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Abstract: The offshore wind resource has huge energy potential. However, wind turbine floating
structures have to withstand harsh conditions. Strong wind and wave effects combine to generate
vibrations, fatigue, and heavy loads on the structure and other elements of the wind turbine.
These structural problems increase maintenance requirements and risk of failure, while reducing
availability and energy production. Another challenge for wind energy is to reduce production costs
in order to be competitive with other alternatives. From the control point of view, the objective of
lowering costs can be achieved by operating the turbine close to its optimum point of operation under
partial load, guaranteeing reliability by reducing structural loads and regulating the power generated
in strong wind regimes. In this typical and challenging context, this paper proposes a critical
state-of-the-art review, discussing challenges and trends on floating offshore wind turbines control.
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1. Introduction

Wind energy has been growing exponentially for 20 years in the energy industry. Since the
beginning of the 21st century, the total wind turbine (WT) power installed in the world amounts to
591 GW according to the Global Wind Energy Council (GWEC) report [1]. Even though the majority
of the installations remain terrestrial wind turbines, the offshore turbine market has been growing
strongly for 10 years with 23 GW connected [1].

Installed offshore wind turbine (OWT) remains a reliable solution but requires depths below
60 m [2]. The distance from the coasts can offer several advantages: more important wind resource,
ability to exploit large area of uninterrupted open sea and a reduced visual and noise impact. The North
Sea with its shallow depths is a privileged place for this type of installations [3]. A limited number of
sites is therefore available for countries involved in offshore wind. The floating offshore wind turbine
(FOWT) offers a solution for deeper water OWT setup. Inspired by the oil and gas industry, there
are several platform configurations for floating offshore wind turbines. The three main submersible
concepts are: the barge, the spar and the tension leg platform (TLP) (see Figure 1) [4]. The first category
deals with large flotation systems (barge), which ensures good stability. For the second category,
the stability is reinforced by ballast in the lower part of the floating platform in order to lower the
center of gravity of the system. This is the case of spar, cylindrical vertical platforms with large draft.
The stability of the third category systems is insured by the tension in the mooring lines (the case of
Tension Leg Platforms (TLP), which are platforms anchored to the seabed by vertical mooring lines).
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In this case, the high stiffness value of the mooring lines ensures stability. The possibility of mixing
these different concepts in order to optimize the dynamic behavior of the platforms is conceivable [5].
This is the case of semi-submersible foundation; it is actually a merger of the concepts of spar and barge
type. The main challenges are to combine stability, acceptable motions and low costs. However, waves,
currents, and strong winds cause relative movements on the platform. These displacements reduce
the performance of the turbines and generate aging of the structures. The damage fatigue leads to
additional operating costs caused by structure failure. According to the International Electrotechnical
Commission [6], FOWT fatigue analysis is the consideration of wind–wave coupling over a large
period. To compete with onshore wind and other conventional power sectors, it is essential for
the floating wind sector to explore the ways to reduce the capital and operation and maintenance
(O&M) cost (CAPEX and OPEX, respectively). O&M can be reduced with an appropriate control [7].
Nowadays, the majority of MW scale wind turbines use three-bladed horizontal axis turbines. The rotor
is placed on top of the tower. The nacelle can rotate around an axis to position the rotor facing the
wind. The complexity of the environment in which FOWTs operate requires optimized control to
meet the energy and economic challenges. The purpose of the control is to fulfill several objectives
such as the optimization of the produced power as a function of the wind speed and the reduction of
the structural loads at the same time. In this paper, a review of techniques/systems of wind turbine
control for FOWT is presented. This paper is organized around several sections. Section 2 presents
an introduction to the typical controllers used in wind turbine industry. Section 3 is the limitation of
these classical control strategies to face the floating WT challenges. Section 4 focuses on new control
strategies for floating wind turbine.

Figure 1. Offshore wind floating foundation concepts From left to right, the three main concepts are
represented: barge, spar, TLP and semi-submersible.

2. Classic Control for Onshore and Fixed Offshore Turbine

2.1. Wind Turbine Fundamentals

The power recovered on a wind turbine is lower than the wind power due to non-zero air
velocities behind the wind turbine. A power factor called Cp is then defined as the ratio of the power
of the wind turbine divided by the power of the wind. The power extracted from a wind turbine is
expressed by the following equation.

