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Abstract: Finite control set model predictive control (FCS-MPC) is able to handle multiple control
objectives and constraints simultaneously with good dynamic performance. However, its industrial
application is limited by its high dependence on system model and the huge computational effort.
In this paper, a novel robust two-layer MPC (RM-MPC) with strong robustness is proposed for
the full-bridge neutral-point clamped (NPC) voltage mode Class-D amplifier (CDA) aiming at this
problem. The errors caused by the parameter mismatches or uncertainties of the LC filter and
the load current are regarded as lumped disturbance and estimated by the designed Luenberger
observer. The robust control can be achieved by compensating the estimated disturbance to the used
predictive model. In order to reduce computation of the controller, a two-layer MPC is proposed for
the full-bridge NPC inverter with an LC filter. The first layer is used to calculate the optimal output
level which minimizes the tracking error of the output voltage. The second layer is used to determine
the switching state for the purpose of capacitor voltage balancing. The experimental results show
that the lumped model error is observed centrally through only one observer with low complexity.
The two-layer MPC further reduced the computation without affecting the dynamic performance.

Keywords: model predictive control (MPC); neutral-point clamped (NPC) inverter; disturbance
observer; parameter uncertainty; stability analysis

1. Introduction

In the area of industrial measurement, testing, and process technology, there exist many
applications of power amplifiers in order to generate current and voltage signals of special shape at high
power levels. [1,2]. Voltage mode Class-D amplifiers (CDAs), composed of voltage source inverters
with LC filters, are used to power voltage-driven loads, such as the piezoelectric ceramic transducer [3]
and the electrostrictive transducer [4]. Commonly used inverter topologies in CDAs can be divided
into three categories: the half H-bridge inverter [5], the full H-bridge inverter [6–8], and the cascaded
H-bridge inverter [1]. However, the used inverter topology in this paper is the full-bridge neutral-point
clamped (NPC) inverter, which features lower voltage stress on power semiconductors, lower voltage
harmonics, smaller electromagnetic interference compared with the half H-bridge inverter and the full
H-bridge inverter [9]. In addition, this topology costs less switch devices compared with the cascaded
H-bridge. However, the closed-loop control of the output voltage is still a complex but meaningful
issue when this topology and an LC filter are used together as a voltage mode Class-D amplifier.
The reason can be stated as follow. First, arbitrary waveforms in a wide band may be required in the
CDA [10]. This demand requires the dynamic response of the voltage controller to be fast enough.
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Second, load parameters of CDAs may be complex and variable [4–11]. Then the voltage controller is
also required to be robust.

In order to achieve output closed-loop control of cascaded H-bridge CDAs, a single PI voltage
controller was used in [1]. However, PI gains are required to be turned repeatedly in this method,
and the steady state performance and the transient response compromise each other [12]. In [13],
a double closed-loop PI controller, whose bandwidth was increased compared with the single PI
controller in [1], was used for cascaded H-bridge voltage mode CDAs. Limited by the dynamic
performance of the existing linear controllers, nonlinear controllers, such as the sliding mode controller,
was proposed in [14,15] for voltage mode CDAs. The sliding mode controller has better dynamic
performance, but it suffers from finding out the sliding surface and the existing chattering phenomena.

