
electronics

Article

A Deep Learning Method for 3D Object Classification
Using the Wave Kernel Signature and A Center Point
of the 3D-Triangle Mesh

Long Hoang 1 , Suk-Hwan Lee 2, Oh-Heum Kwon 1 and Ki-Ryong Kwon 1,*
1 Department of IT Convergence and Application Engineering, Pukyong National University, Busan 48513,

Korea; hoanglongdtvt2001@gmail.com (L.H.); ohkwn@pknu.ac.kr (O.-H.K.)
2 Department of Information Security, Tongmyong University, Busan 48520, Korea; skylee@tu.ac.kr
* Correspondence: krkwon@pknu.ac.kr; Tel.: +82-51-629-6257

Received: 3 October 2019; Accepted: 18 October 2019; Published: 20 October 2019
����������
�������

Abstract: Computer vision recently has many applications such as smart cars, robot navigation, and
computer-aided manufacturing. Object classification, in particular 3D classification, is a major part
of computer vision. In this paper, we propose a novel method, wave kernel signature (WKS) and a
center point (CP) method, which extracts color and distance features from a 3D model to tackle 3D
object classification. The motivation of this idea is from the nature of human vision, which we tend
to classify an object based on its color and size. Firstly, we find a center point of the mesh to define
distance feature. Secondly, we calculate eigenvalues from the 3D mesh, and WKS values, respectively,
to capture color feature. These features will be an input of a 2D convolution neural network (CNN)
architecture. We use two large-scale 3D model datasets: ModelNet10 and ModelNet40 to evaluate
the proposed method. Our experimental results show more accuracy and efficiency than other
methods. The proposed method could apply for actual-world problems like autonomous driving and
augmented/virtual reality.

Keywords: deep learning applications; convolutional neural networks; 3D object classification; 3D
triangle mesh; center point; wave kernel signature

1. Introduction

Recently, computer vision has achieved great results along the development of computer hardware.
Also, we can build highly complex systems, for example, autonomous driving, by applying the deep
learning for solving computer vision task. A self-driving car needs to recognize objects on the street,
for example, people or another car, which leads to the necessity of 3D object classification [1].

The 3D classification remains a challenge for researchers in this field. In the past, we had only 2D
classification or 2D image classification due to the limit of 3D resources and computer hardware. The
technology of 3D acquisition such as Microsoft Kinect recently produces a massive amount of 3D-data
and boosts 3D classification. 3D systems are more complicated than 2D systems due to some reasons:
Data representation, different distributions of objects [2]. Main problems are that 3D systems require
more hardware resources as well as the computation time for the additional dimension.

Non-machine learning methods present the worst results on 3D object classification, lower than
76% accuracy for dataset: ModelNet40 [3,4]. Advancements in deep learning allow us to propose
convolution neural network (CNN)-based methods in solving the traditional methods’ drawbacks
in 3D classification. There are two CNN structures for various 3D-data representation: 2D CNN for
multi-view and point cloud, 3D CNN for voxel. Currently, 2D CNN has a complete architecture with
great results while 3D CNN is still under improvement [5].

Electronics 2019, 8, 1196; doi:10.3390/electronics8101196 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-7365-1862
http://dx.doi.org/10.3390/electronics8101196
http://www.mdpi.com/journal/electronics
http://www.mdpi.com/2079-9292/8/10/1196?type=check_update&version=2

Electronics 2019, 8, 1196 2 of 13

We aim to introduce a new method, center point (CP) and wave kernel signature (WKS) method,
for 3D object classification. In the next section, we present related works of 3D object classification.
Section 3 presents a description of the proposed method; Section 4 shows the experimental results and
the comparison with other methods. The conclusion will be given in Section 5.

2. Related Works

2.1. 3D Data Representation

The first 3D data form is point cloud, which is the collection of points in space. Each point has
only one value of (x, y, z) in a 3D-Cartesian coordinate system and other properties such as color
values [6]. The second 3D data form is voxel. Voxels are like volume pixels in three-dimensional space,
which is a 3D version of a pixel in a 2D image [7]. The last 3D-data form is a 3D-triangle mesh. Unlike
the point cloud and voxel, this mesh is constructed from 3D-triangle facets with three vertices for each
facet. The 3D triangle mesh is more popular than other forms of 3D data because it is user-friendly [8].
Figure 1 displays different data representation of the same 3D object [9–11].

Electronics 2019, 8, x FOR PEER REVIEW 2 of 14

multi-view and point cloud, 3D CNN for voxel. Currently, 2D CNN has a complete architecture with
great results while 3D CNN is still under improvement [5].

We aim to introduce a new method, center point (CP) and wave kernel signature (WKS) method,
for 3D object classification. In the next section, we present related works of 3D object classification.
Section 3 presents a description of the proposed method; Section 4 shows the experimental results
and the comparison with other methods. The conclusion will be given in Section 5.

2. Related Works

2.1. 3D Data Representation

The first 3D data form is point cloud, which is the collection of points in space. Each point has
only one value of (x, y, z) in a 3D-Cartesian coordinate system and other properties such as color
values [6]. The second 3D data form is voxel. Voxels are like volume pixels in three-dimensional
space, which is a 3D version of a pixel in a 2D image [7]. The last 3D-data form is a 3D-triangle mesh.
Unlike the point cloud and voxel, this mesh is constructed from 3D-triangle facets with three vertices
for each facet. The 3D triangle mesh is more popular than other forms of 3D data because it is user-
friendly [8]. Figure 1 displays different data representation of the same 3D object [9–11].

Figure 1. The 3D data forms of the Stanford bunny model: Point clouds (left), voxel (middle), and 3D
triangle mesh (right).

2.2. 3D Shape Analysis

The most important property of a 3D-object is its shape. The main object of shape analysis is to
find differences between the shapes of a 3D model. We use descriptors to store location information
of the 3D model. WKS is a method to obtain descriptors based on quantum mechanics at specific
locations. WKS shows energy distributions on different boundaries of the 3D object [12]. WKS maps
one point in space Rଷ to feature space R୒ which stores the local and global information about that
point. The low frequency and the high-frequency represent the global feature and the local feature,
respectively [13]. Accessing high-frequency information, WKS will be suitable for 3D object matching [14].
Figure 2 shows an example of WKS for a 3D object.

2.3. 3D Object Classification

3D object classification is an everlasting research area that developed various techniques
dependent on local and global shape descriptors in earlier times [15]. Several studies have proposed
some different AI techniques such as CNN, which helped to solve many 2D classification problems
completely. It is reasonable to extend well-known results of CNN on 2D images problems to similar
applications on 3D data.

Figure 1. The 3D data forms of the Stanford bunny model: Point clouds (left), voxel (middle), and 3D
triangle mesh (right).