P = Cp(λ, β)Pw =
1
2

ρπCp(λ, β)R2v3 (1)
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where ρ is air density, R is rotor radius, v represents the wind speed and Pw is the kinetic power
incoming to the turbine disk. The density of the air is linked by the pressure and the temperature
according to the perfect gas law. The pressure and the temperature can evolve locally depending on
the location of the wind turbines and hub height. These variations affect the values of the density
of the air and therefore the power output. Taking into account this fluctuating parameter makes it
possible to improve the power curves and therefore the operating point of the turbines [8]. Cp(λ,β) is
aerodynamic efficiency and is defined by a nonlinear function of the tip-speed ratio (TSR) λ and blade
pitch angle β. The TSR is defined as

λ =
ωR
v

(2)

where ω is rotor speed. For each wind value, there is a rotor speed for which the Cp is maximum
and this value corresponds to the optimal tip-speed-ratio λ∗. This is illustrated in Figure 2, which
represents a typical λ–β–Cp curve for AWT-27 wind turbine model. The calculation was performed
using FAST Software (NREL, Golden, CO, USA). Data post-processing was done using MATLAB (The
Mathworks, Natick, MA, USA). Table 1 presents a summary of AWT-27 configuration.

Table 1. Properties of AWT-27 turbine configuration [9].

Rating 275 kW

Rotor Orientation, Configuration Downwind, 2 Blades

Control Variable Speed, Collective Pitch

Rotor, Hub Height 28.5 m, 42.6

Cut-in, Rated, Cut-out wind speed 4.9 m/s, 17 m/s, 22.5 m/s

Rated Rotational Speed 53 rpm
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Figure 2. Optimum power curve for AWT27 wind turbine.

2.2. Standard Method Control

According to Johnson [10], a wind turbine has three levels of control system. The supervisory
controller is charged to start up the wind turbine in the case of favorable wind and to shut down in
the case of high winds. The intermediate level controls the wind turbine components, which includes
generator torque, blade pitch control, yaw control and power electronic unit. Wind turbines cannot
operate at all wind speeds due to physical limitations. High speed of rotation can cause an increase
in mechanical forces on the machine and overheat the generator. This results in faster aging of the
machine and a loss in the production of electricity. Variable speed wind turbines have three operating
regions. Three distinct operations regions can be identified: below the cut-in speed region (Region I),
the region between cut-in and rated speed (Region II) and the region above the rated wind (Region III).
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The transition zone between Region II and Region III, named transition region, is important in the
control strategy in order to reach rated power.This is illustrated in Figure 3, which represents the
power operating region for AWT-27. Calculations was performed using FAST Software (NREL, USA).
Data post-processing was done using MATLAB (The Mathworks, Natick, MA, USA).

Figure 3. Operation regions of AWT-27 variable speed turbine.

Region I corresponds to the start of the wind turbine. In Region I, the turbine is stopped due to
the low level of wind velocities, which do not allow extracting significant power. Generally, the cut-in
wind speed is 5 m/s. In Region II, the power content of the wind varies with the cube of the average
wind speed (Equation (1)). The output power requires an appropriate control of torque and speed
turbine to maximize energy production. The method used in this case is based on the maximum power
point tracking (MPPT). The value of the power coefficient Cp is maintained at its optimal value by
varying speed turbine. It is common to use generator torque control and yaw control. The blade pitch
is usually kept constant at an optimal value. Region II ends with the “rated wind speed”; this value
corresponds to the wind speed which makes it possible to extract the rated power from the machine.
Region III starts above the rated wind speed. In this region, the goal is to keep the power extracted as
constant and equal to the rated power. As the rotor speed increases with wind speed, it is essential
that the control system maintains the speed of the generator within the physical limits of the electrical
and mechanical components. For this, the pitch angle of the blades is controlled to maintain the power
at its rated value. As shown in Figure 4, the variable measured to generate either the pitch angle or the
generator torque is the rotor speed Ω according to the desired operating objectives.