As an another nonlinear controller, model predictive control (MPC) has the advantages of ability
to handle multiple control objectives and constraints, simplicity and fast dynamic response, and has
been widely concerned and studied in recent years. Moreover, it has been successfully applied to
several multilevel inverters. In [16], the finite control set model predictive control (FCS-MPC) was
applied for the grid-tied three-phase three-level NPC inverter. In [17], the FCS-MPC was also used to
a full-bridge NPC inverter. But in [16,17], the output current or voltage tracking and the capacitor
voltage balancing were achieved simultaneously by repeatedly predicting and evaluating the sum of
the quadratic terms with weight factors in the cost function, which reflected the two control objectives,
respectively. However, the repeated predicting and evaluating the complex cost function costed
many computations. In [18], the MPC based on optimal switching sequences was proposed for
the full-bridge NPC inverter, which could achieve fixed switching frequency for the switch devices.
However, this method failed to balance the capacitor voltage [19]. In [19], a low-complexity MPC was
also proposed for the full-bridge NPC rectifier. Although the capacitor voltage balancing could be
achieved with unbalanced loads, the fixed switching frequency still limited the dynamic performance
of the MPC. In [20,21], the complexity of the MPC algorithm was reduced by employing the multistep
MPC for modular multilevel converter (MMC) and cascaded H-bridge inverter. But the dynamic
performance would also be affected. In [22,23], only the adjacent voltage vectors or output levels were
considered for the FCS-MPC algorithm, and the required computation was reduced greatly. However,
both of the dynamic response and the control accuracy would be affected under the condition of
load step or reference step for these methods. In [24–27], the process of evaluating the quadratic cost
function was regarded as a least square problem, and was proposed to be solved by sphere decoding
algorithm or its improved algorithms. But large amount of calculation was still unavoidable for the
sphere decoding algorithm.

In addition, because of the high dependence on system model, the effectiveness of the MPC faces
enormous challenges when there are errors between the actual system model and the established
model. This issue can also be expressed as the robustness of the MPC. The robust MPC has been
studied for various power electronic converters, such as three-phase three-level NPC converters [28],
three-phase PWM rectifiers [29], flying capacitors inverters [30], and three-phase inverters with LC
filters [31,32], etc. In [28], the robustness was achieved by a weighted average process of the measured
system variables and the predicted variables. Then the control error caused by the model error could be
reduced. However, it failed to deal with the dynamic changes of parameters. In [29], the robust MPC
was achieved based on an online disturbance observer. But the influence of the parasitic resistances of
the grid-tied inductors were not investigated in the simulation and experiment. In [30], the system
robustness was improved based on an adaptive observer. But the variation of the filter inductor
was also not included. In [31], the robustness was also achieved based on a disturbance observer.
But the load current was obtained by an additional observer, which made the control system more
complex. In [32], the output of the three phase inverter prediction model at current control instant was
compensated by the modeling error of the last control instant. However, only simulation results were
provided, and additional current sensors were required.



Electronics 2019, 8, 1346 3 of 15

In this paper, a robust two-layer MPC is proposed for the full-bridge NPC inverter based
CDAs. Based on the designed Luenberger observer, the disturbances caused by both the parameter
uncertainties or mismatches of the LC filter and the load current can be centrally estimated and
compensated to the prediction model in each control period, which can save computation and avoid
the use of load current sensor. Moreover, layered structure is used in the proposed robust MPC,
so that the output voltage tracking and the capacitor voltage balancing can be achieved simultaneously
and decoupled without affecting the dynamic performance, and the required computation can be
further reduced.

The rest of this paper is organized as follows. In Section 2, the discrete mathematical model of the
CDA is established. In Section 3, a Luenberger disturbance observer based on Kalman filter is designed
to estimate the disturbance caused by the parameter mismatch and the load current. In Section 4,
a two-layer MPC for the voltage mode CDA is proposed. Section 5 reports the experiment results.
In Section 6, the performance of the proposed robust two-layer MPC is focused on discussion and
comparison. And the conclusions are presented in Section 7.

2. Modeling of the Voltage Mode Amplifier Using Full-Bridge NPC Inverter

The structure of the full-bridge NPC inverter-based voltage mode Class-D amplifier is shown in
Figure 1. The filter inductor is denoted by Lf, and the filter capacitor is denoted by Cf. The voltage
of Cf is denoted by Vo, which is also the final output voltage of the digital amplifier. The current of
Lf is denoted by if, and the final output current of the digital amplifier is denoted by io. Both the
defined positive directions of if and io are shown in Figure 1. The output voltage of the full-bridge NPC
inverter is denoted by Vab. The full-bridge NPC inverter consists of two bridges. Each bridge consists
of four transistors with four antiparallel freewheeling diodes and two clamping diodes. The dc input
is denoted by Vdc, and two identical capacitors C1 and C2 are connected in series to obtain two levels
of Vdc/2 and −Vdc/2. Driving signals of the transistors can be denoted by Sxi. x∈{a, b} denotes legs of
the inverter, where a denotes the left one, b denotes the right one. i∈{1, 2, 3, 4} denotes the number
of transistor in the same bridge. In normal operation, Sa1 and Sa3 complement each other, and Sa2