2.2. 3D Shape Analysis

The most important property of a 3D-object is its shape. The main object of shape analysis is to
find differences between the shapes of a 3D model. We use descriptors to store location information of
the 3D model. WKS is a method to obtain descriptors based on quantum mechanics at specific locations.
WKS shows energy distributions on different boundaries of the 3D object [12]. WKS maps one point in
space R3 to feature space RN which stores the local and global information about that point. The low
frequency and the high-frequency represent the global feature and the local feature, respectively [13].
Accessing high-frequency information, WKS will be suitable for 3D object matching [14]. Figure 2
shows an example of WKS for a 3D object.

2.3. 3D Object Classification

3D object classification is an everlasting research area that developed various techniques dependent
on local and global shape descriptors in earlier times [15]. Several studies have proposed some different
AI techniques such as CNN, which helped to solve many 2D classification problems completely. It is
reasonable to extend well-known results of CNN on 2D images problems to similar applications on
3D data.

Electronics 2019, 8, 1196 3 of 13

Electronics 2019, 8, x FOR PEER REVIEW 3 of 14

Figure 2. A 3D Skyscraper object (left) and wave kernel signature (WKS) (right).

It is incredibly hard to directly use CNN for 3D object classification because 3D data structures
are more complicated than regular formats of 2D data. The solution is to transform 3D objects into
data forms that work with the input layer of CNN. As a result, methods for representations of 3D
shapes divide into two following main types.

Firstly, Voxelization-based methods, volume pixel in 3D space, provide a detailed description
of an object and adapt 3D CNNs to the voxel structure. Wu et al. [16] used a convolutional deep belief
network to express input shapes as the probability of extending on 3D voxel grids while the PointNet
method [17] uses the occupation grids that work with the input layer of CNN for classifying 3D
shapes.

Secondly, projection-based methods, which present 3D objects into different 2D-spaces, depend
on the idea of drawing 3D objects from various viewpoints, then take captured images and insert it
to the input layer of CNN. Reference [18] uses a spherical parameterization to display the 3D mesh
in a geometry-image, which encloses inflection information for the input of CNN. The authors in [19]
recommend representing 3D objects with a panoramic view.

3. Methodology

Color and spatial are two popular and necessary features in 2D image classification [20,21]. For
the 3D objects, we use the WKS to capture the color feature and a CP to get the spatial feature,
specifically the distance feature. We use the color feature for the 3D object classification because the
color feature is the most popular and necessary property in the mechanism of human visual
perception, and it is easy to analyze the color. Similarly, we use the distance feature due to its
importance for the 3D object classification in giving information on the structural arrangement of the
3D objects. The basic primitives define the distance feature. The spatial distribution of basic
primitives creates some visual forms, which are defined by directionality, repetitiveness, and
granularity. Therefore, we combine the color and distance features to get higher performance in 3D
object classification.

Figure 3 shows two main stages of the proposed method. In the first stage, we find a center point
of a 3D mesh and choose N random vertices from this mesh. Then, we calculate and store the distance
from this center point to each vertex in the first 3D-matrix. The second stage is that we calculate and
store WKS values of a 3D mesh into the second 3D-matrix. Those values define the color of the 2D
projection construction of the model. The combination of those two matrices forms a 6D-matrix for
the input of 2D CNN. The sub-sections below give a detailed description of the proposed method.

Figure 2. A 3D Skyscraper object (left) and wave kernel signature (WKS) (right).

It is incredibly hard to directly use CNN for 3D object classification because 3D data structures are
more complicated than regular formats of 2D data. The solution is to transform 3D objects into data
forms that work with the input layer of CNN. As a result, methods for representations of 3D shapes
divide into two following main types.

Firstly, Voxelization-based methods, volume pixel in 3D space, provide a detailed description of
an object and adapt 3D CNNs to the voxel structure. Wu et al. [16] used a convolutional deep belief
network to express input shapes as the probability of extending on 3D voxel grids while the PointNet
method [17] uses the occupation grids that work with the input layer of CNN for classifying 3D shapes.

Secondly, projection-based methods, which present 3D objects into different 2D-spaces, depend
on the idea of drawing 3D objects from various viewpoints, then take captured images and insert it to
the input layer of CNN. Reference [18] uses a spherical parameterization to display the 3D mesh in
a geometry-image, which encloses inflection information for the input of CNN. The authors in [19]
recommend representing 3D objects with a panoramic view.

3. Methodology

Color and spatial are two popular and necessary features in 2D image classification [20,21]. For the
3D objects, we use the WKS to capture the color feature and a CP to get the spatial feature, specifically
the distance feature. We use the color feature for the 3D object classification because the color feature
is the most popular and necessary property in the mechanism of human visual perception, and it
is easy to analyze the color. Similarly, we use the distance feature due to its importance for the 3D
object classification in giving information on the structural arrangement of the 3D objects. The basic
primitives define the distance feature. The spatial distribution of basic primitives creates some visual
forms, which are defined by directionality, repetitiveness, and granularity. Therefore, we combine the
color and distance features to get higher performance in 3D object classification.

Figure 3 shows two main stages of the proposed method. In the first stage, we find a center point
of a 3D mesh and choose N random vertices from this mesh. Then, we calculate and store the distance
from this center point to each vertex in the first 3D-matrix. The second stage is that we calculate and
store WKS values of a 3D mesh into the second 3D-matrix. Those values define the color of the 2D
projection construction of the model. The combination of those two matrices forms a 6D-matrix for the
input of 2D CNN. The sub-sections below give a detailed description of the proposed method.

Electronics 2019, 8, 1196 4 of 13

Our method is based on the 3D triangle mesh with one or more triangles. According to Figure 4,
the location of three vertices defines each triangle (called a facet).

3.1. The Center Point of 3D Triangle Mesh (CP)

We find a center point of a 3D model, consisting of a collection of M vertices, having coordinates
Vi

(
xi, yi, zi

)
(i=1: M).

The following equation determines the center point C, having coordinates (Cx, Cy, Cz):

C =
1
M

∑M

i=1
Vi (1)

Electronics 2019, 8, x FOR PEER REVIEW 4 of 14

Our method is based on the 3D triangle mesh with one or more triangles. According to Figure 4, the
location of three vertices defines each triangle (called a facet).

3.1. The Center Point of 3D Triangle Mesh (CP)

We find a center point of a 3D model, consisting of a collection of M vertices, having coordinates V୧(x୧, y୧, z୧) (i=1: M).
The following equation determines the center point C, having coordinates (C୶, C୷, C୸):

C = 1M ෍ V୧୑୧ୀଵ (1)

chair

Figure 3. The proposed method.

Figure 4. Three vertices and one face extract from 3D triangle mesh.

