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Abstract: This paper presents the experimental implementations of the mathematical models and
algorithms developed in Part I. Two experiments are carried out. The first experiment determines
the correction coefficients of the mathematical model. The dot grid target is measured, and the
measurement data are processed by our developed and validated algorithms introduced in Part
I. The values of the coefficients are indicated and analyzed. Uncertainties are evaluated using
the Monte Carlo method. The second experiment measures a different area of the dot grid target.
The measurement results are corrected according to the coefficients determined in the first experiment.
The mean residual between the measured points and their corresponding certified values reduced
29.6% after the correction. The sum of squared errors reduced 47.7%. The methods and the algorithms
for raw data processing, such as data partition, fittings of dots’ centers, K-means clustering, etc., are
the same for the two experiments. The experimental results demonstrate that our method for the
correction of the errors produced by the movement of the lateral stage of a confocal microscope is
meaningful and practicable.

Keywords: geometric errors; rigid body kinematics; lateral stage errors; imaging confocal microscope;
MCM uncertainty evaluation; dot grid target

1. Introduction

The increasing demands for manufacturing accuracies and quality control due to the rapid
development of nanotechnology, ultraprecision machining, micro-, and nanofabrications, etc. [1,2]
and the requirements for precision in surface finishing in different technologies such as additive
manufacturing [3], mechanical parts with structured surfaces [4], etc., require the use of increasingly
sophisticated measurement systems and measurement traceability from a metrological point of view.

Calibration provides a wide range of information about microscope performances.
The ever-increasing demand for improved surface quality and tighter geometric tolerances has
led to augmentations in the investigations of manufacturing technologies [5]. Measurements using
optical microscopes are often affected by common path noise, disturbance in light source and ambient
lighting, etc., which cause measurement defects and outliers [6,7], as well as attract investigations
on noisy data processing [8]. The need for standardization is becoming ever greater as the range of
capturing three-dimensional (3D) information of microscope techniques continues to increase [5,9].
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For optical confocal microscopes, the Z-calibrations at nm levels are typically good, while the X- and
Y-accuracies are often left, without further notice than resolution limits of the optics [10,11]. Among the
investigations of lateral calibrations, many studies focus on the optical system [12]. For example,
H. Ni et al. proposed a new method to achieve structured detection using a spatial light modulator,
which modulates the Airy disk amplitude distribution according to the detection function in the
collection arm [13] and B. Wang et al. presented confocal microscopy with structured detection in
a coherent imaging process to achieve a higher resolution with a comparably large pinhole [14],
however, the systematic geometric errors which adversely affect the relative position and orientation
between measuring probes and measurands are usually neglected [15,16]. B. Daemi et al. designed
a comprehensive verification test by using a high precision metrology method based on subpixel
resolution image analysis [17]. The calibration of confocal microscopes usually relies on traceable
standard artefacts, which are commonly made up of regular patterns [10].

This paper describes the experimental studies based on the kinematic modeling and algorithms
for the correction of the geometric errors developed in Part I [18]. Sections 2 and 3 introduce the
methodologies for experiments and uncertainty evaluation individually. Section 4 presents the
experiment on a dot grid target for correction coefficients determination and their corresponding
uncertainty evaluation. Section 5 implements an experiment and corrects the measured data with
determined coefficients, comparing the residuals with respect to certified values before and after
corrections. Section 6 presents the conclusions. Following Section 6, acknowledgements and references
are included.

2. Methodology for the Experimental Study

The purposes of this experimental study were to, first, determine the error correction coefficients,
i.e., defined in the kinematic geometric error correction model developed in Part I [18] and, secondly,
apply the determined parameters of coefficients and the correction mathematical model for new
measurement data calibration. The dot grid target standard artefact was implemented as the measurand
of the experiments. By comparing the residuals of measured points and corrected points with respect
to the certified values, the practicality and significance of our developed models and algorithms for
lateral stage error calibration were observed.

Two experiments were carried out with our imaging confocal microscope, which is a Leica
Confocal Dual Core 3D Measuring Microscope (Leica DCM-3D), at the “Laboratorio de Investigación de
Materiales de Interés Tecnológico” (LIMIT) of the Technical University of Madrid. The first experiment
measured the dot grid target standard for the determination of the correction coefficients. The second
experiment measured another area of the dot grid standard, processing the measurement data with
the same developed and validated algorithms implemented in the first experiment. The purpose
of this experiment was to observe whether the corrected data improved as compared with the raw
measurement data. Because the second experiment used the same measurement parameters, data
processing algorithms, and procedures, and measured a different area of the same dot grid standard,
this comparison is important as other factors, which might influence the results, could be excluded
majorly, such as the uncertainties or inaccuracies generated by algorithms of cylinder separation, center
fitting, and movement scope of the lateral stage, etc.