and Sa4 complement each other, too. Sb1, Sb2, Sb3, and Sb4 also meet this constraint. UC1 and UC2 are
used to represent the voltages of capacitors C1 and C2, respectively. S is defined by [Sa1 Sa2 Sa3 Sa4 Sb1

Sb2 Sb3 Sb4] and used to denote the switching state of the inverter. M denotes the output level of the
full-bridge NPC inverter. And M∈{−2, −1, 0, 1, 2} is easy to be obtained.
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Figure 1. The structure of the full-bridge neutral-point clamped (NPC) inverter based voltage mode 
Class-D amplifier. 
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between the output level M, the inductor current if, the change of UC1, and the nine effective switching 
states. 
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Figure 1. The structure of the full-bridge neutral-point clamped (NPC) inverter based voltage mode
Class-D amplifier.

Because of the limitation of the complementary driving signals mentioned above, there are only
nine effective switching states, which can be denoted by S1–S9. Table 1 shows the relationship between
the output level M, the inductor current if, the change of UC1, and the nine effective switching states.



Electronics 2019, 8, 1346 4 of 15

Table 1. Relationship between M, io, UC1, and S.

M S
UC1

io > 0 io < 0

2 S1 = [1 1 0 0 0 0 1 1] invariant invariant

1
S2 = [1 1 0 0 0 1 1 0] decrease increase
S3 = [0 1 1 0 0 0 1 1] increase decrease

0
S4 = [1 1 0 0 1 1 0 0] invariant invariant
S5 = [0 1 1 0 0 1 1 0] invariant invariant
S6 = [0 0 1 1 0 0 1 1] invariant invariant

−1
S7 = [0 1 1 0 1 1 0 0] increase decrease
S8 = [0 0 1 1 0 1 1 0] decrease increase

−2 S9 = [0 0 1 1 1 1 0 0] invariant invariant

Assuming that UC1 and UC2 are well balanced, the differential equation of the full-bridge NPC
inverter-based voltage mode amplifier can be obtained as Equation (1) from Figure 1, based on the
Kirchhoff’s laws of voltage and current. Lf

dif
dt + Vo = Vab

Cf
dVo
dt + io = if

(1)

In Equation (1), Vab can also be represented by the output level of the full-bridge NPC inverter, M,
as shown in Equation (2).

Vab =
Vdc

2
M (2)

By substituting Equation (2) into Equation (1), Equation (3) can be obtained. dif
dt = − 1

Lf
Vo +

Vdc
2Lf

M
dVo
dt = 1

Cf
if − 1

Cf
io

(3)

The filter inductor current if and the filter capacitor voltage Vo can be selected as the state variables
of the system, and can be denoted by x= [if Vo]T. Therefore, and the model of the full-bridge NPC
inverter based voltage mode amplifier can be transformed into Equation (4),

.
x = Ax + B1M + B2io (4)

where A =

 0 −
1
Lf

1
Cf

0

, B1 =

 Vdc
2Lf

0

, B2 =

[
0
−

1
Cf

]
.

For the purpose of digital control, Equation (4) should be discretized. If the sampling period and
the control period are denoted as TS, the discrete model can be expressed as Equation (5),

x(k + 1) = Adx(k) + B1dM(k) + B2dio(k) (5)

where Ad = eATS , B1d =
TS∫
0

eAτB1dτ, B2d =
TS∫
0

eAτB2dτ, k and k+1 represent the kTS and (k+1)TS

instant, respectively.