We calculate the distance D୶౟, D୷౟, D୸౟ from M vertices to the center point: D୶౟ = x୧ − C୶ , D୷౟ = y୧ − C୷ , (2) D୸౟ = z୧ − C୸ .
Dmax is defined by D୫ୟ୶ = max ({D୶౟, D୷౟, D୸౟|i = 1: M}). (3)

We choose N = 1024 random vertices from M vertices of the 3D mesh, and we replace missing
values by zero in case of M < 1024. We obtain N × 3 values for constructing a 3D-matrix. We re-shape
each dimension from 1024 to a 32 by 32 matrix and obtain a final 32 by 32 by 3 matrix, Aଵ, in which
the x-axis and y-axis represent the first two dimensions; the z-axis, the third dimension.

Figure 3. The proposed method.

Electronics 2019, 8, x FOR PEER REVIEW 4 of 14

Our method is based on the 3D triangle mesh with one or more triangles. According to Figure 4, the
location of three vertices defines each triangle (called a facet).

3.1. The Center Point of 3D Triangle Mesh (CP)

We find a center point of a 3D model, consisting of a collection of M vertices, having coordinates V୧(x୧, y୧, z୧) (i=1: M).
The following equation determines the center point C, having coordinates (C୶, C୷, C୸):

C = 1M ෍ V୧୑୧ୀଵ (1)

chair

Figure 3. The proposed method.

Figure 4. Three vertices and one face extract from 3D triangle mesh.

We calculate the distance D୶౟, D୷౟, D୸౟ from M vertices to the center point: D୶౟ = x୧ − C୶ , D୷౟ = y୧ − C୷ , (2) D୸౟ = z୧ − C୸ .
Dmax is defined by D୫ୟ୶ = max ({D୶౟, D୷౟, D୸౟|i = 1: M}). (3)

We choose N = 1024 random vertices from M vertices of the 3D mesh, and we replace missing
values by zero in case of M < 1024. We obtain N × 3 values for constructing a 3D-matrix. We re-shape
each dimension from 1024 to a 32 by 32 matrix and obtain a final 32 by 32 by 3 matrix, Aଵ, in which
the x-axis and y-axis represent the first two dimensions; the z-axis, the third dimension.

Figure 4. Three vertices and one face extract from 3D triangle mesh.

We calculate the distance Dxi , Dyi
, Dzi from M vertices to the center point:

Dxi = xi −Cx,

Dyi
= yi −Cy, (2)

Dzi = zi −Cz.

Dmax is defined by
Dmax = max(

{
Dxi , Dyi

, Dzi |i = 1 : M
}
). (3)

We choose N = 1024 random vertices from M vertices of the 3D mesh, and we replace missing
values by zero in case of M < 1024. We obtain N × 3 values for constructing a 3D-matrix. We re-shape
each dimension from 1024 to a 32 by 32 matrix and obtain a final 32 by 32 by 3 matrix, A1, in which the
x-axis and y-axis represent the first two dimensions; the z-axis, the third dimension.

Electronics 2019, 8, 1196 5 of 13

We will normalize the distance values in the range from −1 to 1 so that the 3D model fits into
a sphere unit. We divide all current elements in matrix A1 by the maximum value Dmax (3) of the
3D model.

Then the normalized values of matrix A will be calculated as:

A =
A1

Dmax
. (4)

Given the Figure 5, we obtain the same values of matrix A when rotating the model by 180 degrees,
so the rotation of a 3D model produces the consistent final matrix A.

Electronics 2019, 8, x FOR PEER REVIEW 5 of 14

We will normalize the distance values in the range from −1 to 1 so that the 3D model fits into a
sphere unit. We divide all current elements in matrix Aଵ by the maximum value D୫ୟ୶ (3) of the 3D
model.

Then the normalized values of matrix A will be calculated as:

A = AଵD୫ୟ୶. (4)

Given the Figure 5, we obtain the same values of matrix A when rotating the model by 180
degrees, so the rotation of a 3D model produces the consistent final matrix A.

Figure 5. 3D rotation: The original model in the left and the rotated model in the right. Blue point:
The vertex of 3D mesh. Red point: The center point. Green point: The original point (0, 0, 0).

3.2. Wave Kernel Signature on the 3D Triangle Mesh (WKS)

We first derive a Laplacian matrix from a 3D mesh, then calculate its eigenvalues and
eigenvectors [22]. By modifying Equation (10) in [14], each WKS୧ value for a vertex V୧ is calculated
as:

 WKS୧ = ෍ ∅୧୩ଶ (V୧)ୗ
୩ୀଵ eି (ୣି୪୭୥୉(୩))మଶ஢మ . (5)

Formula (5) can be written clearly, as follow:

ەۖۖ
۔ۖۖ
ۓۖۖ WKSଵ = ෍ ∅ଵ୩ଶ (Vଵ)ୗ

୩ୀଵ eି(ୣି୪୭୥୉(୩))మଶ஢మ ,
WKSଶ = ෍ ∅ଶ୩ଶ (Vଶ)ୗ

୩ୀଵ eି(ୣି୪୭୥୉(୩))మଶ஢మ ,⋮WKSெ = ෍ ∅୑୩ଶ (Vெ)ୗ
୩ୀଵ eି(ୣି୪୭୥୉(୩))మଶ஢మ .

Equivalently,

Figure 5. 3D rotation: The original model in the left and the rotated model in the right. Blue point:
The vertex of 3D mesh. Red point: The center point. Green point: The original point (0, 0, 0).

3.2. Wave Kernel Signature on the 3D Triangle Mesh (WKS)

We first derive a Laplacian matrix from a 3D mesh, then calculate its eigenvalues and
eigenvectors [22]. By modifying Equation (10) in [14], each WKSi value for a vertex Vi is calculated as:

WKSi =
S∑

k=1

∅2
ik(Vi)e

−
(e−logE(k))2

2σ2 . (5)

Formula (5) can be written clearly, as follow:

WKS1 =
S∑

k=1
∅2

1k(V1)e
−

(e−logE(k))2

2σ2 ,

WKS2 =
S∑

k=1
∅2

2k(V2)e
−

(e−logE(k))2

2σ2 ,

...

WKSM =
S∑

k=1
∅2

Mk(VM)e−
(e−logE(k))2

2σ2 .

Equivalently,

WKS1 = ∅2
11(V1)e

−
(e−logE(1))2

2σ2 +∅2
12(V1)e

−
(e−logE(2))2

2σ2 + · · ·+∅2
1S(V1)e

−
(e−logE(S))2

2σ2 ,

WKS2 = ∅2
21(V2)e

−
(e−logE(1))2

2σ2 +∅2
22(V2)e

−
(e−logE(2))2

2σ2 + · · ·+∅2
2S(V2)e

−
(e−logE(S))2

2σ2 ,
...