3. Methodology and Procedures for Uncertainty Estimation

A statement of measurement is complete only if it provides an estimate of the quantity concerned,
as well as a quantitative evaluation of the estimate’s reliability, i.e., the associated uncertainty [18].
Accompany measurement results by quantitative statements about their accuracy is very important
particularly when the result are part of a measurement chain tracking back to national standards or
when decisions about product specifications are taken [19].

The document issued by BIPM, Guide to the Expression of Uncertainty in Measurement (GUM) [20]
provides a method and procedure for the evaluation and expression of measurement uncertainties [21].
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This method is termed the GUM uncertainty framework in supplement 1 and supplement 2 (GUM-S1
and GUM-S2) [22,23] and other bibliographies [19,24]. The GUM uncertainty framework has two main
limitations [2,25]. The first limitation is the lack of generality of the procedure to obtain an interval
to contain the values of the measurand with a stipulated coverage probability [25]. In the GUM
uncertainty framework, the way a coverage interval is constructed to contain values of the measurand
with a stipulated coverage probability is approximate [22]. The second limitation is that insufficient
guidance is given for the multivariate case in which there is more than one measurand, namely, more
than one output quantity [22,25]. In order to address these limitations, Working Group 1 of the Joint
Committee for Guides in Metrology (JCGM) has produced two specific guidance documents, namely
GUM-S1 and GUM-S2 [23,24], on the Monte Carlo method (MCM) for uncertainty evaluation and
extensions to any number of measurands (output quantity), respectively [22].

The MCM provides a general approach to obtain a numerical representation G of the distribution
function GY(η) for Y. The heart of the approach is making repeated draws from the probability density
functions (PDFs) for the input variables Xi (or joint PDF for X) and the evaluation of the output quantity.
Assignment of the PDFs for the input variables is dependent on each experiment. The same case applies
to the evaluation of the output quantity. The distribution function GY(η) encodes all information
known about the output quantity Y. Properties of Y can be approximated using GY(η). The quality of
G depends on the number of draws made. The symbol y represent the output measurement results.
It is determined by the input measurement results xi:

y = f (x1, . . . , xN) (1)

The relationship between the PDF of output measurement results and input measurement results is:

gY(η) =

∫
gX1,...,XN

(ξ1, . . . ,ξN) × δ[η− f (ξ1, . . . ,ξN)]dξ1 . . . dξN (2)

where η denotes possible values that can be distributed to Y, δ[· · · ] denotes the Dirac delta function.
Figure 1 provides an illustration of the propagation of distributions for input and output quantities.

The expectation of the output quantities can be obtained by its PDF gY(η) as:

E(Yi) =

∫
∞

−∞

ηigYi(ηi)dηi (3)
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The variance of the output quantities can be obtained by its PDF gY(η) as:

V(Yi) =

∫
∞

−∞

[ηi − E(Yi)]
2

gYi(ηi)dηi (4)
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The covariance of the output quantities can be obtained by its PDF gY(η) as:

Cov(Yi, Y j) = Cov(Y j, Yi) =

∫
∞

−∞

∫
∞

−∞

[ηi − E(Yi)]
[
η j − E(Y j)

]
gYi,Y j(ηi, η j)dηidη j (5)

where gYi,Y j(ηi, η j) is the joint PDF for the two random variables Yi, Y j.
The correlation of the output quantities can be obtained by its PDF gY(η) as:

Corr(Yi, Y j) = Corr(Y j, Yi) =
Cov(Yi, Y j)√
V(Yi)V(Y j)

(6)

4. Experiment for Determination and Uncertainty Evaluation of the Error Correction Coefficients

The first experiment is the measurement of the standard artefact of the dot grid target. The purpose
of this experiment is to obtain the parameters of the coefficients of the kinematic rigid body errors.
Uncertainties of the obtained correction coefficients are also evaluated.

4.1. Determination of Error Coefficients

The standard artefact of the dot grid target is introduced in Part I of [18]. This artefact was measured
in an environment under a controlled temperature of 20 ± 1 ◦C, using the Leica DCM-3D Confocal
Microscopy at the Metrology Laboratory of the Technical University of Madrid. A magnification
objective of 50x was used, with a numerical aperture of 0.9. The acquisition parameter of measurement
area was defined as the topography stitching measurement, with a 4 × 4 extended topographies,
covering an area of 0.828 × 0.621 mm2. The parameter of overlapping area was 25% and the correlation
takes XYZ option. The level of resolution was 1, and the measured extended topographies contained
2496 × 1872 pixels.