3. Design of the Luenberger Observer for Disturbance Estimation

Luenberger observer adopts a predictor-corrector structure. In the predictor, a predictive model
is used to predict the system operation. In the corrector, a feedback signal is compensating to the
predictive model to correct the error between the actual system and the used predictive model [29].
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In this paper, it is used to estimate and compensate the lumped disturbance caused by the mismatch or
uncertainty of the filter parameters and the load current.

3.1. Design of the Disturbance Observer

In order to achieve robust MPC, there are two great challenges. The first one is the unknown
load current io, because the load current sensor is intentionally avoided. And it will generate large
disturbance for the precise control of the output voltage Vo. The second one is the uncertain parameters
of the LC filter. Based on Equations (4) and (5), it can be seen that the parameter matrices Ad, B1d, and
B2d are calculated from Lf and Cf, which are the actual parameters of the LC filter. However, the actual
parameters Lf and Cf may not equal to the nominal parameters Lfn and Cfn, which are used in the
controller. The actual parameter of the filter inductor, Lf, may not be equal to the nominal parameter
Lfn, because of several phenomena, such as the magnetic saturation. And the actual parameter of the
filter capacitor, Cf, may also not be equal to the nominal parameter Cfn, because of the unmodeled
parasitic resistance and the manufacturing tolerance.

Both of Lf and Cf are difficult to obtain accurately in practical engineering. In order to distinguish
the discrete model used in the controller from the actual system model, the parameter matrices used in
the controller are denoted by Adn, B1dn, and B2dn, and can be calculated by Equations (6)–(8) based on
the nominal parameters Lfn and Cfn, respectively.

Adn = eAnTS (6)

B1dn =

TS∫
0

eAnτB1ndτ (7)

B2dn =

TS∫
0

eAnτB2ndτ (8)

In (6)–(8), An =

 0 −
1

Lfn
1

Cfn
0

, B1n =

 Vdc
2Lfn

0

, B2n =

[
0
−

1
Cfn

]
.

The relationship between the actual parameter matrices Ad, B1d, and B2d and the nominal
parameter matrices Adn, B1dn, and B2dn can be shown in Equations (9)–(11),

Ad = Adn + ∆Ad (9)

B1d = B1dn + ∆B1d (10)

B2d = B2dn + ∆B2d (11)

where ∆Ad, ∆B1d, ∆B2d denote the model errors caused by the mismatch or uncertainty of the LC filter
parameters. Then the discrete system model in Equation (5) can be transformed into Equation (12) by
substituting Equations (9)–(11) into (5).

x(k + 1) = Adnx(k) + B1dnM(k) + B2dnio(k) + ∆Adx(k) + ∆B1dM(k) + ∆B2dio(k) (12)

In the right side of Equation (12), there are four uncertain terms. The first one is the third term
B2dnio(k), which is uncertain because of the unknown io(k) in the absence of the load current sensor.
The second one and the third one are the fourth term ∆Adx(k) and the fifth term ∆B1dM(k), which are
uncertain because of the uncertain matrices ∆Ad, and ∆B1d. The fourth one is the last term ∆B2dio(k),
which is uncertain because of both the uncertain matrix ∆B2d and the unknown load current io(k).
For the purpose of achieving robust control against the unknown io(k) and the uncertain ∆Ad, ∆B1d,
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∆B2d, the sum of the four terms is regarded as the lumped disturbance variable N(k), as shown in
Equation (13).

N(k) = B2dnio(k) + ∆Adx(k) + ∆B1dM(k) + ∆B2dio(k) (13)

The lumped disturbance N(k) is a two-dimensional variable, and can be expressed as N(k) =

[N1(k) N2(k)]T. If both of N1(k) and N2(k) can be successfully estimated and compensated to the system
predictive model based on the nominal parameters in real time, the disturbance-rejection approach can
be implemented to achieve robustness against the uncertainty of the filter parameters and the load
current io. And this will be still effective even if the system parameters vary during operation, which is
regarded as the dynamic parameter variations.