The control command allows the management and the interaction of the different elements of
the floating wind turbine with the meteorological conditions. The increase in machine performance is
due to improvements in control strategies. An effective strategy is to minimize mechanical stress in
high wind conditions and maximize energy recovery for low winds to cover a larger production range.
In the case of floating wind turbines, control strategies can also be used to reduce the movements of
the platform.
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Figure 4. Wind turbine basics control loops [11].

2.3. Generator Torque Control

When the wind speed is in Region II, the generator torque controller is used to maximize the
generated power. To reach this objective, the controller operates the turbine by accelerating or
decelerating rotor at near the optimum power efficiency Cpmax. The turbine is operated at a constant
TSR λ∗. The torque control settings are equal to K gain by rotor speed squared:

τg = Kω2 (3)

where K is given by

K =
1
2

ρπR3 Cpmax

λ3∗
(4)

The optimum TSR corresponds to the maximum power coefficient Cpmax. The dynamic
representation of a rigid-body model of a wind turbine can be described according to the equation:

J
.

ω = (τaero − τg) (5)

where

τaero =
1
2

ρπR3 Cp(λ, β)

λ3 (6)

so
.

ω =
1
2J

πρR3ω2
(

Cp(λ, β)

λ3 − Cpmax

λ3∗

)
(7)

Here, the optimal TSR λ∗ corresponds to the maximum power coefficient. According to the
equation, it is obvious that the two pairs compensate each other in order to keep the TSR constant,
by accelerating or decelerating the rotor. This control is popular and simple to design. As mentioned
in [12], this solution is inaccurate because this method depends on the wind as an input. Even if
the constant gain K is determined precisely, the variations of wind force the turbine to operate
sub-optimally. The author observed that tracking the rotor speed strictly with an unknown wind speed
in Region II generates mechanical stresses within the transmission chain.

2.4. Power Optimization Control

The wind speed remains a parameter with strong variations; its effective values are difficult to
measure. To compensate for this inaccuracy, other methods have been developed such as Perturb and
Observe (P&O) control, power feedback feedback (PSF), and sliding mode control. Other methods
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based on algorithms are becoming more widely available in wind turbine controls such as Neural
Network (NN) and Fuzzy Logic (FL).

Abdullah et al. [13] described the PSF control. This method to reach optimum point is obtained by
experimental results. As outlined in [14], P&O has the advantage of not depending on knowledge of
the characteristic curves of the wind turbine. The turbine power and turbine speed changes as a result
of variations in wind velocity. This method is based on perturbing the turbine speed in small steps
and observing the resulting changes in turbine mechanical power. The algorithms check the signs
of rotor speed ∆ω. The speed is either incremented in small steps if turbine power P(ωopt) > 0 and
decremented as long as P(ωopt) <0. However, this method fails to reach MPPT in large inertia wind
turbines and smaller step sizes increase the efficiency but reduce the convergence speed. The sliding
mode technique consists in bringing the state trajectory of a system to the sliding surface and making
it switch with appropriate switching logic around it to the optimal point. The authors of [15,16] dealt
with the sliding method associated with MPPT algorithm used to reach the peak power. The results
show a good regulation of the power and a reduction of the mechanical forces. However, this strategy
may take time to converge and be less effective when the wind speed changes quickly. In [17], a neural
network model is used to optimize torque control in Region II. The results show a better performance
for tracking the optimal torque thanks to the learning capacity of the NN model.

In [18,19], the authors mixed methods based on NN and fuzzy logic. This hybridization called
adaptive neuro-fuzzy inference system (ANFIS) is used to calculate the power coefficient and track the
maximum power point.

One of the limits of this concept is its cost in calculation. These algorithms need many data to
learn in order to fulfill their goals. Wind turbines must therefore be able to return a lot of information
(wind speed, wave characteristics, blade positions, etc.) to its algorithms. The increasing of the sensor
number leads to the decreasing of system reliability.

2.5. Collective Pitch Control

In various publications on modeling wind turbine control, when the wind speed reaches Region
III, the system has to regulate the power around a rated value to not exceed electrical and mechanical
design loads. In the traditional control scheme, these objectives are fulfilled by holding the torque
constant, while changing the blade angles regulates the generator speed to the target value.