After the measurement, the confocal system generated a file with suffix name ”.dat”, containing
three vectors, which are values of the X, Y, and Z coordinates. Data of this file was imported and
analyzed by our developed algorithms. The raw measurement data is shown in Figure 2, which is an
inclined surface with some outliers. This surface was aligned to be parallel with the X and Y coordinate
plane using our developed surface rotation methods introduced in Part I [18]. The aligned surface is
shown in Figure 3. The distribution of the values of the X, Y, and Z coordinates of the surface after
rotation is shown in Figure 4.
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After rotation, the data were separated into surface plane and cylinders. The surface reconstruction
of the data of cylinders is shown in Figure 5. It is obvious that this data has many outliers. Those outliers
are detected and deleted by the method introduced in our previous work [8]. The distribution of the
measurement values of the X and Y coordinates, as well as the threshold for outlier detections are
shown in Figures 6 and 7 individually. The surface reconstruction by the data of cylinders with outliers
removed is shown in Figure 8.
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Figure 9. Separation of the cylinders.

Those individual point clouds of cylinders are processed by our introduced algorithms.
Their centers are fitted and shown in Figure 10, in comparison to their corresponding certified positions.
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The measured cylinder centers, shown in Figure 10, are all distorted in one direction. This might
be caused by the location of the measurand, as it is impossible to locate the measurand parallel with the
x-axis. Therefore, those measured centers are first aligned to be parallel with the x-axis. Then, they are
calibrated to the certified points using our developed mathematical models and algorithms. From this,
the results of the coefficients defined in the mathematical model, i.e., Equations (4) and (5) in Part I [18],
can be obtained. The results are indicated in Table 1. Moreover, rotation of the calibrated values of the
cylinder centers to align them with the measured ones are also carried out for the validation of the
rotation capability.

Table 1. Parameters of the coefficients of the mathematical models for lateral geometric error correction.

Parameter Value Parameter Value Parameter Value

a1 7.38 × 10−3 c1 4.36 × 10−6 e1 6.00 × 10−6

a2 −1.46 × 10−6 c2 1.05 × 10−8 e2 −6.24 × 10−9

a3 3.19 × 10−11 c3 −1.20 × 10−12 e3 9.69 × 10−14

b1 1.05 × 10−3 d1 −7.22 × 10−3 f1 −2.01 × 10−2

b2 −1.11 × 10−5 d2 4.00 × 10−6 f2 1.25 × 10−5

b3 −3.15 × 10−11 d3 −1.01 × 10−10 f3 −3.10 × 10−9

With those obtained parameters of the coefficients, the corrected points are calculated according to
Equations (4) and (5) in Part I [18]. Figure 11 shows the corresponding positions of certified, measured,
and corrected points. The results of the mean errors, maximum errors, sum of squared errors, and
standard deviations of the errors are indicated in Table 2.Electronics 2019, 8, 1217 9 of 19 
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Figure 11. Comparison of the positions of certified, measured, and corrected points.

Table 2. Errors with respect to the certified positions before correction and after correction.

Data Types Mean Error
[µm]

Maximum Error
[µm]

Sum of Squared
Errors [µm2]

Standard
Deviations of the

Errors [µm]

Measured points 18.3 33.1 1.4 × 104 7.0
Corrected points 3.8 8.9 628.1 1.9

The Euclidean residuals of each point are plotted by contours, as shown in Figures 12 and 13,
which is the contour of the Euclidean residuals of the measured and corrected points with respect to
the certified values.
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It can be concluded that the determined coefficients for kinematic geometric error correction
works very well in this measurement.

4.2. Uncertainty Evaluation

Uncertainty evaluation of the geometric error coefficients is based on the algorithms introduced
in Section 3. The heart of the approach is making repeated draws from the PDFs for the input variables
Xi (or joint PDF for X) and the evaluation of the output quantity. Here, we define the determinations
of the number of repeated draws, namely, the number of simulation trials, the PDFs for the input
variables, and the evaluation of the output quantity.