The disturbance variables N1(k) and N2(k) can be assumed to be constant during each sampling
interval [29,31], and they can be extended as the system variables. Then Equation (14) is obtained as,

X(k) =


if(k)
Vo(k)
N1(k)
N2(k)

 =


Adn11 Adn12 1 0
Adn21 Adn22 0 1

0 0 1 0
0 0 0 1




if(k− 1)
Vo(k− 1)
N1(k− 1)
N2(k− 1)

+


B1dn11

B1dn21

0
0

M(k− 1) = ΦX(k− 1) + GM(k− 1) (14)

where Φ =


Adn11 Adn12 1 0
Adn21 Adn22 0 1

0 0 1 0
0 0 0 1

 =
[

Adn 1
0 1

]
, G =


B1dn11

B1dn21

0
0

 =
[

B1dn

0

]
.

And the output equation of the system can be expressed as Equation (15),

Y(k) =
[

if(k)
Vo(k)

]
= CX(k) (15)

where C =

[
1 0 0 0
0 1 0 0

]
.

Based on Equations (14) and (15), a discrete observer can be constructed as shown in Equation (16),

X̂(k) = ΦX̂(k− 1) + GM(k− 1) + L
(
Y(k− 1) − Ŷ(k− 1)

)
= ΦX̂(k− 1) + GM(k− 1) + LC

(
X(k− 1) − X̂(k− 1)

)
(16)

where X̂(k) and X̂(k− 1) respectively denote the estimated value of X(k) and X(k−1), and L denotes the
gain matrix. M(k−1) denotes the output level of the full-bridge NPC inverter in the (k−1)th control
period, which is obtained by the proposed two-layer MPC in the (k−1)th control period.

N̂(k) can be used to denote the estimated value of N(k), and it can be calculated by Equation (17).

N̂(k) =
[

N̂1(k)
N̂2(k)

]
=

[
0 0 1 1

]
îf(k)

V̂o(k)
N̂1(k)
N̂2(k)

 (17)

3.2. Parameter Design

The Kalman filter is a commonly used method to optimally estimate the state of a dynamic system
from a series of imperfect noisy measurements, especially in presence of uncertainties [31]. In this
paper, the designed observer can be regarded as a discrete Kalman filter to calculate the observer gain
matrix L.

As an optimal recursive data processing algorithm, the discrete Kalman filter can perform cyclic
calculation according to the following five steps in each control period.
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The first step is to calculate the prior state estimate value X̂−k based on Equation (18).

X̂−k = ΦX̂(k− 1) + GM(k− 1) (18)

The second step is to calculate the priori estimate error covariance matrix P−k based on Equation (19),

P−k = ΦPk−1ΦT + Q (19)

where Q is the given process noise covariance matrix, and Pk−1 is the posteriori estimate error covariance
matrix in the last control period.

The third step is to calculate the observer gain matrix L based on Equation (20),

L = P−k CT
(
CP−k CT + R

)−1
(20)

where R is the given measurement noise covariance matrix.
The fourth step is to update the estimated state variable X̂(k) based on Equation (21).

X̂(k) = X̂−k + L
(
Y(k) −CX̂−k

)
(21)

The fifth step is to calculate the posteriori estimate error covariance matrix Pk based on Equation (22).

Pk = (I − LC)P−k (22)

where I denotes the identity matrix.
The first step and the second step can be collectively referred to as the prediction link of the

discrete Kalman filter. And the last three steps can be collectively referred to as the correction link of
the discrete Kalman filter.

The stability of the designed discrete Kalman filter has been proved by [31,33], and will not be
discussed here.

Remark: The performance of the designed state observer is determined by the given matrix Q
and R. The larger Q is, the faster the observed values converge to their actual value, but too fast
convergence speed will lead to noise interference. The smaller R is, the less noise interference, but the
slower convergence rate. Therefore, Q and R should be adjusted synthetically to achieve the tradeoff

between convergence speed and noise suppression.

