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Abstract: This paper presents a new three-phase battery charger integrated with the propulsion
system of an electric vehicle. The propulsion system consists of a dual-inverter topology connected
to an induction motor via open windings. The electrical vehicles (EV) batteries are divided by two
inverters. This will result in a drive with multilevel characteristics reducing the total harmonic
distortion (THD) of the voltage applied to the motor. The modularity of the multilevel inverter
will be maintained since two classical three-phase inverters are used. The charger will be fed by a
three-phase high power factor current source rectifier. The motor windings will take the role of the
DC-inductor required by the rectifier. In this way, an intermediate storage element between the grid
and the batteries of the vehicle exist. For the control system of the battery charger, we propose the use
of the instantaneous power theory and a sliding mode controller for the three-phase charger input
currents. Finally, to verify the behavior and characteristics of the proposed integrated battery charger
and control system, several tests are be presented.

Keywords: electric vehicles; integrated battery charger; dual-inverter drive; power factor correction
(PFC); current rectifier

1. Introduction

The importance of electrical vehicles (EV) has been hugely increased, year after year. Certainly,
their role is critical to answering the problem of the greenhouse effect [1]. Indeed, in accordance
with the International Energy Agency, in 2018 the global stock of electric passenger cars exceeded
5 million, which has increased 63%, taking into consideration the previous year [2]. On the other
hand, several governments have passed legislation in order to encourage the transition from fuel fossil
vehicles to EVs [3]. In this context, the technology solutions and research associated with these vehicles
have become increasingly important. One of the fundamental areas of the EV is the charging of the
EVs batteries.

There are several aspects that should be considered for EV chargers connected to the grid. It should
be considered whether they will be used for slow or fast charging, as well as their impact on the grid.
Regarding this last issue, the charger must be designed in order to minimize the impact on the grid
power quality. In this way, it should be designed to ensure that the charger is a load with high power
factor. Many high power factor rectifiers have been proposed and studied. Their topologies have been
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classified as Boost, Buck-Boost, and Buck, in accordance with their capability to generate an output
voltage that is higher or lower than the maximum input voltage [4–13].

Usually, EV chargers are classified as off-board or on-board [14]. The off-board chargers are
normally developed for high power DC fast charging. Several rectifier types have been proposed and
investigated as surveyed in [15–19]. The on-board chargers are for reduced powers and are integrated
into the EVs [20]. This solution gives high flexibility to the drivers since it usually allows the EV
to charge through an electric power outlet. However, the integration of the charger in the EV will
increase total weight, volume, and cost. Thus, to minimize this drawback, the chargers should be
designed, in order to use as much as possible, the same available hardware used for the traction of the
EV [14]. To implement this type of solution, it must be considered that the charging and propulsion
of the EV do not occur simultaneously. Indeed, the vehicle has the electric motor stopped when the
vehicle is connected to the electric grid for the charging process. So, when the EV is in charging mode,
the motor(s) windings will be used as filter inductors, storage elements, or isolated transformers.

Several configurations have been proposed for the integrated battery charger of EVs. These
proposals have also taken into consideration the motor type. For the case of the three-phase motors,
solutions using a Boost rectifier were considered, being the motor used as a filter inductor. These
solutions require having access to the motor, namely to the terminals of the motors windings, or neutral
point of the windings or use a contactor to reconfigure the connection of the motor windings [21–23].
An EV isolated charger for a lift truck was also proposed in [24]. Another approach was through
the use of current rectifiers with Buck-Boost characteristics. An integrated charger with this type of
converter and three-phase connection is presented in [25]. Due to the converter type, in charging
mode, the motor is used as a coupled DC inductor. Integrated chargers have also been proposed for
multiphase motors. These chargers have the advantage of avoiding the problem of torque generation
in the propulsion motor that exists in systems that use three-phase motors and Boost rectifiers. So,
solutions for five, six, and nine machine phases have been proposed [26–31]. However, for many EVs,
the dominant motor is the three-phase and chargers for multiphase motors cannot be applied. A good
possibility is the use of multilevel inverters for the drive of the three-phase AC motor. Very few works
have addressed the multilevel configuration for the EVs. A charger was presented for an EV drive
with two, two-level voltage source inverters (dual inverter), in [32]. However, the proposed charger
was developed for connection to DC power outlets only.