According to GUM-S2 [23] the main stages of uncertainty evaluation constitute formulation,
propagation, and summarizing describes as follows:

1. The first stage of formulation includes:

(a) Define the output quantity, namely, the geometric error correction coefficients Cc =

(a1, . . . g3);
(b) Determine the input quantity upon which Cc depends, namely, the measurement results

(x, y) and their corresponded certified values (Px, Py);
(c) Develop a measurement function f or measurement model relating the input and output

quantities, namely, Equations (4) and (5);
(d) On the basis of available knowledge, assign PDFs to the components of the input

quantities. As indicated by Table 2 in Part I [18], the certified values (Px, Py) follow
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a rectangular distribution U(−1, 1) µm. As there is no more information about the sources
of uncertainties for (Px, Py) or information for the measured values of X and Y coordinates
(x, y), here does not assign more uncertainties to the input quantities, for not introducing
unnecessary uncertainties.

2. The second stage, propagation, includes: Propagate the PDFs for the components of input
quantities through the model to obtain the (joint) PDF for the output quantity.

3. The final step, summarizing, includes: Use the PDF for the output quantity to obtain the expectation
of the output quantity, the uncertainty matrix, also named covariance matrix, associated with the
expectation of the output quantity, and a coverage region containing the output quantity with
a specified probability p(the coverage probability).

The simulation was repeated 1 × 104 times. Mean values, expanded uncertainties (k = 2), as well
as lower and upper boundaries for a 95% coverage interval are listed in Table 3. Distributions for the
output quantities are shown in Figure 14 and we observe that non-symmetric distributions and not
assimilable to normal distributions are obtained.

Table 3. Parameters of the coefficients of the mathematical models for lateral geometric error correction.

Parameter Mean Value Expanded Uncertainty 95% Coverage Interval
Lower Boundary Upper Boundary

a1 7.50 × 10−3 4.74 × 10−3 5.07 × 10−3 1.61 × 10−2

a2 −2.13 × 10−6 5.41 × 10−6
−1.28 × 10−5

−6.12 × 10−8

a3 2.00 × 10−10 7.14 × 10−10
−1.35 × 10−10 1.21 × 10−9

b1 −5.91 × 10−6 8.85 × 10−3
−1.62×10−2 2.99 × 10−3

b2 −9.91 × 10−6 9.19 × 10−6
−1.50 × 10−5 2.08 × 10−6

b3 −6.86 × 10−12 2.36 × 10−9
−8.94 × 10−10 2.67 × 10−9

c1 3.41 × 10−6 7.89 × 10−6
−6.22 × 10−6 7.41 × 10−6

c2 1.26×10−8 1.86 × 10−8 2.21 × 10−10 3.86 × 10−8

c3 −8.16 × 10−13 3.44 × 10−12
−5.74 × 10−12 1.56 × 10−13

d1 −6.57 × 10−3 4.97 × 10−3
−8.53 × 10−3 3.52 × 10−3

d2 3.93 × 10−6 1.94 × 10−6 1.39 × 10−6 5.37 × 10−6

d3 −5.88 × 10−11 3.78 × 10−10
−4.59 × 10−10 1.53 × 10−10

e1 5.89 × 10−6 2.95 × 10−6 2.00 × 10−6 8.04 × 10−6

e2 −6.57 × 10−9 6.71 × 10−9
−1.44 × 10−8

−4.88 × 10−11

e3 −2.34 × 10−15 3.80 × 10−13
−2.36 × 10−13 3.30 × 10−13

f 1 −2.21 × 10−2 1.42 × 10−2
−5.15 × 10−2

−1.43 × 10−2

f 2 1.40 × 10−5 1.73 × 10−5 6.71 × 10−6 4.98 × 10−5

f 3 −2.94 × 10−9 2.92 × 10−9
−5.37 × 10−9

−1.14 × 10−11
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5. Experimental Study of the Applications of Determined Coefficients

This section aims to verify the applicability of the determined error correction coefficients and the
residuals of measured and corrected points with respect to certified points are compared.

This experiment measures the dot grid target standard used in Section 4. The measured area of
this standard is different from those in Section 4. All the environmental and operational parameters
are the same as those in Section 4. The measurement data are processed using the same algorithms
and procedures, until the fitted cylinder centers are approximated parallel with the x-axis. Then the
fitted centers are corrected by the error correction coefficients determined. By comparing the mean
residuals, the sum of all squared residuals, and the standard deviation of residuals of measured points
and corrected points with respect to certified positions, the effectiveness of the calculated coefficients
and our model can be observed.

Measurement data are processed using our developed and validated algorithms. The raw
measurement data with form removed are shown in Figure 15, implementing the form removal method
presented in the pair publication Part I [18] Section 4.1. The cylinders are separated from the base
with our developed algorithms, with results demonstrated in Figure 16. Figure 16a shows the initial
separated cylinders, Figure 16b shows the cylinders with outliers removed and with clusters classified,
and Figure 17 shows the histograms of the three coordinates of the cylinders.
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The separated clusters are fitted for their centers. The coordinate values of the fitted cylinder
centers are shown in Table 4. Figure 18 shows the fitted cylinder centers, as well as the centroids of
each cluster data.
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Table 4. The raw coordinate values of the fitted cylinder centers.