Most of installed wind turbine use PI controller with constant coefficients [2] to adjust rotor speed
and power The dynamic variations of the wind generates a nonlinear model. The use of constants in
the regulation of the system is generally problematic. For this, the PI is reinforced by a control process
called gain scheduling (GS). As underlined in [2,20], the principle is based on the linearization of the
system at operating points in order to get as close as possible to the nonlinear behavior of the system.

Proportional integral derivative (PID) control is the most used algorithm method in the industry.
Its popularity is due to its simplicity and robustness. PID method uses a closed loop with feedback
to correct the error between the requested value and the measured value. The corrective gains then
make up for its errors. Despite its effectiveness, this model has its limits. PID control is not suitable for
multiple-input and multiple-output (MIMO) systems. The differential equations used to represent
the system become more complex with the number of input and output. Second, PID gains based on
constants are limited in the case of nonlinear systems.

The disadvantage of strategies based on collective pitch control is providing similar aerodynamic
properties to all their trajectories. However, the local variations of the wind disturb differently the
blades according to their positions in the rotation planes. Another problem that requires blade control
to be the most optimized is the negative damping effect. This effect appears after a combination of
dynamic loads and pitch control. This effect is explained by the speed of regulation of the blades
greater than the tower motion. In [21], Larsen took into account the structure natural frequencies to
determine the control parameters.
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3. Limitations and Problems for FOWT

In response to strong winds and sea conditions, floating wind turbines require strict reliability
criteria. This demand therefore requires a precise forecast of the movements and forces associated with
environmental loads. The aerodynamic forces generate a thrust on the rotor, which is then transmitted
to the entire structure. These efforts then affect the stability of the platform. The current model of
collective control of the blades does not allow taking asymmetric loads into account. The same problem
occurs in the case of hydrodynamic loads. The control methods then commonly used in the onshore
wind industry are lacking. Additional parameters on the position of the platform, the environmental
conditions, the tensions in the anchor lines, and the structural loads must appear in the control loops.

3.1. Aerodynamics

The variability of the wind profile in magnitude and direction causes asymmetric aerodynamic
loads that vary spatially through the rotor disk. Currently, the trend is towards several megawatt scale
WT, which increases the wind variation on the vertical and therefore the asymmetry of the aerodynamic
loads. Additionally, the tower shadow implies an imbalance in the rotor loads. The airflow becomes
more turbulent around the tower of the turbine, which creates abrupt movements on the blades.
Cyclic loads (i.e., centrifugal force and gravitational force) damage the blades until they rupture.
Gyroscopic forces can induce micro-cracking in composite blades . These effects are generalized for all
types of wind turbines, whether onshore or offshore fixed bottom wind turbines.

In the case of FOWT, theses aerodynamic loads create movements directly on the floating platform
that further increase structural fatigue. An important dynamic of the floating system is the pitching
motion caused by the wind. The authors of [2,21] showed that these types of controls can cause
negative damping problems caused by blade angle control beyond rated speed. The consequences of
this negative damping materialize on the pitch behavior of the wind turbine: the negative damping
related to the aerodynamic forces may become greater than the radiation damping or viscous on
the platform. This anomaly causes instability. The standard control strategy applied to the wind
turbine in Region III is the angle change of the blades. This strategy reduces the thrust when the wind
increases by modifying the attack edges of the blades. Jonkman [2] tested several control strategies
involving torque control and blade control for a high-power turbine installed on a floating barge.
Strategies based on PI gain scheduling did not reduce pitch. The basic controllers show their limits in
the case of floating systems.

