98%, respectively. Thus, the spectral selection method based on information measure
can significantly improve the classification accuracy. Among all classification methods, the IM_DN
and IM_SPE_DN methods, which combined the dimensionality reduction based on the information
measure and the optimal neighborhood noise reduction, had the best OA, AA, Kappa coefficients.
The AA of IM_SPE_DN method reached as high as 99.20%. Therefore, when the sample size is
sufficiently large, the optimal neighborhood noise reduction method can improve the classification
performance to a large extent.

Table 2. The classification results on Pavia University dataset (%).

Class SPE PCA1 PCA1_SPE PCA3 IM IM_
SPE IM_DN IM_SPE_DN

1 94.45 96.13 96.92 97.20 98.50 98.51 99.03 99.30
2 93.36 95.27 95.04 97.00 97.17 97.60 98.10 99.12
3 90.30 92.73 92.75 96.38 97.93 97.50 98.77 98.10
4 95.49 97.95 98.72 97.74 97.83 99.03 98.13 99.12
5 99.66 99.83 99.88 98.89 99.71 100.00 99.72 100.00
6 90.43 94.06 91.66 96.99 96.72 96.67 98.14 98.83
7 95.50 92.88 95.13 98.21 98.47 98.90 98.84 99.39
8 93.16 96.95 96.59 97.76 98.92 98.82 99.16 99.02
9 99.87 98.64 99.88 98.04 98.08 99.94 98.31 99.94

OA 89.76 92.49 92.82 96.05 96.25 96.80 97.44 98.56
AA 94.69 96.05 96.29 97.58 98.15 98.55 98.69 99.20

Kappa 86.55 90.18 90.55 95.11 95.05 95.77 96.63 98.10

Figure 10a–i show the classification results of the SPE, PCA1, PCA1_SPE, PCA3, IM, IM_SPE,
IM_DN, and IM_SPE_DN methods on the Pavia University data set, and Figure 10i is the ground truth
of Pavia University dataset.

As can be seen in Figure 10, it is obvious that the information measure-based CNN classification
method (IM and IM_SPE) can achieve higher classification accuracy on the Pavia University dataset.
Moreover, the optimal neighborhood noise reduction method (IM_DN and IM_SPE_DN) can effectively
reduce the salt-pepper-noise.
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The experimental results show that the band selection method based on information measure is
better than the feature extraction method based on PCA on Indian pines dataset and Pavia University
dataset. As we all know, besides PCA, there are some common dimensionality reduction methods,
such as Kernel-PCA (KPCA), independent component correlation (ICA) [49], locally linear embedding
(LLE) [50], etc. Research shows that machine learning by feature extraction can achieve better
generalization performance than that without feature extraction. This demonstrates the fact that
dimensionality reduction can improve generalization performance. Generally speaking, KPCA and
ICA perform better than PCA—which is explained by the fact that KPCA and ICA can explore
higher order information of the original inputs than PCA. Instead of the sample covariance matrix,
(the second-order information) as used in PCA, the negentropy in ICA could take into account the
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higher order information of the original inputs. By using the kernel method to generalize PCA into
nonlinear, KPCA also implicitly takes into account the high order information of the original inputs.
A higher number of principal components could also be extracted in KPCA, eventually resulting
in the best generalization performance. LLE is much better than PCA in dealing with so-called
manifold dimensionality reduction. LLE maps its inputs into a single global coordinate system of lower
dimensionality, and its optimizations do not involve local minima. By exploiting the local symmetries
of linear reconstructions, LLE is able to learn the global structure of nonlinear manifolds, such as
those generated by images of faces or documents of text. So, in the future research, we can try to use
KPCA, ICA, LLE to replace the methods based on information measurement, or compare our in this
paper with the classification methods based on these dimensionality reduction methods for further
experimental testing.