WKSM = ∅2
M1(VM)e−

(e−logE(1))2

2σ2 +∅2
M2(VM)e−

(e−logE(2))2

2σ2 + · · ·+∅2
MS(VM)e−

(e−logE(S))2

2σ2 .

Electronics 2019, 8, 1196 6 of 13

S = 300 is the number of eigenvalues; E is a Sx1 vector of eigenvalues; M is the number of

vertices of the 3D mesh; ∅ =


∅11(V1) ∅12(V1) · · · ∅1S(V1)

...
...

. . .
...

∅M1(VM) ∅M2(VM) · · · ∅MS(VM)

 is a MxS matrix of the

corresponding eigenvectors.
Then the WKS feature vector of a 3D mesh is defined by:

WKS =


WKS1

WKS2
...

WKSM

. (6)

The variance σ is defined as
σ =

emax − e
20

, (7)

where emax = max(logE), the logarithmic energy scale e = logE(2), and E(2) is the second element
of E.

We construct a colormap, based on the WKS feature vector. We have M vertices and M color
values corresponding with the M values of WKS. Each value WKSi controls each value of vertex Vi,
as shown in Figure 6.

Electronics 2019, 8, x FOR PEER REVIEW 6 of 14

۔ۖەۖ
ۓ WKSଵ = ∅ଵଵଶ (Vଵ)eି(ୣି୪୭୥୉(ଵ))మଶ஢మ + ∅ଵଶଶ (Vଵ)eି(ୣି୪୭୥୉(ଶ))మଶ஢మ + ⋯ + ∅ଵௌଶ (Vଵ)eି(ୣି୪୭୥୉(ୗ))మଶ஢మ ,WKSଶ = ∅ଶଵଶ (Vଶ)eି(ୣି୪୭୥୉(ଵ))మଶ஢మ + ∅ଶଶଶ (Vଶ)eି(ୣି୪୭୥୉(ଶ))మଶ஢మ + ⋯ + ∅ଶௌଶ (Vଶ)eି(ୣି୪୭୥୉(ୗ))మଶ஢మ , ⋮ WKS୑ = ∅ெଵଶ (Vெ)eି(ୣି୪୭୥୉(ଵ))మଶ஢మ + ∅ெଶଶ (Vெ)eି(ୣି୪୭୥୉(ଶ))మଶ஢మ + ⋯ + ∅ெௌଶ (Vெ)eି(ୣି୪୭୥୉(ୗ))మଶ஢మ .

S = 300 is the number of eigenvalues; E is a Sx1 vector of eigenvalues; M is the number of vertices

of the 3D mesh; ∅ = ൥ ∅ଵଵ(ଵܸ) ∅ଵଶ(ଵܸ) ⋯ ∅ଵௌ(ଵܸ)⋮ ⋮ ⋱ ⋮∅ெଵ(ெܸ) ∅ெଶ(ெܸ) ⋯ ∅ெௌ(ெܸ)൩ is a MxS matrix of the corresponding

eigenvectors.

Then the WKS feature vector of a 3D mesh is defined by:

WKS = ൦ WKSଵWKSଶ⋮WKS୑൪. (6)

The variance σ is defined as σ = ୣౣ౗౮ିୣଶ଴ , (7)

where e୫ୟ୶ = max(logE), the logarithmic energy scale e = logE(2), and E(2) is the second element
of E.

We construct a colormap, based on the WKS feature vector. We have M vertices and M color
values corresponding with the M values of WKS. Each value WKS୧ controls each value of vertex V୧,
as shown in Figure 6.

Figure 6. The relationship between the colormap and M vertices.

In Figure 6, we suppose that the M୲୦ and the second vertex have the largest and the smallest
values, namely WKSM and WKS2, which then are mapped to the last and the first row of the
colormap, respectively.

After applying WKS to the 3D model, the black and white original model is changed into the
color model. The second matrix B in a 32 by 32 by 3 pixel is used to capture and store a 2D projection
of the 3D color model, as shown in Figure 7.

Figure 6. The relationship between the colormap and M vertices.

In Figure 6, we suppose that the Mth and the second vertex have the largest and the smallest
values, namely WKSM and WKS2, which then are mapped to the last and the first row of the
colormap, respectively.

After applying WKS to the 3D model, the black and white original model is changed into the color
model. The second matrix B in a 32 by 32 by 3 pixel is used to capture and store a 2D projection of the
3D color model, as shown in Figure 7.

Electronics 2019, 8, x FOR PEER REVIEW 7 of 14

Figure 7. The original 3D car (left), the 3D color model using WKS value (middle) and the 2D
projection 32 by 32 by 3 (right).

3.3. The Architecture of Convolution Neural Network

We obtain a 32 by 32 by 6 matrix C by concatenating A and B along the third dimension, then
use matrix C for the input data of CNN. Figure 8 shows the architecture of the convolution neural
network. As shown in Figure 8, a typical design, where an input layer is followed by four
convolutional blocks and two fully connected layers, is used to build the convolutional neural
network architecture selected in the proposed implementation. Each convolutional block consists of
convolution, batch normalization, and rectified linear units (ReLUs). The corresponding number of
filters for all convolution layers in each block are 16, 32, 64, and 128, respectively. The padding for
the first and other convolutional blocks is to set values 1 and 0, respectively, and we assign value 3
to kernel size for all layers. The stride equals 2 in the last two convolution blocks and 1 in the first
two convolution blocks. Then, we insert an 8 by 8 average pooling layer after the fourth convolution
block. Batch normalizations and a dropout layer are used in our network for the following reasons.

Firstly, batch normalization has some advantages such as making predictions of network output
more stable, accelerating training by magnitude order, and reducing overfitting through
regularization. Batch normalization normalizes activations in a network across a mini-batch by
subtracting the mean and dividing by the standard deviation of these activations. Normalization is
necessary because some activations may be higher, which may cause subsequent layers abnormally,
and make a less stable network even after normalizing input.

Secondly, we add a dropout layer between a pooling layer and a fully connected layer to
improve convergence. This introduces a stochastic gradient descent (SGD) optimizer to reduce the
cumulative error and to improve the training speed as well as to fix the overfitting problem due to
an expansion in the number of iterations. Dropout is a mean model, which is the weighted average
of estimation or prediction output from various models. The hidden layer nodes may be neglected
from a random selection in the dropout. As a result, each training network is unique and is considered
as a new model. Specifically, hidden nodes are likely to occur randomly. Updating weights do not
base on the interaction of fixed nodes, and this avoids possible connections of some features with
another specific feature because any two hidden nodes do not appear in models many times
concurrently. Thus, we can ignore some nodes randomly in the network. Ignoring these hidden layer
nodes can decrease calculation cost. Moreover, these ignored nodes can restrict other nodes from
joining each other to decrease overfitting [23].

