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Abstract: Sparse reconstruction methods have been successfully applied for efficient radar imaging
of targets embedded in stratified dielectric subsurface media. Recently, a total variation minimization
(TVM) based approach was shown to provide superior image reconstruction performance over
standard Ll-norm minimization-based method, especially in case of non-point-like targets.
Alternatively, group sparse reconstruction (GSR) schemes can also be employed to account for
embedded target extent. In this paper, we provide qualitative and quantitative performance
evaluations of TVM and GSR schemes for efficient and reliable target imaging in stratified subsurface
media. Using numerical electromagnetic data of targets buried in the ground, we demonstrate
that GSR and TVM provide comparable reconstruction performance qualitatively, with GSR
exhibiting a slight superiority over TVM quantitatively, albeit at the expense of less flexibility
in regularization parameters.
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1. Introduction

Effective and reliable imaging of targets embedded in stratified subsurface media is highly
desirable in ground penetrating radar (GPR) applications [1-13]. Regularization methods based on
L? (1 < p < 2) spaces framework have shown promise for microwave imaging of buried targets [14-16].
The sparse nature of targets has also been successfully exploited in GPR image recovery through
sparse reconstruction approaches [4,17-21]. Most sparsity-based methods model the background
environment in GPR as a two-layered medium, where radar operates in the upper air layer and the
targets are buried within the lower ground layer. However, natural soil typically comprises multiple
layers, which, if not properly addressed, can severely degrade the imaging performance.

Recently, a generalized sparse image reconstruction approach with total variation minimization
(TVM) was proposed for efficient and reliable radar imaging through multilayered background media [4].
More specifically, the multilayered subsurface Green’s function was incorporated in the imaging
algorithm to model the wave propagation effects in the multilayered environment and was efficiently
evaluated using the saddle point method. As compared to standard /1-norm minimization-based
techniques [20,22], which are based on point target model, the TVM-based approach minimizes the
gradient of the image, thereby leading to better edge preservation and, in turn, reconstruction of
non-point-like and extended targets [4,21].

An alternative to TVM based approach is group sparse reconstruction (GSR), which can also account
for the target extent [21,23]. In high-resolution images, each extended or non-point-like target generally
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occupies a contiguous group of pixels rather than a single pixel. As such, the point-target-based sparse
signal model can be refined to exclude from the solution space any image whose support contains
isolated pixel indices [22]. The group sparsity approach incorporates the clustering of the non-zero
image pixels into a small number of contiguous groups as a constraint in the sparse reconstruction
problem. The specific clustering pattern can be structured to match the desired target shape.

In this paper, we provide a performance evaluation of TVM and GSR schemes for non-point-like target
imaging in stratified subsurface media. To this end, we consider a multiple-input multiple output (MIMO)
radar system and use numerical electromagnetic data of targets buried in a four-layered background
environment. We show that the two methods provide comparable performance qualitatively under
noisy measurements. Quantitatively, GSR exhibits a slight superiority in terms of image reconstruction,
especially at low signal-to-noise ratio (SNR) values. However, this GSR quantitative performance is
achieved at the expense of less flexibility in setting of regularization parameters.

The remainder of the paper is organized as follows. Section 2 provides a review of the Green’s function
formulation for modeling the wave propagation effects in the multilayered background media and details
the TVM and GSR based imaging algorithms. Section 3 describes the considered metrics for quantitative
assessment and provides performance comparison using two sets of image reconstruction results of targets
embedded in stratified subsurface media. Concluding remarks are provided in Section 4.

2. Sparsity-Based Image Formation through Stratified Subsurface Media

In this section, we first describe the signal model for imaging through stratified subsurface
media with a co-located MIMO radar. Then, we briefly review the TVM and GSR techniques for
image reconstruction.

2.1. Signal Model in Matrix Form

We consider an N-element transmit array and an M-element receive array, with 4, = (X¢, Ztn)
and #y, = (Xpm, 2rm) denoting the respective position vectors of the nth transmitter and mth receiver.
A stepped-frequency signal, with P frequencies uniformly covering the frequency band [fin, fmax),
is used for imaging. The transmitters are assumed to be activated sequentially, while simultaneous
reception at all receivers is assumed. We focus on the four-layered background media, shown in
Figure 1, where the first layer is air and the remaining three are subsurface layers. The dielectric
constant and conductivity of the subsurface layers are assumed to be (¢12,02), (€3,03), and (&,4,04),
while the second and third layers have a thickness of d; and d3, respectively. Although the presented
formulation considers only three subsurface layers, it can be readily generalized to an arbitrary number
of subsurface layers.
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Figure 1. Radar imaging through stratified subsurface media [21].