Moreover, entropy and mutual information are used to select the most representative band of
the hyperspectral image, in order to reduce the dimension. From the introduction, we can see that
some hyperspectral image classification methods based on RBMS or DBN have appeared in the past
few years. It is known that Restricted Boltzmann Machines (RBMs) based on unsupervised learning
can be used to preprocess the data and basically to help the "machine learning" process become
more efficient. Mousas et al. used RBMs to preprocess the motion features of a character’s hand to
enhance the estimation rate [51]. Nam et al. used sparse RBM to encode the preprocessed data into
high-dimensional feature vectors in the field of music annotation and retrieval [52]. The classification
methods based on RBMS or DBN generally take all spectral information of each pixel as the input of the
network, and realize the classification of hyperspectral images only according to spectral information.
In recent years, some classification methods using spatial-spectral information have achieved better
classification results. For feature extraction of the image after dimensionality reduction, the reason
why we use CNN instead of RBMS or DBN is that we want to use spatial-spectral information to
classify hyperspectral images in order to improve classification accuracy. The validity of this method is
also proved by the experiments.

6.2.2. Experiments of Deep Transfer Learning Methods

(1) Transfer experiment from Salinas to Indian pines
Salinas was used as a source dataset to pre-train CNN. Then the shallow layers’ weight parameters

were transferred to the object dataset, Indian Pines. In addition, the fine-tuning of the parameters
in the network and the optimal neighborhood noise reductions were performed. In this experiment,
5% of the Salinas dataset samples were randomly selected to pre-train CNN, 10% of the Indian Pines
dataset were selected as the training set, and the rest of the dataset were used as the test samples.

In order to fully verify the effectiveness of the transfer learning method, the classification method
based on all spectrum data of hyperspectral images (that is, No Dimensionality reduction, NDR), the IM
method, and the IM_SPE method were combined with the deep transfer learning method (MIG) to obtain
the NDR_MIG, IM_MIG, and IM_SPE_MIG methods, respectively. Then the NDR_MIG, IM_MIG,
and IM_SPE_MIG methods were compared with the classification methods without transfer (i.e., NDR,
IM, IM_SPE). At the same time, in order to further verify the effectiveness of the proposed noise
reduction method, NDR_MIG, IM_MIG, IM_SPE_MIG, were combined with the optimal neighborhood
noise reduction method (DN) to obtain the NDR_MIG_DN, IM_MIG_DN, and IM_SPE_MIG_DN
methods, respectively. The classification result of each method is shown in Table 3.

From Table 3, on the Indian Pines dataset, the three classification evaluation indicators (OA, AA,
and Kappa coefficients) of the classification methods combined with transfer learning (NDR_MIG,
IM_MIG and IM_SPE_MIG) were better than those of the non-transfer learning classification method.
Especially, the classification accuracy of the NDR_MIG method was 1.77% higher than that of the
NDR method. Among all classification methods, the classification methods combined with transfer
learning (IM_MIG, IM_SPE_MIG and NDR_MIG) showed the best OA, AA, and Kappa coefficients.
In particular, the classification accuracy of NDR_MIG_DN method was higher than that of the NDR
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method by 2.73%. The problem of the low classification accuracy, due to the insufficient training
samples and serious noise was addressed to some degree.

Table 3. The classification results on Indian pines (%).

Class NDR IM IM_
SPE NDR_MIG IM_

MIG IM_SPE_MIG NDR_MIG_DN IM_MIG_DN IM_SPE_MIG_DN

1 93.47 92.38 98.91 93.48 93.46 95.65 93.48 94.55 95.65
2 95.08 97.78 98.20 96.65 96.99 97.22 97.21 97.62 98.00
3 97.06 96.17 96.91 98.92 98.98 98.47 99.21 99.32 99.03
4 95.95 97.51 95.44 99.72 99.99 99.53 99.95 99.99 99.75
5 98.09 95.54 99.36 98.00 98.43 98.70 98.66 98.67 99.23
6 98.35 96.84 99.01 98.78 98.78 98.95 99.20 99.20 99.17
7 99.95 99.95 98.18 98.18 98.20 99.98 98.19 98.21 99.99
8 99.87 99.89 99.78 99.47 99.69 99.79 99.68 99.69 99.79
9 99.98 79.95 72.48 97.48 99.97 97.48 99.98 99.98 97.48

