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Abstract: Over the past decade, the dimensional scaling of semiconductor electronic devices has been
facing fundamental and physical challenges, and there is currently an urgent need to increase the
ability of dynamic random-access memory (DRAM). A semi-floating gate (SFG) transistor has been
proposed as a capacitor-less memory with faster speed and higher density as compared with the
conventional one-transistor one-capacitor (1T1C) DRAM technology. The integration of SFG-based
memory on the silicon-on-insulator (SOI) substrate has been demonstrated in this work by using the
Sentaurus Technology Computer-Aided Design (TCAD) simulation. An enhancement in retention
characteristics, anti-disturbance ability, and fast writing capability, have been illustrated. The device
exhibits a low operation voltage, a large threshold voltage window of ~3 V, and an ultra-fast
writing of 4 ns. In addition, the SOI-based memory has shown a much-improved anti-irradiation
capability compared to the devices based on bulk silicon, which makes it much more attractive in
broader applications.

Keywords: semi-floating gate transistor; silicon-on-insulator; retention; anti-disturbance; writing
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1. Introduction

The continuous complementary metal-oxide-semiconductor (CMOS) scaling to achieve more
powerful central processing unit (CPU) has reached limits imposed by the heat dissipation and power
consumption. There have been extensive efforts to develop high-performance memory as the local
CPU memory replacing the conventional one-transistor one-capacitor (1T1C) dynamic random-access
memory (DRAM) [1]. In 1T1C-DRAM, the charges are stored in the capacitor, which requires refreshing
every 64 ms. Various new-concept capacitor-less memory devices have been proposed to achieve
faster speed and higher density [2,3]. A semi-floating gate (SFG) transistor can work at low voltages by
taking advantage of the interband tunneling mechanism for the carrier transport similar to that in a
tunnel field-effect transistor (TFET) [4–6]. Different from the 1T1C-DRAM, the charges are stored in the
semi-floating gate in the SFG memory with an embedded TFET for carrier charging, enabling higher
writing speed with low operation voltage and suppressed leakage current [7–9]. However, in an SFG
transistor built on a bulk silicon substrate, the floating gate potential becomes too high after writing-1.
Meanwhile, the semi-floating gate structure is not insulated from the bottom of the device. Thus,
the unbalanced potential distribution results in the generation of leakage current from the floating gate
to the substrate. Such leakage has a significant impact on the memory function of the device during the
hold state, and the fluctuation in the amount of charge in the floating gate can cause data storage errors
in severe cases. In this work, we simulate SFG transistor devices on silicon-on-insulator (SOI) substrates
using Sentaurus Technology Computer-Aided Design (TCAD) tools. The SOI substrate can solve the
above problems by suppressing short channel effects and reducing the parasitic capacitance [10,11].
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There are other 1T-DRAM structures and recent concepts such as A2-RAM, UTBOX (Ultra-Thin Buried
Oxide) devices, Z2-FET (Zero Impact Ionization and Zero Subthreshold Slope FET). In 2011, scientists
proposed the A2RAM memory cell, which is a new concept of a capacitor-less DRAM cells for Fully
Depleted SOI with the advantages of a single gate and low voltage operation [12]. A2RAM has a
buried N-type layer of SOI transistor that can short circuits the source and drain (S/D) regions [13].
In addition, the Z2-FET is the comprehensive model for field-effect pnpn devices. The silicon film is
highly doped at both ends to form n+ and p+ regions. Between the two ends is an undoped region.
The two gates on the front and back are negatively biased, so there are lots of holes in the left side
and lots of electrons on the right side. By applying a bias voltage between n+ and p+ contacts in
the forward direction, the diode voltage, which increases with the gate voltage, suddenly changes
from a low current state to a high current state [14]. The UTBOX devices are similar to the traditional
SOI technology except for very thin buried oxide thicknesses (less than 50 nm). The thinner buried
insulator has the advantages of good threshold voltage control, good thermal resistance, and good
floating body effect. On the other hand, the buried oxide emphasizes the effect of the cell/substrate
interface. To overcome this problem, a higher doped region, called the ground plane, is added to
minimize the loss of this interface. This makes the substrate more controllable to the channel, and it
does not interfere with the operation of the device due to loss of capacitance [11]. In this work, we have
improved the structure by connecting the floating gate and the drain through a tunneling field-effect
transistor (TFET). A tunneling field-effect transistor is used to control the charge and discharge of the
floating gate, thereby forming a dynamic memory, and it is compatible with standard CMOS processes
and does not require the integration of new materials. Semi-floating gate transistors (SFGTs) do not
require significant changes to existing integrated circuit fabrication processes. Significantly improved
writing speed (4.8 ns) and reduced leakage current have been observed. Moreover, the anti-irradiation
capability of SOI-based SFG devices is also remarkably higher than that of bulk silicon-based devices.
Such integration of SFG devices on the SOI substrate combines the intrinsic advantages afforded by
the SOI structure with the novel SFG-based memory technology. This can pave an attractive pathway
towards high-performance DRAM in processors with potential applications in optimizing the radiation
response of advanced CMOS devices.