Matrix C enters the input layer in the first step of the whole process. Then, the first convolution
block uses those data to apply a convolution function with a 1 by 1 stride. The output of the first
convolution layer is 16 feature maps of dimension 32 by 32 which transfer to the first ReLU layer via
the first batch normalization layer. Learning becomes faster with Gradient descent because the batch
normalization renormalizes data. Sixteen normalized-features are the output of the first batch
normalization layer. The second convolutional layer applies the convolution function with a 1 by 1

Figure 7. The original 3D car (left), the 3D color model using WKS value (middle) and the 2D projection
32 by 32 by 3 (right).

Electronics 2019, 8, 1196 7 of 13

3.3. The Architecture of Convolution Neural Network

We obtain a 32 by 32 by 6 matrix C by concatenating A and B along the third dimension, then use
matrix C for the input data of CNN. Figure 8 shows the architecture of the convolution neural network.
As shown in Figure 8, a typical design, where an input layer is followed by four convolutional blocks
and two fully connected layers, is used to build the convolutional neural network architecture selected
in the proposed implementation. Each convolutional block consists of convolution, batch normalization,
and rectified linear units (ReLUs). The corresponding number of filters for all convolution layers in
each block are 16, 32, 64, and 128, respectively. The padding for the first and other convolutional blocks
is to set values 1 and 0, respectively, and we assign value 3 to kernel size for all layers. The stride
equals 2 in the last two convolution blocks and 1 in the first two convolution blocks. Then, we insert an
8 by 8 average pooling layer after the fourth convolution block. Batch normalizations and a dropout
layer are used in our network for the following reasons.

Firstly, batch normalization has some advantages such as making predictions of network output
more stable, accelerating training by magnitude order, and reducing overfitting through regularization.
Batch normalization normalizes activations in a network across a mini-batch by subtracting the mean
and dividing by the standard deviation of these activations. Normalization is necessary because some
activations may be higher, which may cause subsequent layers abnormally, and make a less stable
network even after normalizing input.

Secondly, we add a dropout layer between a pooling layer and a fully connected layer to improve
convergence. This introduces a stochastic gradient descent (SGD) optimizer to reduce the cumulative
error and to improve the training speed as well as to fix the overfitting problem due to an expansion in
the number of iterations. Dropout is a mean model, which is the weighted average of estimation or
prediction output from various models. The hidden layer nodes may be neglected from a random
selection in the dropout. As a result, each training network is unique and is considered as a new
model. Specifically, hidden nodes are likely to occur randomly. Updating weights do not base on the
interaction of fixed nodes, and this avoids possible connections of some features with another specific
feature because any two hidden nodes do not appear in models many times concurrently. Thus, we
can ignore some nodes randomly in the network. Ignoring these hidden layer nodes can decrease
calculation cost. Moreover, these ignored nodes can restrict other nodes from joining each other to
decrease overfitting [23].

Matrix C enters the input layer in the first step of the whole process. Then, the first convolution
block uses those data to apply a convolution function with a 1 by 1 stride. The output of the first
convolution layer is 16 feature maps of dimension 32 by 32 which transfer to the first ReLU layer
via the first batch normalization layer. Learning becomes faster with Gradient descent because the
batch normalization renormalizes data. Sixteen normalized-features are the output of the first batch
normalization layer. The second convolutional layer applies the convolution function with a 1 by 1
stride to the first ReLU layer’s output. This second layer’s output is 16 feature maps of dimension 32
by 32 which move to the second batch normalization layer and the second ReLU layer, respectively.
We repeat the process until the fourth convolution block. The last output will be the input of the
average pooling layer and dropout layer.

The first fully connected layer takes the dropout layer’s output, which has a feature vector with
size 128, travels to the second fully connected layer. Then this second layer takes only K (K = 10 or 40)
most active features and sends them to the softmax layer. Ten or forty classes with corresponding class
names are used for classifying output such as the airplane, bed, and desk.

Electronics 2019, 8, 1196 8 of 13

Electronics 2019, 8, x FOR PEER REVIEW 8 of 14

stride to the first ReLU layer’s output. This second layer’s output is 16 feature maps of dimension 32
by 32 which move to the second batch normalization layer and the second ReLU layer, respectively.
We repeat the process until the fourth convolution block. The last output will be the input of the
average pooling layer and dropout layer.

The first fully connected layer takes the dropout layer’s output, which has a feature vector with
size 128, travels to the second fully connected layer. Then this second layer takes only K (K = 10 or
40) most active features and sends them to the softmax layer. Ten or forty classes with corresponding
class names are used for classifying output such as the airplane, bed, and desk.

Figure 8. Convolution neural network (CNN) architecture of the proposed method.

4. Experimental Results

To verify the proposed method, we use the most popular 3D dataset: The ModelNet, which has
two sub-datasets: ModelNet10 and ModelNet40 [16]. The original ModelNet dataset can be
downloaded from the website in the Supplementary Materials. ModelNet10 and ModelNet40 have
3D CAD models from 10 categories with 3991 training and 908 testing objects, and from 40 categories
such as airplanes, bathtubs, beds, and benches with 9843 training and 2468 testing objects,
respectively. Each object of ModelNet dataset has a format of a 3D-triangle mesh, namely OFF. Table
1 shows the amount of objects of a particular class for dataset: ModelNet10.

Table 1. The distribution of classes in the ModelNet10 dataset.

Class Name Train Test Total
bathtub 106 50 156

bed 515 100 615
chair 889 100 989
desk 200 86 286

dresser 200 86 286
monitor 465 100 565

nightstand 200 86 286
sofa 680 100 780

Figure 8. Convolution neural network (CNN) architecture of the proposed method.

4. Experimental Results

To verify the proposed method, we use the most popular 3D dataset: The ModelNet, which
has two sub-datasets: ModelNet10 and ModelNet40 [16]. The original ModelNet dataset can be
downloaded from the website in the Supplementary Materials. ModelNet10 and ModelNet40 have 3D
CAD models from 10 categories with 3991 training and 908 testing objects, and from 40 categories
such as airplanes, bathtubs, beds, and benches with 9843 training and 2468 testing objects, respectively.
Each object of ModelNet dataset has a format of a 3D-triangle mesh, namely OFF. Table 1 shows the
amount of objects of a particular class for dataset: ModelNet10.

Table 1. The distribution of classes in the ModelNet10 dataset.