4. Two-Layer Model Predictive Control

The basic control objectives of the voltage CDA using full-bridge NPC inverter include two terms:
(1) output voltage tracking; (2) capacitor voltage balancing. Traditional FCS-MPC (TFCS-MPC) requires
repeated predictions and evaluations for each effective switching state, and the one which minimizes
the cost function is selected as the optimal control option. Thus when it is applied to the full-bridge
NPC inverter, there will be nine candidate switching states. And this places large computational
burden on the digital controllers when a small control period is required.

Therefore, a two-layer MPC for the cascaded full-bridge NPC voltage mode amplifier is proposed
in this paper, which is much simpler than TFCS-MPC without affecting the dynamic performance.
And the proposed two-layer MPC decouples the two control objectives, which also allows the two
control objectives to be achieved simultaneously without weight factors. The structure of the proposed
two-layer MPC is shown in Figure 2, where the first layer is used to calculate the optimal output
level for the purpose of achieving the first control objective, the second layer is used to determine the
switching state for the purpose of achieving the second control objective.



Electronics 2019, 8, 1346 8 of 15

Electronics 2019, 8, x FOR PEER REVIEW 9 of 16 

 

Therefore, a two-layer MPC for the cascaded full-bridge NPC voltage mode amplifier is 
proposed in this paper, which is much simpler than TFCS-MPC without affecting the dynamic 
performance. And the proposed two-layer MPC decouples the two control objectives, which also 
allows the two control objectives to be achieved simultaneously without weight factors. The structure 
of the proposed two-layer MPC is shown in Figure 2, where the first layer is used to calculate the 
optimal output level for the purpose of achieving the first control objective, the second layer is used 
to determine the switching state for the purpose of achieving the second control objective. 

The First Layer

Voref(k+1) ( )2N̂ k Vo(k)

The Second Layer

M(k)

S

if(k)

 

Figure 2. The structure of the proposed two-layer model predictive control (MPC). 

4.1. The First Layer 

The reference of the output voltage can be denoted by Voref, which is also the voltage signal to be 
amplified. In this system, the cost function corresponding to level h can be defined as J(h) in Equation 
(23), 

( ) ( ) ( )oref o1 1hJ h V k V k= + − + ,  

{ }2 , 2 1, , 0, , 2 1, 2h H n n n n∈ = − − + −   

 

(23) 

where Voh(k+1) denotes the output current at (k+1)TS instant when h is selected in the kth control period. 
Based on Equations (12) and (13), Voh(k+1) can be predicted as given in Equation (24). 

( ) ( ) ( ) ( ) ( )o dn 21 f dn 22 o 1dn 21 21hV k A i k A V k B M k N k+ = + + +  (24) 

In Equation (24), N2(k) cannot be obtained because it is determined by the uncertain model errors 
and the unknown load current io without configured load current sensor. However, the designed 

Luenburger observer can successfully estimate N2(k) to ( )2N̂ k , then we are allowed to replace N2(k) 

with ( )2N̂ k . Thus Equation (24) can be improved to Equation (25). 

( ) ( ) ( ) ( ) ( )o dn21 dn22 o 1dn21 2
ˆ1h fV k A i k A V k B M k N k+ = + + +  (25) 

Another function, J1(h), with the output level h as its independent variable can be defined by 
Equation (26). 

( ) ( ) ( )o1 o ref= 1 1hV k V kJ h + − + ( ) ( ) ( ) ( ) ( )dn 21 dn 22 o 1dn 21 2 oref= 1fA i k A V k B M k N k V k+ + + − +  

 
(26) 

The relationship between J1(h) and h will be linear if h is supposed to be continuous. For the 
convenience of expression, another variable, hsol is defined as the solution of J1(h) = 0, and can be 
calculated as Equation (27). 

( ) ( ) ( ) ( )oref dn 21 dn 22 o 2
sol

1dn 21

1
= fV k A i k A V k N k

h
B

+ − − −  (27) 

Figure 2. The structure of the proposed two-layer model predictive control (MPC).