Another aspect is the control system for the EV chargers. Most control algorithms are intended
to minimize the total harmonic distortion (THD) introduced by the rectifier in the AC power line
current. Therefore, the controllers are normally associated with rectifier topologies that allow for high
(almost unity) power factor operation. Many control algorithms have been proposed for the high
power factor rectifiers [33]. Some of those control systems have been applied to EV chargers. One of
the proposals was the use of direct power control for a unidirectional EV charger [34]. The use of model
predictive control (MPC) was also used in these systems although requires complex implementation
and powerful microprocessors [35,36]. An EV charger proposing a nonideal proportional and resonant
(PR) controller was published in [37]. A charger nonlinear-carrier control method was proposed for
a reduced-part single-stage integrated power electronics interface for automotive applications [38].
Another interesting approach was the integration of the voltage-oriented control (VOC) with pulse
width modulation (PWM), but not for integrated chargers [39]. Regarding the integrated battery
charger, one of the most used approaches uses a Proportional-Integral (PI) compensator associated
with a PWM for the current controller [23,29]. Another approach was used for a 20 kW motor drive in
which the battery charging is done by controlling the inverter dq currents, similarly to field-oriented
control (FOC) [40]. For the charger based on the current rectifier, a PI compensator was proposed for
the current controller [25]. However, PI compensators are highly dependent on the circuit parameters
and present some lack of robustness that is typical from linear based compensators.

This paper proposes a novel configuration of an integrated on-board charger for EVs that uses
dual-inverter drives. For such drives, a charger is proposed to be connected to DC power outlets.
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On the other hand, the proposed charger does not require adjusting the three-phase AC drive or
access to the motor windings, avoiding additional terminals or reconfiguration. Note that such
requirement is typical in conventional solutions. From the point of view of the charger’s impact
on the grid, the proposed solution has some distinct features regarding the classic voltage source
PWM rectifier, namely, their capacity to limit the inrush and DC-short-circuit currents. The proposed
charger configuration is based on a three-phase high power factor current source rectifier. The motor
windings are part of the charger since they will operate as a DC inductor. A fast and robust control
system for the proposed EV charger will also be presented. This control is based on the sliding mode
control (SMC) technique since the power electronic converters used on the EV charger are variable
structure systems. On the other hand, the SMC has the capability of system order reduction and allows
increasing the stability, the robustness, and the response speed, even with perturbations. To confirm
the characteristics of the proposed EV charger, several tests are presented.

This paper is organized as follows. Section 2 describes the proposed new power converter
topology for the three-phase integrated battery charger of an EV with a dual-inverter drive and the
operation modes of the on-board integrated battery charger are presented. Section 3 deals with the
control system of the proposed battery charger based on the instantaneous power theory and sliding
mode control. Simulation results are presented and analyzed in Section 4, while the experimental
results are shown in Section 5. Section 6 presents some conclusions regarding the behavior of the
proposed integrated battery charger and control system.

2. Battery Charger Configuration

As mentioned before, the majority of the battery EV chargers will require access to the motor.
The proposed charger does not need this requirement since the output of the current-source three-phase
rectifier will be directly connected to the inverters, as shown in Figure 1. One of the output terminals
of the three-phase rectifier will be connected to one of the inverters through a motor winding and
the other output terminal will be connected to the other inverter. The proposed rectifier will present
Buck-Boost characteristics, in which, the propulsion winding motor is part of the circuit and is used
as a DC inductor when the system is in charging mode. Indeed, this is another advantage of the
circuit since avoids the use of a bulky DC inductor, needed in classic current-source rectifiers as an
intermediate storage element.
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the current source rectifier is disconnected from the motor. All the three-phase current dynamics 
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Figure 1. Power converter topology for the three-phase integrated battery charger of an electronic
vehicle (EV) with a dual-inverter drive.

Some of the aspects of the charger that is important to be considered are their total weight, volume,
and cost. One of the key elements that contribute to these in the current-source rectifiers is the DC
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inductor. However, since in this proposed charger the motor windings are used as a DC inductor,
the charger total weight, volume, and cost can be reduced since it is only required to include the power
semiconductors of the rectifier and small input LC filter.