2. Device Structure and Basic Electrical Characteristics

A semi-floating gate (SFG) transistor consists of a TFET and a MOSFET with a semi-floating gate.
The device modeling simulation of SOI-based SFG transistor is based on a 20-nm technology node.
The device fabrication process is schematically shown in Figure 1. The SOI substrate is p+ doped
with boron, and the channel of the TFET is n- doped with As. The embedded TFET is formed by the
p-doped floating gate of the SFG and the n+ doped drain area through the opened window. Figure 2a
shows the doping concentration distribution of SFG transistors based on a SOI substrate. Figure 2b
measures the low-scanning-speed transfer curve loops of SFG transistor. Control gate voltage (VCG)
is swept between −2 V and 2 V while drain voltage (VD) is maintained at 0.5 V. The operations of
writing-1 and erasing change the threshold voltage (Vth) by changing the potential in the floating gate
of the SFG transistor. The drain current in state-1 is about 4.1 µA/µm, and it is about 0.4 nA/µm in
state-0. For the writing-1 operation, the positive bias at the drain and the negative VCG (for example,
VD = 0.5 V, VCG = −2 V) inverses the extension area from n+ to p-type. The p-n junction formed by the
drain of the SFG transistor and the floating gate is reversely biased. Therefore, the electron tunnels from
the conduction band of the p+ area to the valence band of n+ area following the interband tunneling
mechanism of tunnel field-effect transistor (TFET). The current flows from the drain to the semi-floating
gate, and the SFG potential is increased. On the other hand, during the erasing operation, the TFET
becomes a forwardly biased p-n junction, and the holes in the floating gate are drained. The SFG
potential thus drops, and the Vth of the transistor increases. During the data read phase, the entire
semi-floating gate transistor functions like the operation of a normal metal-oxide-semiconductor
field-effect transistor (MOSFET), that is, both the control gate and the drain are positively biased,
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and the channel inversion generates electrons to form a drain current. Since the potentials in the
second half of the floating gate are different after erasing and writing “1”, the threshold voltages of the
transistors are different. As a result, under the same VCG, two significantly different drain currents
could be obtained. Therefore, we can distinguish the data stored in the semi-floating gate by the drain
current. The conditions of the data retention phase are that the control gate is not applied with voltage,
the drain is positively applied, the p-n junction is kept reverse biased, and no charging and discharging
of the semi-floating gate occurs.
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Figure 1. Schematic illustration of the device fabrication process. (a) SOI substrate and N- well
formation. (b) 4 nm SiO2 deposition. (c) P-type floating gate formation. (d) Control gate and (e) spacer
formation. (f) N+ doped S/D formation and doping concentration distribution of the SFG transistor
based on the SOI substrate.
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Figure 2c shows the second cycle of normalized current curves of the SFG transistor, considering
the fact that the second cycle is more stable than the first cycle in the electrical measurement. It can be
observed that the reading current after the erase state is as low as 0.87 µA/µm due to the lower SFG
potential. After writing-1, the SFG potential is relatively higher. The reading current can be as high as
9.9 µA/µm, and the current ratio between the state “1” and the erased state is ~11. The changes that
occur in the SFG can be seen more intuitively in Figure 2d. As the applied voltage changes, the charge
in the half floating gate is erased or written, and its potential changes accordingly. The change of the
SFG potential in the second cycle can be extracted in TCAD, and the values after erasing and after
writing-1 are −0.46 V and −0.16 V, respectively. Such a change in the SFG potential further causes the
shift in Vth.

3. Simulation and Results

In order to optimize the operating conditions of the SFG transistor, we have tested simulations
with different erase/write-1 VCG operation voltages and time to extract the change in the SFG potential.
The parameters (voltage) we used in the simulation are given in Table 1. It should be noted that
although prolonged operation time could enable better erasing or writing in the device (Figure 3a,b),
the power consumption will also be increased. The moderate operation time of 4.8 ns has been used in
the following simulations. Figure 3c,d show that the SFG potential varies with the different VCG during
writing-1 and erasing operations. From the results shown in Figure 3, the SFG potential changes with
different operation time, and VCG. In other words, the erasing and writing speed can be manually
adjusted by manipulating the voltage and the time of reading and writing sequence.

