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Abstract: Current-voltage (I-V) characteristics of a recessed-channel reconfigurable field-effect
transistor (RC-RFET) is discussed, herein, depending on the variation of temperature (T) to understand
the operation mechanisms, in depth. Assuming that RC-RFET can be simply modeled as a channel
resistance (RCH) and a Schottky contact resistance (RSC) connected in series, the validity has been
examined by a technology computer-aided design (TCAD) simulation with different Schottky barrier
heights (SBHs) and carrier mobilities (µ). As a result, it was clearly determined that the drain
current (ID) of RC-RFET is dominated by the bigger component, since RCH and RSC have an opposite
correlation with T.
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1. Introduction

Over the past five decades metal-oxide-semiconductor field-effect transistors (MOSFETs) have
been aggressively scaled down for a low-power operation with high performance and an enhanced
logic functionality with large integration density [1,2]. However, below the 10 nm node, the extension
of Moore’s law by aggressive scaling of FETs becomes increasingly difficult due to several technical
issues [2]. Therefore, there have been a lot of efforts for an appropriate successor to the conventional
complementary MOS (CMOS) technology especially based on novel devices [3]. On the other hand, a
reconfigurable FET (RFET) has been regarded as another candidate to address the issues by extending
the logic functionality of switching elements [4]. It features dynamically programmable operations
which allows an integrated circuit (IC) to reduce the required devices for a similar logic function result
in circuit-level scaling down [4–9]. Although there are several studies about RFETs, most of them have
mainly focused on strategies for improving electrical performance with the help of geometrical device
structures, materials, etc. [4–7,10,11] and there is still a lack of understanding about their operation
mechanisms. RFETs are programmable as n- and p-FETs by selecting carrier types injected from
Schottky contact at source which depends on the temperature (T), sensitively [12]. Therefore, a rigorous
study about the T characteristics of RFETs is an important research topic. In this letter, the T dependent
current-voltage (I-V) characteristic is discussed and analyzed by technology computer-aided design
(TCAD) simulation [13].

2. Device Structure and Simulation

In this work, a novel recessed-channel RFET (RC-RFET), which was proposed in [11] to
improve scalability and short-channel-effect immunity of conventional RFET, was used for the

Electronics 2019, 8, 1124; doi:10.3390/electronics8101124 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-5936-4314
https://orcid.org/0000-0002-6492-7740
http://dx.doi.org/10.3390/electronics8101124
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/8/10/1124?type=check_update&version=2


Electronics 2019, 8, 1124 2 of 6

study (Figure 1) [14,15]. The switching mechanism of RC-RFET (thermionic emission) differs from that
of conventional RFET (Schottky barrier tunneling). It enables RC-RFET to overcome the fundamental
limit of subthreshold swing (S) degradation as a function of gate voltage and promises higher ON–OFF
current ratio (ION/IOFF) [11]. The detail parameters used for the TCAD simulation are summarized
in Table 1 and the following physical models are used: Shockley–Read–Hall (SRH) recombination,
Schottky barrier tunneling (SBT), field-dependent mobility, drift-diffusion, and non-local band-to-band
tunneling (BTBT) [13]. In order to exclude the effect of dopants and secure symmetricity for n- and
p-FET operations, intrinsic silicon-on-insulator (SOI) is used for channel. The work function (WFN) for
both the polarity gate (PG) and control gate (CG) is 4.6 eV, while Schottky barrier height (SBH) for
Si/metal contact is 0.56 eV unless otherwise noted. They are analogous to half of the Si band gap.
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3. Results and Discussion 
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Figure 1. Schematic structure diagrams for recessed-channel reconfigurable field-effect transistor
(RC-RFET). It features the vertically stacked polarity gate (PG) and control gate (CG) separated to each
other with an oxide gap.

Table 1. Simulated device parameters.

Definition Abbreviation Value

Silicon body thickness TB 20 nm
Gate oxide thickness
Gate length

TOX
LG

1 nm
50 nm

Program gate thickness
Control gate thickness
Oxide thickness between PG and CG

TPG
TCG

TGAP

20 nm
20 nm
10 nm

3. Results and Discussion

Figure 2 shows drain current (ID) versus CG bias (VCGS) for n- and p-FET operations as T increases
from 300 K to 400 K with different PG bias (VPGS). As shown in Figure 2a,b, the on-current (ION)
defined as ID at ±1.5 V-VCGS is decreased for both n- and p-FETs as T increases in accordance with
general expectation, since the mobility (µ) is decreased due to phonon scattering as expressed in
Equation (1) [16]. The µ at 300 K-T (µ0) and γ are 1417 cm2/V·s and 2.5 for electron, whereas 486 cm2/V·s
and 2.2 for hole, respectively [13].

µ = µ0

( T
300 K

)−γ
(1)
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Figure 2. Schematic transfer characteristics depending on T with different VPGS. (a) n-FET operations 
with VPGS = 5 V; (b) p-FET operations with VPGS = −5 V; (c) n-FET operations with VPGS = 2 V; (d) p-FET 
operations with VPGS = −2 V. The arrows indicate the direction of the graph according to log scale and 
linear scale. 