4.1. The First Layer

The reference of the output voltage can be denoted by Voref, which is also the voltage signal to be
amplified. In this system, the cost function corresponding to level h can be defined as J(h) in Equation (23),

J(h) =
∣∣∣Voref(k + 1) −Voh(k + 1)

∣∣∣,
h ∈ H = {−2n,−2n + 1, · · · , 0, · · · , 2n− 1, 2n}

(23)

where Voh(k+1) denotes the output current at (k+1)TS instant when h is selected in the kth control period.
Based on Equations (12) and (13), Voh(k+1) can be predicted as given in Equation (24).

Voh(k + 1) = Adn21if(k) + Adn22Vo(k) + B1dn21M(k) + N2(k) (24)

In Equation (24), N2(k) cannot be obtained because it is determined by the uncertain model errors
and the unknown load current io without configured load current sensor. However, the designed
Luenburger observer can successfully estimate N2(k) to N̂2(k), then we are allowed to replace N2(k)
with N̂2(k). Thus Equation (24) can be improved to Equation (25).

Voh(k + 1) = Adn21i f (k) + Adn22Vo(k) + B1dn21M(k) + N̂2(k) (25)

Another function, J1(h), with the output level h as its independent variable can be defined by
Equation (26).

J1(h) = Voh(k + 1) −Voref(k + 1)= Adn21i f (k) + Adn22Vo(k) + B1dn21M(k) + N2(k) −Voref(k + 1) (26)

The relationship between J1(h) and h will be linear if h is supposed to be continuous. For the
convenience of expression, another variable, hsol is defined as the solution of J1(h) = 0, and can be
calculated as Equation (27).

hsol =
Voref(k + 1) −Adn21i f (k) −Adn22Vo(k) −N2(k)

B1dn21
(27)

Because of J(h) =
∣∣∣J1(h)

∣∣∣ ≥ 0, the optimal output level M(k), which minimizes J(h), must be equal
to the integer nearest to hsol. Thus the optimal output level M(k) is allowed to be directly obtained by
Equation (28),

M(k) = argminh∈H
∣∣∣J1(h)

∣∣∣= round
(
h
∣∣∣J1(h)=0

)
(28)

where round(x) denotes the rounding function, which is equal to the integer nearest to x.
In order to avoid the case that the result of Equation (28) does not belong to H, Equation (29) is

also required after Equation (28).

M(k) =


2, M(k) > 2
M(k),−2 ≤M(k) ≤ 2
−2, M(k) < −2

(29)
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Thus the cost function is evaluated only once, which greatly reduces the computational burden.

4.2. The Second Layer

The second layer is used to determine the switching state to achieve capacitor voltage balancing.
At the same time, the switching action times should also be considered when the switching state is
determined, because there are multiple switching states to be selected if level −1, 0, or 1 is required.

In steady-state operation, the full-bridge NPC inverter is generally switched between adjacent
levels. Thus the output level will be switched between 2, 1, and 0 when M(k) > 0. Table 2 shows the
number of switching actions when the three levels are switched between each other. According to
Table 2, if the submodule output level is 2, the switching state can only select S1. If the submodule
output level is 1, in order to achieve the purpose of capacitor voltage balance, S2 should be selected
when the signs of io and ∆UC are the same, while S3 should be selected when they are opposite,
considering the result of Table 1. If the submodule output level is 0, the switching state can only select
S5, in order to minimize the switching actions when level 0 and level 1 are switched between each other.

Table 2. Switching actions when the output level switching between 2, 1, and 0.

Switching Level Switching State Action Times

2 and 1
S1 and S2 2

S1 and S3 2

1 and 0

S2 and S4 2

S2 and S5 2

S2 and S6 6

S3 and S4 6

S3 and S5 2

S3 and S6 2

2 and 0
S1 and S4 4

S1 and S5 4

S1 and S6 4

Similar analysis can be done when M(k) < 0 and the following conclusions can be drawn. If the
submodule output level is −2, S9 is selected. If the submodule output level is −1, S8 is selected when
the signs of io and ∆UC are the same, while S7 is selected when the signs of io and ∆UC are opposite.
If the submodule output level is 0, S5 is selected.