Another aspect that must be considered is the impact of the charger on the grid. In this case,
comparing the proposed solution with the classic voltage source PWM rectifier, it has some distinct
features, namely, regarding their capacity to limit the inrush and DC short-circuit currents. Thus, when
the charger is connected to the grid, inrush current as in the classical solution is not possible as the input
rectifier is a current source device. Besides that, the grid current can be limited during a short-circuit in
the DC side of the rectifier, which is not possible in the classical solution. Regarding the impact on the
grid from the point of view of the harmonics and reactive power, the proposed charger is similar to
classical solutions. Indeed, the TDH is similarly small and the displacement factor is practically unity.

Through the analysis of the charger circuit, it is possible to devise operation modes associated with
the rectifier circuit and operation modes associated with the inverters. The definition of these operation
modes should take into consideration how the windings of the propulsion motor will be used. So,
since the value of the DC inductor of the rectifier influences the input line current distortion and the
switching frequency, two of the motor windings will be used in a serial connection. In accordance with
this choice, there will be seven operating modes associated with the rectifier. Each of these operating
modes is following described:

Mode 1: In this operation mode the power devices of the current source rectifier S1 and S6 are
turned on (Figure 2a) and the voltage applied to the motor windings is VCf13. This mode will influence
directly the currents in inductors Lf1 and Lf3, since the capacitor voltages Cf1 and Cf3 will also be
dependent on the io value.

Mode 2: In this operation mode the power devices of the current source rectifier S2 and S6 are
turned on (Figure 2b) and the voltage applied to the motor windings is VCf23. In this mode the most
influenced currents will be iLf1 and iLf3.

Mode 3: In this operation mode the power devices of the current source rectifier S2 and S4 are
turned on (Figure 2c) and the voltage applied to the motor windings is VCf21. This combination will
essentially affect the inductor currents iLf1 and iLf2.

Mode 4: In this operation mode the power devices of the current source rectifier S3 and S4 are
turned on (Figure 2d) and the voltage applied to the motor windings is VCf31. This mode mostly
influences the inductor currents iLf1 and iLf3.

Mode 5: In this operation mode the power devices of the current source rectifier S3 and S5 are
turned on (Figure 2e) and the voltage applied to the motor windings is VCf32. The phase currents iLf2

and iLf3 will be most influenced.
Mode 6: In this operation mode the power devices of the current source rectifier S1 and S5 are

turned on (Figure 2f) and the voltage applied to the motor windings is VCf12. The currents iLf1 and iLf2

will be most influenced.
Mode 7: In this operation mode all the power devices are turned off (Figure 2g). In this mode the

current source rectifier is disconnected from the motor. All the three-phase current dynamics will be
influenced, namely tending to reduce, as the inductor energy is transferred to the battery.
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Figure 2. Modes of the on-board integrated battery charger: (a) mode 1; (b) mode 2; (c) mode 3; (d)
mode 4; (e) mode 5; (f) mode 6; (g) mode 7.

One of the critical aspects of the rectifier is the need for a DC inductor to work as an intermediate
storage element between the grid and the batteries of the vehicle. This intermediate storage will be
ensured through the control of the dual inverters and synchronized with the rectifier. Thus, to ensure
the success of this procedure, there will be two operating modes. The first operating mode is when the
energy is transferred from the grid to the motor windings. In this way, this operating mode will be
associated with the rectifier operating modes 1 to 6. To ensure that the motor winding will operate
as DC inductors the switches of the upper inverter SU1, SU2, and SU3 and the switches of the lower
inverter SL5 and SL6 must be in ON state (Figure 3a). The second operating mode is associated with
the transfer of the energy from the motor windings to the inverter battery. Thus, it must be ensured
that the rectifier should be disconnected from the inverters. This will be achieved by operating mode 7.
Regarding the switches of the inverters in this mode, all of them must be switched to the OFF state
(Figure 3b).
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3. Control of the Charger

The proposed EV charger will be the controller in order to ensure a reference power and with
near-unity power factor. In accordance with this, it is proposed a control system based on the dynamic
model of the rectifier.