Electronics 2019, 8, 1245 3of11

Assuming a point target embedded in the fourth layer, the received scattered field, Es(#m, #in, k¥ ),
at the mth receiver with the nth transmitter active can be expressed as

Es(Yrm, 1tn, k7) :fG(rrm,r,k”’)G(r,rtn,kp)o(r)dr, (1)

where o(r) is the scene reflectivity at position r = (x,z), k¥ is the free-space wave number of the pth
frequency, and G(#ym, 1, kP) and G(r, ri, k¥) are the layered media Green’s functions characterizing
wave propagation from the transmitter to the target and from the target to the receiver, respectively.
We note that Equation (1) essentially uses the first-order Born approximation, which ignores the
multiple scattering effects. We discretize the region being imaged in the xz-plane into K X L pixels,
and represent the corresponding scene reflectivity by the K X L matrix s. Then, the mth received signal
in Equation (1) can be expressed in matrix form as

Yun = Ymns, s=vec(s), (2)

where vec(-) returns the column-wise vectorization of its matrix argument, the pth element of v, ,
is [y, ”]p = Es(#ym, ¥, k), and ¥, is a P x KL dictionary matrix encompassing the stratified media
effects, with its (p, q)th element given by

[¥nl,g = Gltrm 10, K )Glrg, 100, ), p=1,...,P, q=1,...,KL )

The layered media Green’s function for the GPR imaging configuration in Figure 1 can be expressed
in closed-form using the Saddle Point Method (SPM) as [4]

jka , 2
G(rg, 1, k) ~ —F(klao)e](k1©(“0)+”/4) _—, 4)
4 k1| (ao)|

where rr = (xR, zRr), k1 is the wavenumber of the air layer, «a is a real-valued scaling variable, and

®(a) = [alvg = x|+ d2 Ve = a2 + d3 Ve — a2 + zp Ve — a2 + (z-23) Ve — a2, ©)

(14 Ry2)(1 4 Ro3)(1 4 Ray)

F(kla) = Ri=1+ Rlzﬁzg eXp(jZkZZdz), Rb =1+ R23R34 exp(j2k32d3),
Rathlz (6)
_ Rp4R Dkesod ki —k;
yy = Rt Rueplhads) o K TN Ly %

1 + Ry3R34 eXp(j2k3zd3) s ki, + ij’

with z3 = —=dy —ds and k;, = \[k? —k2a2, i = 1,2,3,4. Additionally, k;, i = 2,3,4, is the complex
wavenumber of the ith subsurface layer, and the stationary phase point ag is determined from
Re[®’(ap)] = 0. Stacking the measurements from all N transmitters and M receivers yields the
signal model
y=1Ys ®)
wherey = @{1,5{/2, .. .,Ayf/LN]T ¥ = [‘PlTl, ‘I’{z, ., ‘I’}A N]T, and ‘T” denotes matrix transpose.
The signal model in Equation (8) C(,)rresi:)onds to the full data measurements, comprising all
P frequencies from all N transmitters and M receivers. In many practical operational scenarios,
there are often cost constraints, which may limit the number of transmitters and receivers available for
deployment. Note that reducing the number of frequencies at which measurements are made over
the desired bandwidth may not translate into cost reduction. This is because the antennas and radio
frequency (RF) front end would still be required to operate over the entire frequency band. As such,
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we retain the use of all P frequencies and assume that N; < N transmitters and M, < M receivers are
available for data collection. Under these constraints, the model in Equation (8) takes the form

y = AYs = Os. )

Here, A is an MNP x NMP measurement matrix given by [24]

A= (@) Ine) (X) (89X L), (10)

where ‘(X)’ denotes the Kronecker product, I () Is an identity matrix with the subscript indicating
its dimensions, ® is an M, X M matrix constructed by randomly selecting M, rows of Iy,p, and 9 is
an N X N matrix consisting of N; randomly selected rows of Iyp.

2.2. Total Variation Minimization

Using the reduced measurements in Equation (9), the unknown scene reflectivity vector s can be
recovered by solving the TVM problem [4],

§ = argmin ||s||Ty, subject to |ly — Os||, < 6, (11)

where 0 represents a small tolerance error,

K1l o RS TS+, ) =50, ) ]
Iy = L & W¥)ih = & Eo”[ S, j+1) =30, ) |!
K-1L-1 [ s(G-1)K+i+1)-s((j-1)K+1i) }”
1

=B EN T sk -s((G- 1)K+ 1)

(12)

In this work, we use the Nesterov algorithm in the NESTA package to solve the TVM problem in
Equation (11) [25]. This algorithm utilizes a regularization scheme together with a smoothed version
of [1-norm to achieve the solution of the underlying convex optimization problem.