3.2. Hydrodynamics

In the offshore environment, the presence of additional forces must be considered. Radiation and
diffraction are the results of dynamic behavior caused by waves. Additionally, currents induce
stationary and oscillating forces. These hydrodynamic forces contribute to the dynamics motion the
floating platform. The motions of the floating wind platform are classically three translations (heave in
the vertical, sway in the lateral, and surge in the axial) and three rotations(yaw about the vertical axis,
pitch about the lateral, and roll about the axial). The x axis is facing the main wind and wave direction.
A floating wind turbine introduces additional control objectives aimed at reducing rotational motion as
well as linear displacements . Both external loads and the motions and their derivatives induce internal
stresses in the structure. The bending moments created by these efforts can damage the support
elements of the wind turbine (tower and nacelle). The value of these moments are closely related to
the size of the wind turbine. In an offshore environmental context, calculating hydrodynamic forces
remains a complex task. Nevertheless, despite the stochastic behavior of the waves, two approaches
make it possible to estimate the hydrodynamic forces. The first approach is a deterministic analysis and
relies on three variables: wave height, period and depth. The other approach, based on probabilistic
theories, rests on the wave energy’s spectrum [22]. Two main formulations are available to calculate
the hydrodynamics loads: the Boundary Element Method (BEM) generally in a linearized context and
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in the frequency domain, and the Morison formulation. Depending on the shape and size of the floater,
one or both of these methods can be used.

Regulating these movements requires more effective control strategies than the classic collective
blade pitch and torque control. In the classical design approach, to control each element separately by
a control loop is not adapted to the additional DOF involved in FOWT.

4. Strategies Suitable for Problems Specific to FOWT

4.1. Individual Pitch Blade

Because collective control of blade attack angles is not adapted to local wind variations and
the “tower clearance” effect [23], individual pitch control is proposed in the literature for fixed OWT.
In [24,25], FL and NN control is combined with individual pitch control. These methods allow
improving the management of power fluctuations, aerodynamic loads, local wind variations, rotor
speed and generator torque fluctuations. Even if this kind of control allows significant improvements
on mechanical loads and disturbances reduction, models presented in these articles are applied on
on-shore WT and thus do not reflect the dynamic behavior of FOWT. To increase the platform stability,
individual pitch control has also been proposed for FOWT. Some papers [26–28] propose using an
individual control of the blades to reduce the loads. The conclusions of the studies show a decrease of
the movements of the platform and consequently an improvement of stability.

However, the individual control of the blades increases the number of degrees of freedom (DOF),
which complicates the control schemes. Pitch actuators’ reliability is strongly decreased due to their
constant and severe use. The blade pitch control, as explained in these papers, cannot reduce motion
structure and tower loads at the same time.

4.2. Structure Control

Industry and academia propose a method to mitigate motion of floating platform and
consequently the structural loads. Inspired by O&G and shipbuilding industry, there are three main
methods of structural controls: passive, semi-active and active. Passive control is the simplest solution
where the system uses a tuned mass–spring–dampers (TMD). No energy is needed for its operation.
However the use of constant parameters in the TMD limits the use of the system. The system is
regulated to absorb specific excitation frequencies. A TMD system absorbs a portion of the energy
along a given axis. Many degrees of freedom increase the complexity (related to the number of axis to
be controlled) of the TMD systems to be installed in the platform.

A control algorithm can be used to modify the TMD parameters to improve the stability
as a function of the platform motion. Such a choice of system offers better performance than
passive method.

This last concept is the most effective in terms of control of the structure. The system is based
on moving a mass through an actuator. The displacement of the mass counteracts the structure
motion. The implementation of such a system requires providing energy for the actuator and a very
efficient control of the mass motion. Lackner [29] investigated a passive and active structural control
system on a floating barge. The proposed control is called hybrid mass–damper (HMD) and is a
combination of both systems: it is a one-mass system moved by actuator. Both systems are placed in
the nacelle of the wind turbine. The results show a reduction in dynamic loads within the structure.
The proposed system offers better performance than the passive system. Nevertheless, the energy
balance between the consumption of the active system and the energy produced by the rotor becomes
negative in Region I. For a spar buoy FOWT, Si et al. [30] simulated the dynamic response of a TMD
model placed in the tower. In [31], the authors simulated the dynamic behavior of a spar structure
integrating a TMD in each blade, the nacelle and the tower following a semi-active method. In [32],
the authors used a robust controller called H∞ to optimize the controller gain. The TMD is placed on
the platform to reduce the oscillations induced by dynamic loads. The conclusions are similar in the
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various publications: a reduction in dynamic loads but degraded performance for winds below the
rated wind speed. Another alternative in active structural control is the method called tuned liquid
column damper (TLCD). Here, the principle is to replace the spring–damper system with a liquid.
In [33], a U-shaped tube with liquid inside is placed on the orthogonal plane of the platform roll
axis. The author confronted two methods: a semi-active control and a passive control for controlling
the liquid transfer. In the first case, the head loss coefficient is constant and, in the second case, it is
variable as a function of time and can be controlled. This coefficient corresponds to the dissipation,
by friction, of the mechanical energy during the movement of the liquid. The results show a significant
improvement of system stability with an advantage for the semi-active method. However, in this
publication, the aerodynamic effects of wind on the rotor are not taken into account.