10 96.70 98.17 95.97 97.34 97.38 97.28 97.90 98.02 97.97
11 97.35 98.50 98.35 98.27 98.71 98.79 99.05 99.20 99.19
12 94.22 97.78 98.62 95.88 96.07 96.48 96.99 97.36 97.82
13 99.48 99.45 99.50 99.51 99.48 99.74 99.76 99.49 99.74
14 98.55 99.47 99.45 99.40 99.64 99.43 99.69 99.77 99.63
15 96.74 99.69 99.30 98.51 97.51 98.23 98.80 97.78 98.76
16 92.40 91.92 98.36 95.09 98.79 96.72 95.10 98.81 97.81

OA 94.89 96.39 96.90 96.66 97.08 97.15 97.62 97.86 98.02
AA 97.08 96.31 96.74 97.79 98.25 98.28 98.30 98.60 98.69

Kappa 94.18 95.88 96.46 96.20 96.67 96.74 97.29 97.56 97.75

Figure 11a–i are the classification results of the NDR, IM, IM_SPE, NDR_MIG, IM_MIG, IM_SPE_MIG,
NDR_MIG_DN, M_MIG_DN, and IM_SPE_MIG_DN methods on the Indian Pines data set
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From Figure 11, it is obvious that the overall classification results on the Indian Pines dataset
with small sample size using the classification method with transfer learning are significantly better
than those using the classification method without transfer learning. The optimal neighborhood noise
reduction method can be used to remove the salt-pepper-noise of the hyperspectral image. Among
all the methods, the classification method based on both the deep transfer learning and the optimal
neighborhood noise reduction showed the best and most stable classification performance.

(2) Transfer Experiments from Pavia Center to Pavia University
Pavia Center was used as the source dataset to pre-train CNN. Then the weight parameters of the

shallow layers were transferred to the object dataset, Pavia University. In addition, the fine-tuning
of the network and the optimal neighborhood noise reduction were performed. The Pavia Center
and Pavia University datasets were used to represent the datasets with general and sufficient sample
sizes, respectively. In the experiment, 9% of the source dataset, Pavia Center samples, were randomly
selected to pre-train CNN, 9% of the Pavia University samples were selected as the training set of the
object dataset, and the rest samples of the datasets were used as the test samples.

The classification results of the NDR, IM, IM_SPE, IM_MIG, IM_SPE_MIG, NDR_MIG,
IM_MIG_DN, IM_SPE_MIG_DN, and NDR_MIG_DN methods on the Pavia University dataset
are shown in Table 4.

Table 4. The classification results on Pavia University (%).

Class NDR IM IM_
SPE NDR_MIG IM_

MIG IM_SPE_MIG NDR_MIG_DN IM_MIG_DN IM_SPE_MIG_DN

1 96.95 98.50 98.51 98.42 98.60 98.98 98.74 99.00 99.17
2 96.96 97.17 97.60 99.27 99.77 99.84 99.80 99.89 99.93
3 97.95 97.93 97.50 98.26 99.13 99.02 98.92 99.34 99.39
4 99.53 97.83 99.03 99.57 99.69 99.70 99.60 99.69 99.73
5 99.66 99.71 100.00 99.85 99.74 99.85 99.85 99.78 99.85
6 98.27 96.72 96.67 99.26 99.75 99.84 99.79 99.92 99.93
7 99.17 98.47 98.90 98.68 99.53 98.12 99.33 99.83 98.83
8 98.36 98.92 98.82 99.28 99.37 99.35 99.54 99.52 99.56
9 99.56 98.08 99.94 99.67 99.72 99.77 99.67 99.78 99.77

OA 95.87 96.25 96.80 98.48 99.12 99.22 99.19 99.41 99.47
AA 98.49 98.15 98.55 99.14 99.48 99.39 99.47 99.64 99.57

Kappa 94.59 95.05 95.77 97.99 98.83 98.97 98.93 99.22 99.29

From Table 4, the transfer learning and optimal neighborhood noise reduction methods increased
the overall classification accuracy (OA) to above 99% on the Pavia University dataset. In particular,
compared with the NDR method, the proposed NDR_MIG and NDR_MIG_DN methods increased the
OA by 2.61% and 3.32%, respectively. In addition, the classification and noise-reduction effect of this
method was more prominent for the dataset with a larger sample size. The Kappa coefficient of the
NDR_MIG_DN method achieved 98.93%, which indicated that almost all the samples were correctly
classified based on the consistency check.