2.3. Group Sparse Reconstruction

In high-resolution imaging, targets generally occupy a group of neighboring pixels whose extent
depends not only on the target dimension, but also on the system resolution. This prior pixel
neighborhood information can be incorporated in the image reconstruction problem using group
sparsity constraints. More specifically, the scene reflectivity vector s can be obtained by solving the
convex optimization problem [23,26,27]

KL-1
1
§ = argmin sly — sl + A Y W @Dsg (13)
q=0

where g; € {0,1,...,KL — 1} isan index set corresponding to the group of pixels forming a neighborhood
around the gth pixel and the diagonal weighting matrix W@ ensures that the weighting within a group
is according to the desired pixel neighborhood relation. Figure 2 provides an example of how the
grouping of the image pixels works for a 10 x 10 image [23]. The number in the top left corner of each
square indicates the pixel index, whereas the pixel weight of the depicted group is represented by the
number in the center of each pixel. The weights are chosen such that their sum equals unity to avoid
unintentional scaling of the reconstruction result. As shown in Figure 2, the index set for the group
corresponding to the 12th pixel is g12 = {2, 11, 12, 13, 22}, with the corresponding weighting matrix
wil2) — diag<§, 3/ 5/ 8 g). In this paper, we solve the reconstruction problem in Equation (13) using
Primal YALL1 group [27] and utilize overlapping groups.
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Figure 2. Illustration of a pixel grouping [23].

3. Performance Evaluation Results and Discussion

In this section, we first describe the metrics considered for quantitative performance evaluation and
then present the image reconstruction assessment results of targets embedded in a stratified subsurface.

3.1. Quantitative Metrics

We consider two different metrics, namely, relative clutter power (RCP) and Earth mover’s
distance (EMD), for quantitative performance evaluation of the TVM and GSR schemes.

3.1.1. Relative Clutter Peak

We define the target region, R;, as the union of rectangular or circular regions at known target
positions, whereas the remainder of the image comprises the clutter region, R.,. The size of each
individual target region is determined based on the ground truth and the system resolution. With Ag, ¢
and Ag_; denoting the respective maximum amplitude of target and clutter regions in the reconstructed
image §, the RCP is defined as [23]

Ap. 2
RCP in dB = 20 1og10(ﬁ) , Ags = {;;%x)s:qL Ag.s = rqré%x)s?q
t c

, 14
Fg : (14)

C 7'

where §; is the gth element of 8. The RCP metric penalizes strong clutter and favors clean images with
low noise and clutter power and high target amplitudes.

3.1.2. Earth Mover’s Distance

Earth mover’s distance is defined as the minimal amount of image intensity that has to be moved
to transform one image into another [28,29]. For the underlying application, we measure the EMD
between the reconstructed image and the ground truth image. This metric incorporates perceptual
differences between the reconstructed and ground truth images, as it measures error in terms of not
only the differences in pixel values, but also physical distance away from the actual target locations.
It, therefore, is a preferred metric over mean-squared error in sparse reconstruction literature [30].
In this work, we use a fast implementation of EMD [31].

3.2. Performance Comparison

We consider a MIMO radar system with 17 uniformly spaced transmitters from —0.96 to 0.96 m
and 16 receivers equally spaced from —0.9 to 0.9 m. Both arrays are at a height of 0.2 m above the
ground. The stepped-frequency signal covers the 0.8 to 2 GHz bandwidth with P = 49 frequency steps.
A time-domain full wave electromagnetic solver based on Finite-Difference Time-Domain (FDTD)
method is used for generating the received signals from two different scenes. Fast Fourier Transform
(FFT) is applied to transform the time-domain received signals to frequency domain. The radar
measurement configuration and signal parameters are the same in both scenarios. White Gaussian
noise is added to the frequency-domain data. For image reconstruction, the thickness and complex
permittivity of each layer of the stratified subsurface media are assumed to be known a priori.
In practice, however, these parameters can be estimated using an inversion scheme. The inversion of
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multilayered medium parameters has been well developed within the framework of one-dimensional
inverse scattering in the past two decades [32-35]. For the conventional single layer subsurface,
analytical methods for estimation of the dielectric slab parameters have been provided in [32,35].
For multilayered subsurface media, the number and parameters of each layer can be efficiently retrieved
using a layer-stripping algorithm or global optimization inverse scattering techniques [33,34].