Class Name Train Test Total

bathtub 106 50 156
bed 515 100 615

chair 889 100 989
desk 200 86 286

dresser 200 86 286
monitor 465 100 565

nightstand 200 86 286
sofa 680 100 780
table 392 100 492
toilet 344 100 444
total 3991 908 4899

We re-mesh objects in ModelNet or keep the original model without re-meshing if the number of
vertices is larger or smaller than 3600, respectively. Some classes in the dataset such as glass-box have
171 models on the training folder; three models among them have more than 3600 vertices and the
minimum number of vertices for one object is 44. As seen in Figure 9, there are not many differences

Electronics 2019, 8, 1196 9 of 13

between the original model and the re-meshed model because the shapes of the objects are still kept
except unimportant information. The re-meshing process plays a role as the technology which we
use in the image or audio compressing. It seems unable for a “normal” user to distinguish between
the original wave sound and the MP3 sound compressed. We create a new dataset from the original
Modelnet dataset by keeping the structure of the original dataset and applying the re-meshing process
for some models. We can see some random objects in the new dataset in Figure 10. Applying the
re-mesh process did not affect the accuracy of the method because it still keeps objects’ shapes, but
reduces the number of vertices and faces. We apply the proposed method to find the distance and color
feature of all 3D models after preprocessing the original dataset. All experiments were conducted on
the machine i7 7700, 16GB memory, 1080Ti GPU, MATLAB (9.6 (R2019a), Natick, MA, USA).

Electronics 2019, 8, x FOR PEER REVIEW 9 of 14

table 392 100 492
toilet 344 100 444
total 3991 908 4899

We re-mesh objects in ModelNet or keep the original model without re-meshing if the number
of vertices is larger or smaller than 3600, respectively. Some classes in the dataset such as glass-box
have 171 models on the training folder; three models among them have more than 3600 vertices and
the minimum number of vertices for one object is 44. As seen in Figure 9, there are not many
differences between the original model and the re-meshed model because the shapes of the objects
are still kept except unimportant information. The re-meshing process plays a role as the technology
which we use in the image or audio compressing. It seems unable for a “normal” user to distinguish
between the original wave sound and the MP3 sound compressed. We create a new dataset from the
original Modelnet dataset by keeping the structure of the original dataset and applying the re-
meshing process for some models. We can see some random objects in the new dataset in Figure 10.
Applying the re-mesh process did not affect the accuracy of the method because it still keeps objects’
shapes, but reduces the number of vertices and faces. We apply the proposed method to find the
distance and color feature of all 3D models after preprocessing the original dataset. All experiments
were conducted on the machine i7 7700, 16GB memory, 1080Ti GPU, MATLAB (9.6 (R2019a), Natick,
MA, USA).

Figure 9. The original model with 113,588 vertices on the left. The re-mesh model with 3388 vertices
on the middle. The 2D-projection of the re-mesh model after calculating WKS value on the right.
Figure 9. The original model with 113,588 vertices on the left. The re-mesh model with 3388 vertices on
the middle. The 2D-projection of the re-mesh model after calculating WKS value on the right.Electronics 2019, 8, x FOR PEER REVIEW 10 of 14

Figure 10. Random models from the re-meshing dataset: ModelNet40.

We first read the OFF file of the model, store the information of each vertex. Suppose the number
of vertices is M, and calculate M values of WKS. Then we plot the 3D model with the color depending
on those WKS values. We also calculate the distance between the center point to each vertex in the
3D mesh of the OFF file. After having the information of distance and color, we combined distance
and color values into a 32 by 32 by 6 matrix and put it into the proposed CNN architecture. We use
SGD with the mini-batch size at 64, and the momentum at 0.9 to train the network, and divide the
initial learning rate at 0.2 by half for all 160 epochs. As listed in Table 2, the proposed method has
precision levels at 90.20% and 84.64% for ModelNet10 and ModelNet40, respectively, which is more
accurate than other methods. Our methods had precision levels which were 7.32%and 6.66% higher
than the deep learning method 3DShapeNets for 40 and 10 classes, respectively.

Both the DeepPano and Panoramic View method use four convolution Blocks, where each
convolution Block contains one convolution layer, followed by one max pooling layer. In contrast,
our method uses four convolution blocks, which each includes two same convolution layers, two
batch normalization layers, and two ReLU layers. The number of parameters is greater than 0 in the
pooling layer while it equals 0 in batch normalization and ReLU layer.

Table 2. The accuracy between the proposed method and other methods on the ModelNet dataset.

Algorithm ModelNet10 ModelNet40
PointNet [17] 77.60% N/A

3D ShapeNets [16] 83.54% 77.32%
Geometry Image [18] 88.40% 83.90%

DeepPano [19] 88.66% 82.54%
PanoramicView [24] 89.80% 82.47%

Our Method 90.20% 84.64%

Figure 10. Random models from the re-meshing dataset: ModelNet40.

Electronics 2019, 8, 1196 10 of 13

We first read the OFF file of the model, store the information of each vertex. Suppose the number
of vertices is M, and calculate M values of WKS. Then we plot the 3D model with the color depending
on those WKS values. We also calculate the distance between the center point to each vertex in the 3D
mesh of the OFF file. After having the information of distance and color, we combined distance and
color values into a 32 by 32 by 6 matrix and put it into the proposed CNN architecture. We use SGD
with the mini-batch size at 64, and the momentum at 0.9 to train the network, and divide the initial
learning rate at 0.2 by half for all 160 epochs. As listed in Table 2, the proposed method has precision
levels at 90.20% and 84.64% for ModelNet10 and ModelNet40, respectively, which is more accurate
than other methods. Our methods had precision levels which were 7.32% and 6.66% higher than the
deep learning method 3DShapeNets for 40 and 10 classes, respectively.

Both the DeepPano and Panoramic View method use four convolution Blocks, where each
convolution Block contains one convolution layer, followed by one max pooling layer. In contrast, our
method uses four convolution blocks, which each includes two same convolution layers, two batch
normalization layers, and two ReLU layers. The number of parameters is greater than 0 in the pooling
layer while it equals 0 in batch normalization and ReLU layer.

Table 2. The accuracy between the proposed method and other methods on the ModelNet dataset.

Algorithm ModelNet10 ModelNet40

PointNet [17] 77.60% N/A
3D ShapeNets [16] 83.54% 77.32%

Geometry Image [18] 88.40% 83.90%
DeepPano [19] 88.66% 82.54%

PanoramicView [24] 89.80% 82.47%
Our Method 90.20% 84.64%

The authors in [19] did not mention numbers of feature vectors in their fully connected layer of
the DeepPano method, hence we compare the number of parameters in the convolution layers, not in
fully connected layers. We use two fully connected layers with 128 and K (K = 10 or K = 40) feature
vectors, respectively, in our method instead of using 512 and 1024 feature vectors for the first and
the second layer as mentioned in the panoramic view method. Considering the results in Table 3,
our methods used fewer parameters for all convolution layers than their methods. Our method used
4800 parameters in total, compared with 18,112 for DeepPano and 15,088 for panoramic view. It is
generally to conclude that our method is more efficient due to the reduction of model parameters,
diminishing the computational cost.