The model of the proposed current source rectifier, as an on-board charger, whose scheme is
presented in Figure 1, can be obtained considering all semiconductors being ideal while neglecting the
losses of the inductors and capacitors. the operation modes will be also considered from the previous
section, and the three-level variables γ1, γ2, and γ3, in Equation (1) are assumed to be associated with
the state of the power semiconductors. Based on the symmetrical and balanced three-phase system of
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Figure 1, and applying Kirchhoff laws to the circuit, the state-space model, in the three-phase reference
frame, is given by Equation (2).

γ1 =


1 , i f S1 is ON and (S 4 is ON or S6 is ON)

− 1 , i f S2 is ON and (S 3 is ON or S5 is ON)

0 , other combinations

γ2 =


1 , i f S3 is ON and (S 2 is ON or S6 is ON)

− 1 , i f S4 is ON and (S 1 is ON or S5 is ON)

0 , other combinations

γ3 =


1 , i f S5 is ON and (S 2 is ON or S4 is ON)

− 1 , i f S6 is ON and (S 1 is ON or S3 is ON)

0 , other combinations

(1)
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C f
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γ2
C f
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dVC f 2
dt = 1

C f
VC f 3 −

γ3
C f

iLo

(2)

Applying αβ coordinates to the model of the current-source rectifier presented in Equation (2),
the following equations are obtained in Equation (3).

disα
dt = −

R f
L f

isα − 1
L f

VC f α +
1

L f
Vsα

dis β
dt = −

R f
L f

is β − 1
L f

VC f β +
1

L f
Vs β

dVC f α

dt = 1
C f

isα −
γα
C f

io
dVC f β

dt = 1
C f

is β −
γβ
C f

io

(3)

For the controller design, consider the active and reactive powers to the input of the current source
rectifier. From the instantaneous power theory [41], the instantaneous active and reactive powers are
expressed by: {

P = VSαiSα + VSβiSβ
Q = VSαiSβ −VSβiSα

. (4)

From Equation (4) it is possible to obtain the required input AC currents function of the defined
powers. Thus, these currents will be determined in accordance with the following equation: iSα =

PVSα+QVSβ

VSα
2+VSβ

2

iSβ =
PVSβ−QVSα

VSα
2+VSβ

2

. (5)

To obtain a fast and robust controller, the sliding mode control [41–44] will be designed based on
the state-space model presented in Equation (3) and Equation (5).

Considering the input AC current references, isαref and isβref, proportional to the active (P) power
and reactive (Q) power, respectively, sliding surfaces for the input current can be obtained, in Equations
(6) and (7).

Siα(eiSα, t) = (iSαre f − iSα) + kiα
d
dt
(iSαre f − iSα) (6)
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Siβ(eiSβ, t) = (iSβre f − iSβ) + kiβ
d
dt
(iSβre f − iSβ) (7)

Where Kiα and Kiβ proportional gains are chosen in order to impose an appropriate switching frequency.
Considering the sliding mode theory, the dynamics of the input current source rectifier variables

have a strong relative degree of 2 [42,43]. Considering the feedback tracking errors, in the previous
expressions, as the state variables the control equations will be given by:

Siα
(
eiSα , t

)
=

(
iSre f α − iSα

)
+ kiα

diSre f α
dt −

kiα
L f

(
VSα −R f iSα − VC f α

)
= 0

(8)

Siβ
(
eis β , t

)
=

(
isre f β − is β

)
+ kiβ

disre f β
dt −

kiβ
L f

(
Vs β −R f is β − VC f β

)
= 0

(9)

In order to guarantee that sliding surfaces will be equal to zero, the following sliding mode
stability conditions in Equations (10) and (11) must be verified:

Siα(eisα , t)
•

Siα(eisα , t) < 0, (10)

Siβ
(
eis β , t

)•
Siβ

(
eis β , t

)
< 0 . (11)