3.2.1. Example 1

In this example, we consider three metallic targets (two rectangular and one cylindrical) embedded
in a three-layered background environment, as shown in Figure 3. The dielectric constant, conductivity,
and thickness of the second layer are €,, = 6,02 = 0.01 S/m, and d, = 0.2 m, respectively. The third layer
with a dielectric constant €,3 = 3 and conductivity o3 = 0.005 S/m contains the three targets. The target
dimensions are specified in Table 1. We randomly select two transmitters (12% of the available quantity)
and six receivers (38% of the available number). For each chosen transmitter-receiver pair, we utilize all
49 frequency measurements to reconstruct the image. Figures 4 and 5 depict the images obtained using
TVM, GSR, and standard /1-norm sparse reconstruction [20] for —10 and —5 dB SNR values, respectively.
We observe from Figures 4 and 5 that although there are a few false reconstructions in both TVM and GSR
results, the two approaches provide cleaner images of the targets as compared to the standard /;-norm
sparse reconstruction result.

Table 1. Target characteristics for Example 1.

Type Dimensions Center Position
Rectangular 02mx0.1m (=0.6 m, —=0.75 m)
Cylindrical Radius = 0.1 m (0, -0.8m)
Rectangular 02mx0.1m (0.6 m, —0.75m)

Tx Rx
oo O-oO-----3-- -
I 0.2m

£2=6, 62=0.01S/m d=0.2m

Figure 3. Scene comprising three metallic targets in a three-layered background environment [21].
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Figure 4. Reconstruction results at an SNR (signal-to-noise ratio) of —10 dB for three-targets scene using
two transmitters and six receivers. (a) GSR (group sparse reconstruction); (b) TVM (total variation
minimization); (c¢) standard /{-norm minimization.
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Figure 5. Reconstruction results at an SNR of —5 dB for three-targets scene using two transmitters and
six receivers. (a) GSR; (b) TVM,; (c) standard /;-norm minimization.

Next, we quantitatively evaluate the performance of the TVR, GSR, and standard /;-norm
reconstruction schemes. We consider SNR values in the [-10 10] dB range with 5 dB increments.
We perform a total of 100 Monte Carlo trials for each SNR value with different realization of noise
and different randomly chosen sets of two transmitters and six receivers each time. For every
trial, we reconstruct the image using TVM, GSR, and standard /;-norm schemes and compute the
corresponding values of the metrics. Figure 6 plots the RCP and the EMD, each averaged over 100
trials, versus SNR. The variance of the EMD for each SNR is also indicated in Figure 5. We observe
that GSR and TVM provide almost identical RCP performance, while significantly outperforming
standard /;-norm reconstruction for all SNR values. In terms of EMD at low SNR, GSR provides the
best performance as manifested by the lowest EMD average and variance values, while standard
l1-norm reconstruction has the worst performance with TVM in the middle. At higher SNR values,
the average EMD values for all three reconstruction methods are comparable. However, both GSR and
TVM yield a smaller variance for the EMD as compared to the standard [;-norm reconstruction. Similar
trends were observed for reconstruction performance with a random selection of four transmitters and
four receivers and a random selection of four transmitters and eight receivers.

25 T T T 0.08

J—GsR

f—TVM

f—L1

0.075

0.07

0.065

0.06

MD

% 0.055
0.05

0.045

0.04 ﬁa%

0.035
-10 -5 0 5 10
SNR (dB) SNR (dB)

(a) (b)

Figure 6. Quantitative Metrics vs. SNR for three-targets scene reconstruction using two transmitters

and six receivers. (a) RCP (relative clutter power); (b) EMD (average and variance).
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3.2.2. Example 2

In this example, we consider a large composite metallic target consisting of two semi-cylinders on
top of a rectangle cylinder, which is embedded in the third layer of a three-layer background as shown
in Figure 7. The target dimensions are also specified in Figure 7. The physical and electrical properties
of the three background layers are the same as in Example 1. Figures 8 and 9 depict the reconstruction
results obtained with two randomly chosen transmitters and six randomly chosen receivers using
TVM, GSR, and standard /;-norm sparse reconstruction for SNR values of —5 and 0 dB, respectively.

Similar to Example 1, we observe that both TVM and GSR approaches yield superior quality images as
compared to the standard /;-norm sparse reconstruction.