Table 3. The total number of parameters for all convolution layers in different methods.

Layers DeepPano Parameters PanoView Parameters Our Method Parameters

Input 160 × 64 0 108 × 36 0 32 × 32 × 6 0
Conv1 (5, 96) 2496 (1, 64) 128 Two (3, 16) 320
Conv2 (5, 256) 6656 (2, 80) 400 Two (3, 32) 640
Conv3 (3, 384) 3840 (4, 160) 2720 Two (3, 64) 1280
Conv4 (3, 512) 5120 (6, 320) 11,840 Two (3, 128) 2560

FC1 N. Available N. Available 512 N. Available 128 N. Available
FC2 N. Available N. Available 1024 N. Available 10 or 40 N. Available
Total 18,112 15,088 4800

We plot a confusion matrix for the ModelNet40 in Figure 11. Flower Pot class and Plant class are
the most misclassified, where 60% of the flower pot has miss-classification as the plant due to their
similarities (see Figure 10).

As seen in Table 4, our methods had higher accuracy in the dataset: ModelNet10 due to the
combination of color and distance features. In some classes, the distance feature will be complementary

Electronics 2019, 8, 1196 11 of 13

for the color feature. For example, in some cases, two objects in the dresser class have five similar faces
and different the sixth face. The distance feature will help to recognize the spatial distribution of the
model and improve the accuracy for classification. Specifically, PointNet can recognize 61 of 86 dresser
models, while our method is 77 of 86.

Increasing the number of features will improve the accuracy of classification. Geometry Image
method extracts only the color feature while our method uses the additional distance feature. Moreover,
both DeepPano and panoramic view use only a view base without the spatial feature.

Wave kernel signature and center point achieved better accuracy due to the above reasons.

Table 4. The accuracy of each class in dataset: ModelNet10.

Class PointNet Our Method Class PointNet Our Method

bathtub 34 39 monitor 87 100
bed 80 99 nightstand 60 63

chair 90 100 sofa 88 94
desk 52 67 table 69 80

dresser 61 77 toilet 84 100
Electronics 2019, 8, x FOR PEER REVIEW 12 of 14

Figure 11. The confusion matrix for dataset: ModelNet40.

5. Conclusions

In this paper, we created an innovative approach for 3D object classification by combining two
features: Color and distance. Our method has achieved more accuracy and efficiency than five other
methods: PointNet, 3DShapeNets, geometry image, DeepPano, and panoramic view.

Classification is a crucial step for other tasks like object retrieval. Also, our method is consistent
with the object rotation, so it is suitable for retrieval task. Future direction for research and
development is to integrate the software into actual world problems like fully autonomous cars or
manufacture factories.

Supplementary Materials: The original ModelNet dataset is available online at www.mdpi.com/xxx/s1.

Author Contributions: Conceptualization, L.H.; Funding acquisition, K.-R.K.; Investigation, L.H.; Methodology,
L.H.; Project administration, K.-R.K.; Software, L.H.; Supervision, K.-R.K.; Validation, K.-R.K.; Writing—the
original draft, L.H.; Writing—review & editing, L.H., S.-H.L., O.-H.W. and K.-R.K.

Funding: This research received no external funding.

Acknowledgments: This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the
ICT Consilience Creative program (IITP-2019-2016-0-00318) supervised by the IITP (Institute for Information &
communications Technology Promotion), Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Science and ICT (No. 2016R1D1A3B03931003, No.
2017R1A2B2012456), and Ministry of Trade, Industry and Energy for its financial support of the project titled
“the establishment of advanced marine industry open laboratory and development of realistic convergence
content”.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Geiger, A.; Lenz. P.; Urtasun, R. Are we ready for autonomous driving? the kitti vision benchmark suite.

In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI,

USA, 16–21 June 2012; pp. 3354–3361, doi:10.1109/CVPR.2012.6248074.

Figure 11. The confusion matrix for dataset: ModelNet40.

5. Conclusions

In this paper, we created an innovative approach for 3D object classification by combining two
features: Color and distance. Our method has achieved more accuracy and efficiency than five other
methods: PointNet, 3DShapeNets, geometry image, DeepPano, and panoramic view.

Classification is a crucial step for other tasks like object retrieval. Also, our method is consistent with
the object rotation, so it is suitable for retrieval task. Future direction for research and development is to
integrate the software into actual world problems like fully autonomous cars or manufacture factories.

Supplementary Materials: The original ModelNet dataset is available online at https://modelnet.cs.princeton.edu/.

https://modelnet.cs.princeton.edu/

Electronics 2019, 8, 1196 12 of 13

Author Contributions: Conceptualization, L.H.; Funding acquisition, K.-R.K.; Investigation, L.H.; Methodology,
L.H.; Project administration, K.-R.K.; Software, L.H.; Supervision, K.-R.K.; Validation, K.-R.K.; Writing—the
original draft, L.H.; Writing—review & editing, L.H., S.-H.L., O.-H.K. and K.-R.K.

Funding: This research received no external funding.

Acknowledgments: This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the
ICT Consilience Creative program (IITP-2019-2016-0-00318) supervised by the IITP (Institute for Information
& communications Technology Promotion), Basic Science Research Program through the National Research
Foundation of Korea (NRF) funded by the Ministry of Science and ICT (No. 2016R1D1A3B03931003, No.
2017R1A2B2012456), and Ministry of Trade, Industry and Energy for its financial support of the project titled “the
establishment of advanced marine industry open laboratory and development of realistic convergence content”.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Geiger, A.; Lenz, P.; Urtasun, R. Are we ready for autonomous driving? The kitti vision benchmark suite.
In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI,
USA, 16–21 June 2012; pp. 3354–3361. [CrossRef]

2. Shen, X. A Survey of Object Classification and Detection Based on 2D/3D Data. Available online: https:
//arxiv.org/abs/1905.12683 (accessed on 20 September 2019).

3. Kazhdan, M.; Funkhouser, T.; Rusinkiewicz, S. Rotation invariant spherical harmonic representation of
3D shape descriptors. In Proceedings of the Eurographics/ACM SIGGRAPH Symposium on geometry
processing, Aachen, Germany, 23–25 June 2003; pp. 156–164.

4. Chen, D.-Y.; Tian, X.-P.; Shen, Y.-T.; Ouhyoung, M. On visual similarity based 3D model retrieval. Comput.
Graph. Forum 2003, 22, 223–232. [CrossRef]

5. Ioannidou, A.; Chatzilari, E.; Nikolopoulos, S.; Kompatsiaris, I. Deep learning advances in computer vision
with 3D data: A survey. ACM Comput. Surv. 2017, 50, 1–38. [CrossRef]

6. Wu, W.; Qi, Z.; Fuxin, L. PointConv: Deep convolutional networks on 3D point clouds. In Proceedings of the
2019 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2019), Long Beach, CA, USA,
16–20 June 2019; pp. 9621–9630.