Cluster N◦ X Coordinate
[µm]

Y Coordinate
[µm] Cluster N◦ X Coordinate

[µm]
Y Coordinate

[µm]

1 47.3 42.6 19 541.8 298.1
2 172.3 42.9 20 667.7 301.3
3 294.8 44.0 21 796.8 298.4
4 425.1 49.5 22 40.2 420.6
5 544.9 48.1 23 163.3 417.8
6 669.2 46.6 24 291.1 421.0
7 796.4 48.3 25 415.9 424.6
8 42.4 166.5 26 538.9 423.9
9 167.7 171.9 27 666.1 430.0

10 292.6 172.3 28 794.6 430.3
11 419.3 172.6 29 41.2 530.7
12 544.1 175.2 30 163.3 548.3
13 666.6 174.6 31 289.5 546.6
14 797.0 176.0 32 415.0 548.2
15 40.1 295.9 33 539.9 551.7
16 163.4 294.6 34 662.6 550.7
17 293.0 294.5 35 796.9 550.8
18 417.9 295.3
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As shown in Figure 18, the cluster numbered 29 has too many outliers. Here, we only choose the
first 28 clusters for the kinematic geometric error correction. The correction employs the mathematical
model Equations (4) and (5), as well as our calculated error coefficients. Before correction, the data
are aligned to be parallel with the X coordinate as much as possible. Table 5 shows the aligned
measurement data and the corrected data.

Table 5. The aligned and corrected measurement data.

Cluster N◦
Rotated Measurement Data Corrected Data by Error Coefficients

X Coordinate [µm] Y Coordinate [µm] X Coordinate [µm] Y Coordinate [µm]

1 47.2 42.8 47.5 41.6
2 172.2 43.4 173.4 41.7
3 294.7 44.8 296.7 42.7
4 425.1 50.6 427.7 48.2
5 544.8 49.5 548.2 46.8
6 669.0 48.3 673.1 45.2
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Table 5. Cont.

Cluster N◦
Rotated Measurement Data Corrected Data by Error Coefficients

X Coordinate [µm] Y Coordinate [µm] X Coordinate [µm] Y Coordinate [µm]

7 796.2 50.3 800.9 46.4
8 42.0 166.6 42.1 163.2
9 167.2 172.3 168.2 168.3
10 292.1 173.1 293.9 168.9
11 418.9 173.6 421.3 169.3
12 543.7 176.6 546.8 172.1
13 666.2 176.3 669.9 171.5
14 796.6 178.1 801.0 172.6
15 39.3 296.0 39.1 290.6
16 162.6 295.0 163.2 289.3
17 292.3 296.4 293.7 289.6
18 417.2 299.4 419.3 290.7
19 541.0 303.0 543.8 293.7
20 666.9 300.4 670.4 297.2
21 796.1 420.7 800.2 294.2
22 39.1 418.2 38.6 413.4
23 162.2 418.2 162.5 410.9
24 290.0 421.7 291.1 414.6
25 414.8 425.7 416.7 418.8
26 537.9 425.3 540.4 418.6
27 665.1 431.7 668.3 425.1
28 793.5 432.2 797.4 425.5

The aligned and corrected measurement data are both adjusted to a beginning of (0, 0). The results
of the measured and corrected positions are compared with the certified positions in Table 6. Figure 19
illustrates the measured, corrected, and the certified positions. The mean error, the maximum error, the
sum of the squared errors, and the standard deviations of the errors are indicated in Table 7. The mean
error and residual between the measured positions and the certified positions is 8.1 µm, while the
mean error and residual between corrected positions and the certified positions is 5.7 µm, improved
29.6%. The maximum error between the measured positions and the certified positions is 15.6 µm,
while the maximum error between corrected positions and the certified positions is 11.5 µm, reduced
26.3%. The sum of squared errors reduced from 2173.3 µm2 to 1136.2 µm2, which is 47.7%. It can be
observed that all four types of errors are much smaller after correction with the error coefficients.

Table 6. Comparison of the certified, measured, and corrected positions.