Figure 3a clearly shows ION has different tendencies on the T depending on the VPGS, regardless 
of n- or p-FETs. It is not related to the subthreshold characteristics since the extracted S is exactly 
sitting on the 2.3kB/q-slope (~0.2 mV/K) line similar to the conventional MOSFETs, where kB and q are 
the Boltzmann constant and elementary charge, respectively (Figure 3b).  
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Figure 3. Extracted parameters from ID–VPGS curves. (a) Normalized ION by ION at 300 K. ION is extracted 
when VPGS is 1.5 V; (b) subthreshold swing (S). The extracted S is exactly sitting on the 2.3kB/q-slope 
(~0.2 mV/K) line.  

In order to analyze these phenomena, the RC-RFET is simply modeled as a channel resistance 
(RCH) and a Schottky contact resistance (RSC) connected in series, which have an opposite correlation 
with T. In other words, if T is increased, the RCH is increased due to the increased phonon scattering, 
whereas the RSC is decreased due to the increased carrier injection ‘over’ and ‘through’ the Schottky 
barriers at source and drain contacts (Figure 4). Accordingly, the total resistance (RTOT) and ION is 
dominated by the bigger one. Since RSC is exponentially decreased as a function of band bending, the 

Figure 2. Schematic transfer characteristics depending on T with different VPGS. (a) n-FET operations
with VPGS = 5 V; (b) p-FET operations with VPGS = −5 V; (c) n-FET operations with VPGS = 2 V; (d) p-FET
operations with VPGS = −2 V. The arrows indicate the direction of the graph according to log scale and
linear scale.

The noteworthy points are shown in Figure 2c,d that the ION becomes an increasing function of
the T as |VPGS| is decreased from 5 to 2 V.

Figure 3a clearly shows ION has different tendencies on the T depending on the VPGS, regardless
of n- or p-FETs. It is not related to the subthreshold characteristics since the extracted S is exactly sitting
on the 2.3kB/q-slope (~0.2 mV/K) line similar to the conventional MOSFETs, where kB and q are the
Boltzmann constant and elementary charge, respectively (Figure 3b).
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Figure 3. Extracted parameters from ID–VPGS curves. (a) Normalized ION by ION at 300 K. ION is
extracted when VPGS is 1.5 V; (b) subthreshold swing (S). The extracted S is exactly sitting on the
2.3kB/q-slope (~0.2 mV/K) line.

In order to analyze these phenomena, the RC-RFET is simply modeled as a channel resistance (RCH)
and a Schottky contact resistance (RSC) connected in series, which have an opposite correlation with T.
In other words, if T is increased, the RCH is increased due to the increased phonon scattering, whereas
the RSC is decreased due to the increased carrier injection ‘over’ and ‘through’ the Schottky barriers at
source and drain contacts (Figure 4). Accordingly, the total resistance (RTOT) and ION is dominated
by the bigger one. Since RSC is exponentially decreased as a function of band bending, the RTOT can
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be approximated to RCH and RSC with a small and a large |VPGS|, respectively. From Equation (1),
the µ of electron (µe) is more sensitive to T than that of the hole (µh) due to the different coefficient γ.
Thus, RCH of n-FET increases faster than that of p-FET as T increase which is well corresponded to the
different slopes for 5 V-|VPGS| in Figure 3a. On the other hand, in case of small |VPGS| (= 2V), p-FET is
more sensitive than n-FET to the T. This is because the effect of RSC decreasing is cancelled out by the
RCH increase with the higher T for n-FET.
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Figure 4. Energy band diagram and carrier distribution with different T. (a) Low T; (b) high T.
The energy band is plotted along the source and channel (Figure 1). The blue-colored areas in the
source represent the increased carrier distribution due to the increased T, and blue-colored arrows
indicate the increased carriers passing through the Schottky barrier (SB) due to the increased T.

In order to confirm the hypothesis, the effects of RSC and RCH on n-FETs’ ION have been examined
independently. For that, the change of doping concentration is inappropriate since both factors are
affected at the same time. Thus, the RSC and the RCH of n-FET are changed by adjusting SHB and µe,
respectively. First, if SBH decreases from 1.06 eV to 0.26 eV, the dominant factor changes from RSC

to RCH; ION decreases as T increases as shown in Figure 5. On the other hand, if µe increases several
times the default value (1417 cm2/V·s), the RTOT is determined by the RSC (Figure 6). As a result, there
is a positive correlation between ION and T. Consequently, the assumption is clearly proven to be
reasonable. It has to be mentioned that even if this approach is less practical in terms of device design,
it is very meaningful to understand and confirm the operation mechanism and overall physics of RFET
which is a milestone for device engineers.
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The blue arrow shows a decrease in the normalized ID due to SBH reduction.
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4. Conclusions

The effects of T on the electrical characteristics of RC-RFET have been examined. There is an
abnormal phenomenon that the ION decreases as T increases with a small |VPGS|. Based on rigorous
study with the help of TCAD simulation, this was attributed to the large RSC which decreases the
function of T and dominates the RTOT. This needs to be further addressed for high-performance
operation with low-power consumption. In order to decrease SBH for the lower RCH, adopting a
narrow band gap material (e.g., SiGe or Ge) at the source/drain and metal contacts could be a promising
solution. In future works, the influences of band gap on SBH will be examined and the optimized
RC-RFET will be demonstrated.
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