For the selection of the most suitable vector, a current vector modulator associated with the
previous control equations is used. In this integrated charger system, from the point of view of the
output current source rectifier, the motor drive will behave as a current source. In this sense and
considering the several states of the current source rectifier switches, in the αβ plane there are 16 vectors,
7 of them being distinct, as we can see from the space vector diagram presented in Figure 4. To choose
the current vector, two hysteretic comparators with the purpose to limit the switching frequency will
be considered, to evaluate the output of the sliding surfaces, being 1 if they are positive or 0 if they
are negative. Taking into consideration, for example, the situation in which the outputs of the two
hysteretic comparators are both 1, then vector 1 should be selected.Electronics 2019, 8, x FOR PEER REVIEW 9 of 18 
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There are some techniques [45] to devise the choice of eight vectors from the two comparators,
but in this application, the choice of the vector should not be made taking only into consideration the
sliding surfaces and sliding mode stability conditions, but also the maintenance of the currents in the
motor windings as constant as possible. Thus, to ensure the condition of the constant motor winding
currents, the capacitor voltages must also be considered. As an example, let us consider again the
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situation in which the outputs of both hysteretic current comparators are 1, but the capacitor voltages
VC f α are negative and VC f β are positive. In this situation, the vector near the second quadrant must
be chosen. So, the vector nearest to the first quadrant (to ensure that the sling surfaces will move to
zero) and to the second quadrant due to the capacitor voltages is vector 2. For the situation that the
capacitor voltages VC f α and VC f β are negative then there is a conflict, since the quadrants under to be
determined are the first one and the third one. The conflict is solved by choosing vector 0. On the
other hand, the choice of this vector is also critical since it is the only vector that allows the transfer of
the energy from the motor windings to the battery. Table 1 presents the conditions for the choice of the
current vector considering the sliding surfaces and capacitor voltages.

Table 1. Choice of the current vector function of the sliding surfaces and capacitors voltages polarity.

S(eisα ,t) S(eisβ ,t) Vector VCf α VCf β

0 0 4 - -

0 1 3 - -

1 0 5 - -

1 1 0 - -

0 0 4 - +

0 1 3 - +

1 0 0 - +

1 1 2 - +

0 0 5 + -

0 1 0 + -

1 0 6 + -

1 1 1 + -

0 0 0 + +

0 1 2 + +

1 0 6 + +

1 1 1 + +

To control the charge of the EV batteries, there are normally two different approaches, constant
power and constant voltage [46,47]. In constant power the control is normally ensured by a current
controller. Indeed, the current reference of this controller is given by the power reference. The second
approach is used to regulate the voltage of the batteries. Due to that, a voltage controller must be
used. However, this controller can be associated with the current controller (that also allows to limit
the current of the system) in a simple cascade structure. In this way, in the inner loop there is the
proposed current controller (sliding mode) and in the outer loop there is a voltage controller that gives
the reference of the current controller. For the voltage controller, a PI compensator can be used.

4. Tests Results

A detailed simulation using Simulink blocks and SimPower Systems blocks of the Matlab software,
to model the proposed on-board integrated battery charger, was implemented.

To test the proposed solution, the charger was connected to a grid, with 230/400 VRMS, through
input filter inductors with 5 mH and capacitors with 15 µF. For the three-phase induction motor, with
open windings, an equivalent leakage inductance of 10 mH was considered. These windings are used
as DC inductors of the charger. For the load (batteries) a voltage source with a value of 400 V each was
considered. Due to these values, the rectifier was to operate in Boost mode. The switching frequency
was not fixed since it was using a sliding mode controller. This frequency was the function of the
hysteretic current comparators which used a width of 0.4 A.
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The adopted controller was tested in different conditions allowing steady-state and transient
analysis, under different system requirements.

A steady-state analysis was made, considering the EV charging with a reference power of 10 kW
(an AC per phase current of 14.5 A RMS). Results are shown in Figure 5, which presents the three-phase
charger input AC currents when the controller was tested in steady-state. Based on this result, it is
possible to verify that the input currents are sinusoidal, with very low distortion.
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Figure 5. Results of the three-phase charger input currents.

In Figure 6, the results of the AC current and the grid voltage in phase 1 are presented. It can
be seen in the figure waveforms that the current is in phase with the grid voltage of the same phase.
This result confirms that the current source rectifier receives nearly only active power (near unity
power factor). This can also be confirmed through the obtained low total harmonic distortion (THD) of
the current, which is 3.5%. This shows that with this topology and control system, it is possible to
obtain a low enough THD.
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Figure 6. The grid voltage and current in phase 1.

For the same conditions, in steady-state, Figures 7 and 8 present the current in motor winding A
(iA) and the DC output current of the three-phase inverters (io1), respectively. The first figure shows
that the motor windings will act as a DC inductor, being the intermediate storage system. Regarding
the other current it is possible to verify that it has a similar top shape, although it has discontinuity
modes. Indeed, only when the rectifier is in mode 7 (all switches of the inverter are in the OFF state)
the current of the motor windings will flow through the DC side of the inverters.
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Figure 8. The DC inverter output current (io1).