5. Adapted Strategies for FOWT

Today’s challenge for floating offshore wind is to optimize the production in different wind region
and reduce the cost of maintenance and operation. To fulfill the objectives, it is possible to rely on many
innovative control strategies developed for the industry. Based on new generation algorithms and
optimization techniques, these multi-objective strategies are used in industrial application to control
complex nonlinear systems and can be used to improve the generated power and the reduction of
structural loads. This section deals with advanced control methods which can be used in FOWT. Most of
the literature on FOWT is focused on platform design, dynamic loads, and stability analysis. It can be
noticed that few papers propose innovative control strategies for floating turbines. However, dynamic
system control has been present in the industry for many years.

The linear quadratic Gaussian (LQG) method is used in [26,34] for control, which is based on
a state representation of the system. The results show a significant reduction in bending moment
without compromising power output. Model Predictive Control (MPC) is used when a PID controller
becomes insufficient. This technique predicts future behavior thanks to a dynamic model implanted
inside the controller. In [35], the authors tested the MPC method on an individual blade control
strategy. The MPC method is compared against the work of Jonkman [2]. The results show significant
improvements in electrical power and a dynamic load mitigation. Nonlinear model predictive control
with collective pitch angle has been adapted on a FOWT, ns the results show good performance [36].
Some of these control methods have been simulated on off-shore wind turbines. They are used to
control the blades pitch or the torque to improve performance and stability. The last lines of Table 2 refer
to more advanced algorithms in terms of optimization and adaptation. Fuzzy logic (FL) can be used
for on-shore WT control. In [37,38], the FL control is used to reduce the structural vibration. In [39],
the method is applied to the pitch control of the blades for an onshore wind turbine. Simulation results
show improved response and better accuracy of the speed control.

Other techniques can be imagined to improve the control of FOWT. For example, mooring is a
key system that plays a key role in maintaining the position of the floating structure.
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Table 2. Comparison of control method in Region II.

Control Method Variable Controlled Limits References

Optimal TSR Torque Simple to
implement.Wind

measurements
required

[12]

Power signal Feedback Torque Requires the
reference optimum

power curve obtained
from experimental

results

[13]

Perturb and Observe Torque Efficiency only for
low inertia load wind

turbine

[14]

Sliding mode Torque and Pitch Problem of
convergence time

with high variation of
wind speed

[15,16,40]

Adaptive controller Torque Require knowledge
of Cpmax and λ∗

[10,12]

Neural Network\Fuzzy logic Torque Complicate to
implement

(Unexplained
behavior of the

network,Hardware
dependence)

[13,17]

6. Evaluation

It appears in the literature that the goal in the wind industry is to lower costs, improve the
reliability of components, and extract high quality power. From this observation, many control
strategies can be used to control the system in the different wind regions of Figure 3. These points
are even more challenging for the floating offshore wind turbine context due to its complicated
environment and supplementary DOFs.

Different control method used in Region II are summarized and compared in Table 2. The main
objective is to track the maximal power operation point. Some methods are not suited to large
wind turbine constraints and large inertial forces, especially methods that use torque to determine
the optimal point. Strict tracking of the optimal operating point in terms of power can generate
undesirable vibrations in the transmission chain. These torsion forces, which are fluctuating due to
wind changes, can lead to failure of the system. A hybrid model using both torque and pitch control
allows combining decreased effort with high quality power generation. Smarter methods based on
the use of artificial intelligence can be implemented but require a large amount of real-time data from
the system.