Cluster N◦
Certified Position Measured Position

(Alignment Rotated) Corrected Position

X Coordinate
[µm]

Y Coordinate
[µm]

X Coordinate
[µm]

Y Coordinate
[µm]

X Coordinate
[µm]

Y Coordinate
[µm]

1 0.0 0.0 0.0 0.0 0.0 0.0
2 125.0 0.0 125.1 0.6 125.9 0.1
3 250.0 0.0 247.6 2.0 249.2 1.1
4 375.0 0.0 377.8 7.8 380.2 6.6
5 500.0 0.0 497.7 6.7 500.7 5.2
6 625.0 0.0 621.9 5.5 625.6 3.6
7 750.0 0.0 749.1 7.5 753.4 4.9
8 0.0 125.0 −5.1 123.8 −5.4 121.6
9 125.0 125.0 120.1 129.5 120.7 126.8

10 250.0 125.0 245.0 130.3 246.4 127.3
11 375.0 125.0 371.7 130.9 373.8 127.8
12 500.0 125.0 496.5 133.8 499.3 130.5
13 625.0 125.0 619.0 133.5 622.4 129.9
14 750.0 125.0 749.4 135.2 753.5 131.0
15 0.0 250.0 −7.8 253.2 −8.4 249.0



Electronics 2019, 8, 1217 15 of 18

Table 6. Cont.

Cluster N◦
Certified Position Measured Position

(Alignment Rotated) Corrected Position

X Coordinate
[µm]

Y Coordinate
[µm]

X Coordinate
[µm]

Y Coordinate
[µm]

X Coordinate
[µm]

Y Coordinate
[µm]

16 125.0 250.0 115.5 252.2 115.7 247.8
17 250.0 250.0 245.1 252.5 246.2 248.0
18 375.0 250.0 370.1 253.6 371.8 249.1
19 500.0 250.0 493.9 256.6 496.3 252.2
20 625.0 250.0 619.8 260.2 622.9 255.6
21 750.0 250.0 748.9 257.7 752.7 252.6
22 0.0 375.0 −8.0 377.9 −8.9 371.8
23 125.0 375.0 115.1 375.4 115.1 369.3
24 250.0 375.0 242.9 378.9 243.7 373.0
25 375.0 375.0 367.7 382.9 369.2 377.2
26 500.0 375.0 490.7 382.5 492.9 377.0
27 625.0 375.0 617.9 388.9 620.8 383.5
28 750.0 375.0 746.4 389.5 749.9 383.9
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Table 7. Errors with respect to the certified positions before correction and after correction.

Data Types Mean Error
[µm]

Maximum Error
[µm]

Sum of Squared
Errors [µm2]

Standard
Deviations of the

Errors [µm]

Measured points 8.1 15.6 2173.3 3.5
Corrected points 5.7 11.5 1136.2 2.8

Figures 20 and 21 show the contour of the mean errors of the measured data and the corrected
data individually. Figure 22 shows the comparison of the error vectors from the certified positions to
the measured positions and the vectors from the certified positions to the corrected positions.
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According to the above results, we found that the errors and residuals between the corrected
positions and the certified positions are much smaller than the errors and residuals between the
measured positions and certified positions. This indicates that our method for the X and Y coordinate
calibration and correction is effective and useful.
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6. Conclusions and Future Work

This paper implemented two experiments for the illustration and the verification of our proposed
method for the correction of the kinematic geometric errors produced by the movement of the lateral
stage of confocal microscopes. The experimental results indicate that the mean residual reduced 29.6%,
the maximum error reduced 26.3%, and the sum of squared errors reduced 47.7%.

The first experiment measured the dot grid targets with extended topography. After processing the
measurement data, the error correction coefficients defined in the mathematical model, i.e., Equations (4)
and (5) presented in Part I [18] were determined. The uncertainties of the values of those coefficients
were also evaluated using the Monte Carlo method. The simulation number was 1 × 104. Distributions
of the uncertainties of each coefficient, as well as their lower and upper boundaries of a 95% interval,
were indicated.

The second experiment measured a different area of the same standard artefact. By correcting the
measurement data using our mathematical model and the determined coefficients, the corrected results
were obtained. The residuals between the raw measured points and their corresponding certified
values were compared to those between the corrected points and the certified values.

The data processing algorithms and procedures, such as separations of the flats and cylinders, data
partitions, outlier eliminations, K-means clustering, cylinder centers fittings, etc. were the same for the
two experimental studies. The difference between the data processing for the two experiments was in
the final procedures. The first experiment fitted the values of the coefficients used the nonlinear least
squared method. The second method applied the mathematical models and the determined values of
the coefficients to the measured data for obtaining the corrected coordinate values of the points.