7. Karmakar, N.; Biswas, A.; Bhowmick, P.; Bhattacharya, B.B. A combinatorial algorithm to construct 3D
isothetic covers. Int. J. Comput. Math. 2013, 90, 1571–1606. [CrossRef]

8. Hamidi, M.; Chetouani, A.; El Haziti, M.; El Hassouni, M.; Cherifi, H. Blind robust 3D mesh watermarking
based on mesh saliency and wavelet transform for copyright protection. Inf. 2019, 10, 67. [CrossRef]

9. Agarwal, P.; Prabhakaran, B. Robust blind watermarking of point-sampled geometry. IEEE Trans. Inf.
Forensics Secur. 2009, 4, 36–48. [CrossRef]

10. Construction of 3D Orthogonal Cover. Available online: http://cse.iitkgp.ac.in/~{}pb/research/3dpoly/3dpoly.
html (accessed on 20 September 2019).

11. Triangle Mesh Processing. Available online: http://www.lix.polytechnique.fr/~{}maks/Verona_MPAM/TD/

TD2/ (accessed on 20 September 2019).
12. Fernández, F. On the Symmetry of the Quantum-Mechanical Particle in a Cubic Box. Available online:

https://arxiv.org/abs/1310.5136 (accessed on 20 September 2019).
13. Su, Y.; Shan, S.; Chen, X.; Gao, W. Hierarchical ensemble of global and local classifiers for face recognition.

IEEE Trans. Image Process. 2009, 18, 1885–1896. [CrossRef] [PubMed]
14. Aubry, M.; Schlickewei, U.; Cremers, D. The wave kernel signature: A quantum mechanical approach to

shape analysis. In Proceedings of the 2011 IEEE International Conference on Computer Vision Workshops
(ICCV Workshops 2011), Barcelona, Spain, 6–13 November 2011; pp. 1626–1633. [CrossRef]

15. Guo, Y.; Bennamoun, M.; Sohel, F.; Lu, M.; Wan, J. 3D object recognition in cluttered scenes with local surface
features: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 2270–2287.

16. Wu, Z.; Song, S.; Khosla, A.; Yu, F.; Zhang, L.; Tang, X.; Xiao, J. 3D ShapeNets: A deep representation for
volumetric shapes. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR 2015), Boston, MA, USA, 7–12 June 2015; pp. 1912–1920. [CrossRef]

17. Garcia, A.; Donoso, F.; Rodriguez, J.; Escolano, S.; Cazorla, M.; Lopez, J. PointNet: A 3D convolutional neural
network for real-time object class recognition. In Proceedings of the 2016 International Joint Conference on
Neural Networks (IJCNN 2016), Vancouver, BC, Canada, 24–29 July 2016; pp. 1578–1584. [CrossRef]

http://dx.doi.org/10.1109/CVPR.2012.6248074
https://arxiv.org/abs/1905.12683
https://arxiv.org/abs/1905.12683
http://dx.doi.org/10.1111/1467-8659.00669
http://dx.doi.org/10.1145/3042064
http://dx.doi.org/10.1080/00207160.2012.734813
http://dx.doi.org/10.3390/info10020067
http://dx.doi.org/10.1109/TIFS.2008.2011081
http://cse.iitkgp.ac.in/~{}pb/research/3dpoly/3dpoly.html
http://cse.iitkgp.ac.in/~{}pb/research/3dpoly/3dpoly.html
http://www.lix.polytechnique.fr/~{}maks/Verona_MPAM/TD/TD2/
http://www.lix.polytechnique.fr/~{}maks/Verona_MPAM/TD/TD2/
https://arxiv.org/abs/1310.5136
http://dx.doi.org/10.1109/TIP.2009.2021737
http://www.ncbi.nlm.nih.gov/pubmed/19556198
http://dx.doi.org/10.1109/ICCVW.2011.6130444
http://dx.doi.org/10.1109/CVPR.2015.7298801
http://dx.doi.org/10.1109/IJCNN.2016.7727386

Electronics 2019, 8, 1196 13 of 13

18. Sinha, A.; Bai, J.; Ramani, K. Deep learning 3D shape surfaces using geometry images. In Proceedings of the
2016 European Conference on Computer Vision (ECCV 2016), Amsterdam, The Netherlands, 11–14 October
2016; pp. 223–240. [CrossRef]

19. Shi, B.; Bai, S.; Zhou, Z.; Bai, X. DeepPano: Deep panoramic representation for 3-D shape recognition.
IEEE Signal Process. Lett. 2015, 22, 2339–2343. [CrossRef]

20. Sun, G.; Huang, H.; Zhang, A.; Li, F.; Zhao, H.; Fu, H. Fusion of multiscale convolutional neural networks for
building extraction in very high-resolution images. Remote. Sens. 2019, 11, 227. [CrossRef]

21. Cheng, Y.-C.; Chen, S.-Y. Image classification using color, texture and regions. Image Vision Comput. 2003, 21,
759–776. [CrossRef]

22. Castellani, U.; Mirtuono, P.; Murino, V.; Bellani, M.; Rambaldelli, G.; Tansella, M.; Brambilla, P. A new shape
diffusion descriptor for brain classification. In Proceedings of the International Conference on Medical Image
Computing and Computer-Assisted Intervention (MICCAI 2011), Toronto, ON, Canada, 18–22 September
2011; pp. 426–433. [CrossRef]

23. Yang, J.; Yang, G. Modified convolutional neural network based on dropout and the stochastic gradient
descent optimizer. Algorithms 2018, 11, 28. [CrossRef]

24. Zheng, Q.; Sun, J.; Zhang, L.; Chen, W.; Fan, H. An improved 3D shape recognition method based on
panoramic view. Math. Probl. Eng. 2018, 2018, 1–11. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/978-3-319-46466-4_14
http://dx.doi.org/10.1109/LSP.2015.2480802
http://dx.doi.org/10.3390/rs11030227
http://dx.doi.org/10.1016/S0262-8856(03)00069-6
http://dx.doi.org/10.1007/978-3-642-23629-7_52
http://dx.doi.org/10.3390/a11030028
http://dx.doi.org/10.1155/2018/6467957
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	3D Data Representation
	3D Shape Analysis
	3D Object Classification

	Methodology
	The Center Point of 3D Triangle Mesh (CP)
	Wave Kernel Signature on the 3D Triangle Mesh (WKS)
	The Architecture of Convolution Neural Network

	Experimental Results
	Conclusions
	References