Figure 12a–i show the classification results of the NDR, IM, IM_SPE, NDR_MIG, IM_MIG,
IM_SPE_MIG, NDR_MIG_DN, M_MIG_DN, and IM_SPE_MIG_DN methods on the Pavia
University dataset.

From Figure 12, the classification method with both the deep transfer learning and the
optimal neighborhood noise reduction had outstanding performance on the Pavia University dataset.
The classification performance of the proposed classification method with both the deep transfer
learning and the optimal neighborhood noise reduction was significantly better than that of the
non-transfer learning method (IM, IM_SPE) and NDR). In particular, the hyperspectral images
processed by the classification method with both deep transfer learning and optimal neighborhood
noise reduction (IM_MIG_DN, IM_SPE_MIG_DN, and NDR_MIG_DN) were almost completely
noise-free and correctly classified.

From the above two groups of experiments, i.e., transfer learning classification and neighborhood
noise reduction experiments, the classification method based on the transfer learning and neighborhood
noise reduction exhibited significant advantages in solving the problem of low classification accuracy
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under the condition of insufficient training samples, thus, can avoid the over-fitting phenomenon
in the training of small CNNs. By transfer between two similar datasets with a large sample size,
the computational complexity can be reduced, and the accurate and stable classification results can be
obtained. At the same time, through the optimal neighborhood noise reduction, the final classification
result was almost noiseless. The results indicated that the transfer learning classification method
and the optimal neighborhood noise reduction method could significantly improve the classification
performance for the hyperspectral image.Electronics 2019, 8, 1112 20 of 24 
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7. Conclusions

In this article, a deep transfer HSI classification method based on information measure and optimal
neighborhood noise reduction was proposed. In this method, the information measure was used to
reduce the dimension of the hyperspectral image. Then the fusion of the key spectral information and
spatial information of the hyperspectral image was achieved, and the redundant spectral information
was processed. On this basis, a classification method based on deep transfer learning and neighborhood
noise reduction was proposed. The obtained classification accuracy for small samples was higher than
98% on average. Compared with the non-transfer learning method, the total classification accuracy
was improved by at least 3%. For the Pavia University dataset with more samples, the classification
accuracy of above 99% was obtained. The proposed method can both reduce the computational
complexity to some degree and solve the problem of lower classification accuracy caused by insufficient
training samples and salt-pepper-noise.

This method is suitable for HSI classification with insufficient training samples. When this
situation occurs, we can use labeled samples in similar scenarios to train the network initially, and then
adjust the network by transfer learning and a small number of labeled samples to achieve accurate
classification of object scenarios. In addition, another advantage of this method is that by dimensionality
reduction based on information measure, a pseudo-color image of the hyperspectral image can be
obtained, and the hyperspectral image can be visualized. It is worth noting that the core of this
method is based on transfer learning, so its limitation is that, at first, we need to get good training
on a source scene similar to the target scene, which requires a sufficient number of training samples
in the source scene. In the application of constructing a virtual land environment, it is necessary to
select some typical scenes for common sensors, mark the samples in these typical scenes, and train the
initial network. When constructing the virtual land environment for a specific area in the virtual test,
the initial network trained by appropriate scene is selected, and then the high accuracy ground truth of
the task area can be obtained by using the proposed method. In this paper, we make the validation by
using public datasets. In future work, we will acquire relevant satellite data according to the actual
task requirements, and use the proposed method to achieve high-precision ground feature information
in the construction of a virtual land environment.
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