For high speed wind, Table 3 lists the different methods to regulate speed at rated power and
mitigate mechanical constraints. Most of the methods presented above are based on linear theory.
They are effective around a limited number of operating points. For other methods, real-time wind
measurements are needed to act accordingly. PID is simple to implement, but its primary limitation is
its architecture based on a SISO. Given the number of DOFs involved in floating offshore, only MIMO
models can be relevant to avoid control loop succession.
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Table 3. Comparison of control method in Region III.

Control Method Strategies Description References

PI (with Gain scheduling) Collective pitch Robust and simple to
design

[41]

Linear Quadratic Gaussian Individual pitch Multi-variable control,
Kalman filter is used
to estimate system

states

[26]

Fuzzy logic Individual pitch Cover a wider range
of operating

conditions, cheaper to
develop

[24]

Model predictive control Individual pitch Multi-processing
input and output data
in real time, ability to

anticipate

[36]

Neural Network Individual pitch Learning ability in
order to model
nonlinear and

complex system

[25,42]

Gaussian quadratic linear control methods seem to offer an optimal solution. In addition, this
type of methods offers a good level of robustness in the case of nonlinear or multi-variable systems.
However, the disturbances on the measured signals due to the stochastic properties of the turbines
can deteriorate the control. AI based methods provide more stability and allow better control of
nonlinear and multi-variable systems. The Fuzzy Logic method allows a smoother control of blade
angles. However, the number of used grades exponentially increases the number of rules to be written.
Stochastic properties of the wave and wind can be better predicted by the use of a predictive method.
The results show a significant decrease in structural costs and an optimization in the energy production.
Nevertheless, these methods can have a significant negative impact on the reliability of the turbines
because many sensors must be used, such as LIDAR (light detection and ranging), or forces sensor on
the different components.

7. Conclusions

Challenges and trends of strategies for FOWT control are presented in this paper. Control methods
have constantly evolved to adapt to the needs of the industry. Even if FOWT technologies are still in
development, it is obvious that FOWT control objectives are quite different from the control objectives
related to classical WT because the system has supplementary degree of freedom related to platform
stability. Thus, an efficient control for FOWT requires controling more system variables and to use
more control systems. For example, individual pitch control systems or structural control systems can
be used in addition ti classical turbine speed control to improve the behavior and the power production
of the FOWT system. Other innovative solutions can perhaps be used such as dynamic control of the
mooring system.

Methods based on a SISO control such as classical PI or PID models are no longer appropriate due
to the increased number of variables to be controlled. Innovative methods based on innovative MIMO
control, AI based method or predictive control seems promising to face the challenge of FOWT control
and allows large-scale industrial deployment of these systems. To meet the challenge of industrial
deployment, floating wind turbines must lower their maintenance costs. To guarantee the energy
production goals for such systems, several solutions can be implemented. Specific objectives, for
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example requirements on stability and mechanical fatigue, have to be taken into account. It can be
done, in the design steps, using complex numerical simulation tools that allow taking into account the
behavior of the system . These tools must be used to determine optimal solutions coupling system
design and control strategies in terms of stability and mechanical strength. The improvement of sensor
technologies as well as the management of their data gives the possibility of using more complex and
smart control systems.
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Abbreviations

The following abbreviations are used in this manuscript:

FOWT Floating Offshore Wind Turbine
MIMO Multiple Input Multiple Output
O&G Oils and Gas
DOF Degrees Of Freedom
TMD Tuned Mass Damper
PID Proportional Integral Derivative
TSR Tip-Speed Ratio
SISO Single Input and Single Output
TLCD Tuned Liquid Column Damper
MPC Model Predictive Control
LQG Linear Quadratic Gaussian
NN Neural Network
FL Fuzzy Logic
P & O Perturb and Observe
MPPT Maximum Point Peak Tracking
LIDAR Light Detection and Danging
Nomenclature
R rotor radius, m
v wind speed, m · s−1

ρ air density, kg ·m3

β pitch angle of the blades, degrees
ω rotor speed, rad · s−1

J turbine inertia, kg ·m2

τ torque, N ·m
Cp(λ, β) power coefficient
λ Tip Speed Ratio
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