Table 1. Time and operation voltage of the SFG transistor on the SOI.

Erase Write-1 Read Standby

VCG (V) 1.3 −2 0.5 0

VD (V) 0.5 1.0 1.0 0.5

VS (V) 0 0 0 0

VSub (V) −0.5 −0.5 −0.5 −0.5

Time (ns) 4.8 4.8 4.8 7.8
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Figure 4a,b show the two-dimensional (2D) distribution of the band-to-band generation rate
and the band structure of the SFG transistor during write-1 operation, respectively. The VCG bias is
negative, while VD is positive, which is given in Table 1. As stated before, the embedded TFET is
composed of the p-i-n area of the SFG, and the drain is turned on. In the band-to-band tunneling
(BTBT) model, the electrons tunnel at the interface, as shown in Figure 4b, and the BTBT generation
rate is the highest at the interface.
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The retention characteristics of the SFG-based memory is shown in Figure 4c. As discussed above,
the SFG potential will be much higher after writing-1 operation leading to possible current flow from
the floating gate to the drain, causing leakage. The leakage current will severely degrade the electrical
performance, including the data retention capability. In addition to the usage of SOI structure to
prevent the leakage from SFG to the substrate, increasing the drain potential can be expected to retain
state-1 in the memory device. As shown in Figure 4c, with VD = 0.5 V and VCG = 0 V, the memory
window is still large enough between the state-1 and the state-0 after 1-second retention. The states “0”
and “1” are written into the semi-floating gate separately, and then both VCG and VD are fixed at the
value of the hold process. The results, shown in Figure 4c, show that the state “0” and “1” can be held
for 1 s, which is in line with the requirements of the DRAM application.

The anti-disturbance capability is also a key criterion for a memory device, which could be
integrated into memory cell arrays towards multi-bit data storage. This is because the operating
voltage has become much lower, which can easily lead to the blurring between various memory states
or individual memory cells by even a slight disturbance. In our simulation, the memory cell array is
paged-operated, so the voltage of the word line (VCG) is the same. When VD crosstalk is introduced in
the state-0, VD of the TFET will be higher than the SFG potential, and holes will flow from the drain
to the SFG. Therefore, SFG potential in state-0 will be close to that in state-1. As shown in Figure 4d,
the SFG-memory is in a hold state before each disturbance. In Table 1, we used 0.5 V and 1 V of VD

voltages. When the hold voltage of 0.5 V is changed to the crosstalk voltage of 1 V, the SFG potential in
state-1 and state-0 can be distinguished from each other even with 10 ms of crosstalk.
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One of the major advantages of using the SOI substrate is the enhancement of the anti-irradiation
capability. We have further studied the radiation response of the SOI-based SFG transistor devices.
Figure 5a,b show the heavy-ion charge density of the transistor after single-particle incident comparing
the bulk silicon device and the SOI-based device, respectively. We extract the transient pulse current
after a single-particle incident. As shown in Figure 5c, the SOI device has a much smaller pulse peak
(1.5 µA) than the bulk silicon-based device (150 µA) under the same incident condition. This is because,
with the same transistor structure and single-event incident simulation, more electron-hole pairs will
be generated in the bulk silicon-based device compared to the device on SOI due to the lack of oxide
layer blocking.
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4. Conclusions

In this work, we have designed an SFG-memory based on the SOI substrate by using the Sentaurus
TCAD simulation. As compared to the conventional bulk Si, the SOI structure can greatly improve the
current leakage in the SFG transistors enabling better charge carrier transport efficiency and memory
retention property. By engineering the operation voltage and operation time, the SFG-based memory
has shown fast writing and erasing speed, good data retention, and anti-disturbance capabilities. SFG
transistors can replace a portion of the static random-access memory (SRAM). The traditional SRAM
requires six MOSFET transistors to form a memory cell with a large footprint. The SFG transistor can
form a memory cell with a single transistor and has a storage speed close to that of a memory cell
composed of six MOSFET transistors. Floating-gate transistors could also be used in the field of DRAM.
The industry has been looking for a capacitor-less device technology that could be used to fabricate
DRAMs. A DRAM composed of SFG transistors can realize the full functionality of conventional
DRAM without capacitors. Not only is the cost significantly reduced, but the integration is higher,
and the read and write speed is faster. In addition, the anti-irradiation ability of the SFG transistor
is also enhanced by using the SOI substrate. Our results demonstrating the SFG device technology
combining the advanced substrate structure is very promising in future on-chip memory applications
as well as power device integrations.
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