In order to test the performance of the EV charger controller, tests in transient conditions were also
performed. The conditions for the tests were initially set to 10 kW (14.5 A RMS), and suddenly (at 0.1 s)
changed to 6 kW (8.7 A RMS). The result of the three-phase charger input AC currents, presented
in Figure 9, shows that the controller based on sliding mode control has a fast dynamic response.
In Figure 10 the results of the DC output current of the inverters are presented. From this waveform it
is possible to conclude that this current is proportional to the amplitude of the input AC currents.
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Figure 10. Results of the DC output current in transient conditions (io1).

To verify the behavior of the EV charger in Buck operation mode, a steady-state analysis was done
for the batteries with a value of 200 V each. It was considered again that the EV was charging with a
reference power of 10 kW. Figures 11 and 12 show the three-phase charger input AC currents and grid
voltage and AC current in phase 1. These results show a behavior similar to the one in Boost mode. It
is possible to conclude that the rectifier can be operated in Boost or Buck mode without degradation of
their behavior. However, there is a slight increase in the distortion of the current to 4.1%, although still
tolerated as seen in the figures.
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5. Experimental Results

To support the theoretical assumptions and expectations, as well as the simulation studies, a low
power prototype was used to perform additional tests. The charger was connected to an AC power
source with 200 Vmax and 50 Hz. For the input filter, 5 mH inductors and capacitors with 15 µF were
used. The battery was implemented using two voltage sources with a value of 250 V each. For the
hysteretic current comparators was used a width of 0.2 A. An oscilloscope TDS3014C was also used to
acquire the waveform signals.

The obtained experimental results from the low power prototype of the charging process are
shown in Figures 13–16. For the data presented in those figures, a reference power of 600 W was
adopted, which gives a current amplitude of 2 A. From Figure 13, it is possible to see that the three-phase
charger input currents are in accordance with the reference value and present a shape that is nearly
sinusoidal. This can also be confirmed through the obtained low total harmonic distortion (THD) of
the current, which is 3.9%. The charge at unity power factor can be confirmed by Figure 14, which
presents the grid voltage and rectifier AC current in phase 1. Indeed, it is possible to confirm that the
current in phase with the grid voltage.
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The current in the motor winding during this charging process can be seen in Figure 15. Through
this figure, it is possible to confirm that the windings will act as DC inductors since the current has a
small ripple. The output DC current of the inverters can be seen in Figure 16. As expected, this current
is similar to the results in Figure 8, confirming that only when the rectifier is in mode 7 (all switches of
the inverter in the OFF state) the storage energy in that winding will be transferred to the batteries.

Regarding the overall efficiency of this charger for the conditions of this test, a value of 86%
was obtained. To see the percentage of the losses associated with this efficiency considering the
several parts of the charger, the loss breakdown of the charger is presented in Figure 17. From this
figure it is possible to verify that the majority of the losses are associated with the propulsion system
(motor and inverters). Comparing with the known integrated EV chargers, it is possible to see that
it presents similar values. This comparison was made considering the chargers presented in the
works [21,22,24,25,28,31], in where their efficiency is 90%, 87%, 89%, 82–92%, 76%, and 83%.
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6. Conclusions

A new integrated propulsion motor drive and battery charger for EVs to be connected to a
three-phase system are proposed in this work. The motor drive is based on a dual inverter that
provides a multilevel operation with the use of classical two-level three-phase voltage source inverters.
The proposed rectifier presents Buck-Boost characteristics and allows operation at unity power factor.
Another important advantage under the point of view of the design is that the proposed configuration
was developed in order to avoid having access to the motor terminals. This was achieved through the
direct connections of the rectifier output terminals to each of the inverters. Besides that, the windings
of the motor were also integrated into the rectifier topology since they will behave as DC inductors.
Associated with the proposed charger, a controller was presented to ensure high power factor of the
rectifier. For this controller the instantaneous power theory was used and proposed a sliding mode
controller for the three-phase charger input currents. The characteristics and behavior of the proposed
charger and control system were verified through simulation and experimental tests.
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