0.2m

£2 =6, 2= 0.01S/m 0.2m

Figure 7. Scene comprising a composite metallic target in a three-layered background environment [4].

0 0
5 5
0. 10 E o, 10
N N
- -15 e -15
el 05 0 0.5 1 Kl 0.5 0 05 1

x (m) x (m)

@ ) (b)

Figure 8. Reconstruction results for composite target scene using two transmitters and six receivers at
an SNR of -5 dB. (a) GSR; (b) TVM,; (c) standard /1-norm minimization.
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Figure 9. Reconstruction results for composite target scene using two transmitters and six receivers at
an SNR of 0 dB. (a) GSR; (b) TVM; (c) standard /;-norm minimization.
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The two quantitative performance metrics, averaged over 100 Monte Carlo trials, are plotted vs.
SNR in Figure 10 for TVR, GSR, and standard /;-norm reconstruction schemes. For EMD, the variance
is also indicated in Figure 10. Again, we observe that the performance of GSR and TVM is comparable
in terms of RCP, while that of standard /;-norm reconstruction is significantly lower. Unlike the
three-target scene in Example 1 wherein TVM performance in terms of average EMD was approximately
half-way between that of GSR and standard /;-norm reconstruction, the EMD curve for TVM in the
larger composite target case closely follows the corresponding curve for GSR. TVM’s capability of edge
preservation better manifests itself in case of the composite target, leading to smaller performance
difference with GSR as compared to the three-targets scene in Example 1.

Reconstructions with a random selection of four transmitters and four receivers, and a set of four
transmitters and eight receivers, both sets chosen at random, yielded similar quantitative performance trends.

15 ‘ ‘ ‘ 0.14
—+-Gsr
o2k —J-TVM| |
L1
01t
0.08T
a
=
w
006}
0.04 \
0.02f
0 ‘ ‘ ‘
-10 5 0 5 10

SNR (dB)
(b)

Figure 10. Quantitative metrics vs. SNR for composite target scene reconstruction using two transmitters

and six receivers. (a) RCP; (b) EMD (average and variance).
3.3. Discussion

The results provided in Section 3.2 quantify and validate the superior performance of the GSR
and TVM approaches over the standard /;-norm reconstruction for non-point-like targets, especially
at low SNR values. A comment is in order on the choice of regularization/penalty parameters for
the employed sparse reconstruction methods. The Primal YALL1 group solver requires setting of
a length-2 penalty parameter vector [27], whereas NESTA, employed for TVM and standard /;-norm
reconstructions, requires the specification of smoothing and stopping parameters. Both the smoothing
and stopping parameters in NESTA should be set to small values for higher accuracy or large values
for faster convergence [36]. In general, choosing a small value for the smoothing parameter warrants
a small value of the stopping parameter. For large smoothing parameter value, the stopping parameter
can also be larger. Note that setting the smoothing parameter equal to zero results in use of the standard
“non-smoothed” version of the /;-norm in the optimization problem. For the Primal YALL1 group
solver, the elements of the length-2 penalty vector are set as inversely proportional to ||@yl|,, where
|Illoo denotes the infinity norm of the argument [23].

For the considered numerical experiments, we set these parameters for NESTA and YALL1 empirically
for a nominal number of transmitters and receivers under noise-free conditions following the aforementioned
guidelines, opting for higher accuracy over faster convergence for NESTA. For NESTA, no adjustments were
made when the total number of transmitters and receivers were increased or decreased compared to the
nominal case. However, the proportionality constants for the penalty parameters in YALL1 group had to be
adjusted to account for the change in |e yll, with any increase or decrease in the number of transmitters
and receivers employed. Thus, compared to YALL1 group, NESTA was found to be more robust to changes
in the amount of data employed for the sparse reconstructions.
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4. Conclusions

In this paper, we conducted qualitative and quantitative performance evaluations of group sparse
reconstruction and total variation minimization approaches for radar imaging through stratified
subsurface media. The TVM approach minimizes the gradient of the image resulting in good edge
preservation, while group sparse approach exploits prior pixel neighborhood information about
extended targets for reliable imaging. Under reduced number of transmitters and receivers, numerical
EM measurements with varying SNR levels were considered. Both TVM and GSR approaches
demonstrated comparable qualitative performance for different subsurface scenarios. The quantitative
evaluation revealed a slight performance advantage of GSR over TVM. However, this advantage came
at the cost of reduced flexibility in setting regularization/penalty parameters for GSR vs. TVM.
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