Results of the experiments demonstrated that our proposed method for lateral stage kinematic
geometric error correction is efficient and useful.

Among the next practical steps for improving the proposed method is a focus on the stitching
algorithm of the optical element [26], which highly needs a calibration and correction of the
stitching result.

Author Contributions: Conceptualization and methodology, C.W. and E.G.; algorithms, experiments, data,
manuscript writing, C.W.; resources, funding, supervision, E.G. and Y.Y.; review and editing, C.W., E.G., and Y.Y.

Funding: This work is funded by the Spanish State Programme of Promotion of Scientific Research and Technique of
Excellence, State Sub-programme of Generation of Knowledge. Project DPI2016-78476-P “Desarrollo Colaborativo
de Patrones de Software y Estudios de Trazabilidad e Intercomparación en la Caracterización Metrológica de
Superficies”, belonging to the 2016 call for R & D Projects. The authors acknowledge the support from the National
Natural Science Foundation of China (NSFC) project no. 51775326 and the Major State Research Development
Program of China (2016YFF0101905).

Acknowledgments: Sincere thanks to the computer resources, technical expertise, and assistance provided by
the Supercomputing and Visualization Center of Madrid (CeSViMa). The authors thankfully acknowledge the
Chinese Scholarship Council (CSC) for funding the first author’s doctoral study.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jassby, D.; Cath, T.Y.; Buisson, H. The role of nanotechnology in industrial water treatment. Nat. Nanotechnol.
2018, 13, 670–672. [CrossRef]

2. Pfeifer, T.; Freudenberg, R.; Dussler, G.; Brocher, B. Quality control and process observation for the micro
assembly process. Measurement 2001, 30, 1–18. [CrossRef]

3. Bose, S.; Vahabzadeh, S.; Bandyopadhyay, A. Bone tissue engineering using 3D printing. Mater. Today 2013,
16, 496–504. [CrossRef]

4. Stout, K.J.; Blunt, L. A contribution to the debate on surface classifications—Random, systematic, unstructured,
structured and engineered. Int. J. Mach. Tools Manuf. 2001, 41, 2039–2044. [CrossRef]

5. Krolczyk, G.M.; Krolczyk, J.B.; Maruda, R.W.; Legutko, S.; Tomaszewski, M. Metrological changes in surface
morphology of high-strength steels in manufacturing processes. Measurement 2016, 88, 176–185. [CrossRef]

http://dx.doi.org/10.1038/s41565-018-0234-8
http://dx.doi.org/10.1016/S0263-2241(00)00050-6
http://dx.doi.org/10.1016/j.mattod.2013.11.017
http://dx.doi.org/10.1016/S0890-6955(01)00069-4
http://dx.doi.org/10.1016/j.measurement.2016.03.055


Electronics 2019, 8, 1217 18 of 18

6. Wang, C.; D’Amato, R.; Gómez, E. Confidence Distance Matrix for outlier identification: A new method to
improve the characterizations of surfaces measured by confocal microscopy. Measurement 2019, 137, 484–500.
[CrossRef]

7. Wang, C.; Caja, J.; Gomez, E. Comparison of methods for outlier identification in surface characterization.
Measurement 2018, 117, 312–325. [CrossRef]

8. Sekiya, F.; Sugimoto, A. Fitting discrete polynomial curve and surface to noisy data. Ann. Math. Artif. Intell.
2015, 75, 135–162. [CrossRef]

9. Khac, B.C.T.; Chung, K.H. Quantitative assessment of contact and non-contact lateral force calibration
methods for atomic force microscopy. Ultramicroscopy 2016, 161, 41–50. [CrossRef]

10. Ekberg, P.; Mattsson, L. Traceable X,Y self-calibration at single nm level of an optical microscope used for
coherence scanning interferometry. Meas. Sci. Technol. 2018, 29, 035005. [CrossRef]

11. Wilson, T.; Carlini, A.R. Size of the detector in confocal imaging systems. Opt. Lett. 1987, 12, 227–229.
[CrossRef] [PubMed]

12. Kim, T.; Gweon, D.; Lee, J. Enhancement of fluorescence confocal scanning microscopy lateral resolution by
use of structured illumination. Meas. Sci. Technol. 2009, 20, 055501. [CrossRef]

13. Ni, H.; Zou, L.; Guo, Q.; Ding, X. Lateral resolution enhancement of confocal microscopy based on structured
detection method with spatial light modulator. Opt. Express 2017, 25, 2872–2882. [CrossRef] [PubMed]

14. Wang, B.; Zou, L.; Zhang, S.; Tan, J. Super-resolution confocal microscopy with structured detection.
Opt. Commun. 2016, 381, 277–281. [CrossRef]

15. Lee, K.; Lee, J.C.; Yang, S.H. The optimal design of a measurement system to measure the geometric errors of
linear axes. Int. J. Adv. Manuf. Technol. 2013, 66, 141–149. [CrossRef]

16. Ibaraki, S.; Kimura, Y.; Nagai, Y.; Nishikawa, S. Formulation of Influence of Machine Geometric Errors on
Five-Axis On-Machine Scanning Measurement by Using a Laser Displacement Sensor. J. Manuf. Sci. Eng.
2015, 137, 021013. [CrossRef]

17. Daemi, B.; Ekberg, P.; Mattsson, L. Lateral performance evaluation of laser micromachining by high precision
optical metrology and image analysis. Precis. Eng. 2017, 50, 8–19. [CrossRef]

18. Wang, C.; Gómez, E.; Yu, Y. Characterization and correction of the geometric errors in using confocal
microscope for extended topography measurement. Part I: Models, Algorithms Development and Validation.
Electronics 2019, 8, 733. [CrossRef]

19. Cox, M.G.; Siebert, B.R.L. The use of a Monte Carlo method for evaluating uncertainty and expanded
uncertainty. Metrologia 2006, 43, S178–S188. [CrossRef]

20. JCGM 100:2008 Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement (GUM);
JCGM: Paris, France, 2008.

21. Harris, P.M.; Cox, M.G. On a Monte Carlo method for measurement uncertainty evaluation and its
implementation. Metrologia 2014, 51, S176–S182. [CrossRef]

22. JCGM 101:2008 Evaluation of Measurement Data—Supplement 1 to the “Guide to the Expression of Uncertainty in
Measurement”—Propagation of Distributions Using a Monte Carlo Method; JCGM: Paris, France, 2008.

23. JCGM 102: 2011 Evaluation of Measurement Data—Supplement 2 to the “Guide to the Expression of Uncertainty in
Measurement”—Extension to Any Number of Output Quantities; JCGM: Paris, France, 2011.

24. Wubbeler, G.; Krystek, M.; Elster, C. Evaluation of measurement uncertainty and its numerical calculation by
a Monte Carlo method. Meas. Sci. Technol. 2008, 19, 084009. [CrossRef]

25. Bich, W.; Cox, M.G.; Dybkaer, R.; Elster, C.; Estler, W.T.; Hibbert, B.; Imai, H.; Kool, W.; Michotte, C.;
Nielsen, L.; et al. Revision of the “Guide to the Expression of Uncertainty in Measurement”. Metrologia 2012,
49, 702–705. [CrossRef]

26. Chen, D.; Peng, J.; Valyukh, S.; Asundi, A.; Yu, Y. Measurement of High Numerical Aperture Cylindrical
Surface with Iterative Stitching Algorithm. Appl. Sci. 2018, 8, 2092. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.measurement.2019.01.043
http://dx.doi.org/10.1016/j.measurement.2017.12.015
http://dx.doi.org/10.1007/s10472-014-9425-7
http://dx.doi.org/10.1016/j.ultramic.2015.10.028
http://dx.doi.org/10.1088/1361-6501/aaa39d
http://dx.doi.org/10.1364/OL.12.000227
http://www.ncbi.nlm.nih.gov/pubmed/19738847
http://dx.doi.org/10.1088/0957-0233/20/5/055501
http://dx.doi.org/10.1364/OE.25.002872
http://www.ncbi.nlm.nih.gov/pubmed/29519004
http://dx.doi.org/10.1016/j.optcom.2016.07.005
http://dx.doi.org/10.1007/s00170-012-4312-z
http://dx.doi.org/10.1115/1.4029183
http://dx.doi.org/10.1016/j.precisioneng.2017.04.008
http://dx.doi.org/10.3390/electronics8070733
http://dx.doi.org/10.1088/0026-1394/43/4/S03
http://dx.doi.org/10.1088/0026-1394/51/4/S176
http://dx.doi.org/10.1088/0957-0233/19/8/084009
http://dx.doi.org/10.1088/0026-1394/49/6/702
http://dx.doi.org/10.3390/app8112092
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Methodology for the Experimental Study 
	Methodology and Procedures for Uncertainty Estimation 
	Experiment for Determination and Uncertainty Evaluation of the Error Correction Coefficients 
	Determination of Error Coefficients 
	Uncertainty Evaluation 

	Experimental Study of the Applications of Determined Coefficients 
	Conclusions and Future Work 
	References