Figure 3 shows the flow chart of the switching state selection process. The parallel structure of the
middle and lower layer control shows that they are more suitable for implementation by a FPGA.
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5. Experimental Verification

In order to verify the feasibility and validity of the proposed robust multilayer MPC applied to
the full-bridge NPC voltage-mode digital power amplifier, a 2 kW experimental prototype with a
50 Hz–800 Hz output band is built in the laboratory as shown in Figure 4. The actual value Lf of the filter
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inductor used is 2 mH, and the actual value Cf of the filter capacitor used is 10 uF. The voltage of the
dc input, Vdc, is 300 V, so that two voltage levels of 150 V and −150 V can be obtained. The capacitance
of those two capacitors C1 and C2 is 1070 uf. The control frequency is set to be 100 kHz, which means
that the sample period is set to be 10 us. The high control frequency is used because wide range output
frequency and high precision out voltage are required. Thus the maximum switching frequency of the
used switch devices is 50 kHz. In fact, the designed digital power amplifier uses SGH80N60UFD type
fast IGBT and DSE130–60; a type fast recovery diode, whose maximum switching frequency can be up
to 100 kHz.
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5.1. Steady State Performance

In order to study the steady state performance of the proposed RM-MPC, the output voltage
reference Voref is set to a sine wave with an 800 Hz frequency and a 200 V root-mean-square (RMS)
value, which may be widely used in underwater electroacoustic transduction system. The load is set to
a 20 Ω resistor. The experiment results are shown in Figure 5, where (a) shows the waveforms of Vo

and its reference Voref, (b) shows the waveform of the estimated value of N1, (c) shows the waveform
of the estimated value of N2, (d) shows the waveforms of the two capacitor voltages in the dc side.
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Figure 5. Steady state experiment results. (a) Waveforms of Vo and Voref; (b) Waveform of the estimated
value of N1; (c) Waveform of the estimated value of N2; (d) Waveforms of capacitor voltages.

It can be seen that the output voltage is accurately tracked with a 0.52% total harmonics distortion
(THD). At the same time, the two capacitor voltages in the dc side are well balanced. In addition,
the disturbance variables N1 and N2 are successfully estimated with little noises. In this way, the
proposed RM-MPC shows good steady state performance.

5.2. Dynamic Performance

In order to study the dynamic performance of the proposed RM-MPC, the output voltage reference
Voref is set to a sine wave with an 50 Hz frequency and a 100V RMS value for initialization. However,
the RMS value of the desired sine wave steps to 200 V at t = 0.05 s. And the load is still set to a 20 Ω
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resistor. The experiment results are shown in Figure 6, where (a) shows the waveforms of Vo and its
reference Voref, (b) shows the waveform of the estimated value of N1, (c) shows the waveform of the
estimated value of N2, (d) shows the waveforms of the two capacitor voltages in the dc side.

It can be seen that the output voltage tracks the step variation of its reference quickly, and the
tracking error is reduced to 1 V within 0.54 ms. Besides, the two capacitor voltages in the dc side are
also well balanced during transient variation. Thus, the fast dynamic performance of the proposed
multilayer MPC is verified. Moreover, Figure 6b,c shows that the estimated values of N1 and N2

change quickly with the step variation of Voref, so that the fast dynamic performance of the designed
Luenberger observer is also verified.
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5.3. Robust Performance

In order to study the robust performance of the proposed RM-MPC, two groups of experiments are
carried out, where the output voltage reference Voref is set to a sine wave with an 50 Hz frequency and a
200 V RMS value, and the load is also set to a 20 Ω resistor. However, in the first group, the inductance
value used in the controller is set to 1 mH, and the capacitance value used in the controller is set to 5
uF, which means that there are −50% parameter mismatch. In the second group, the inductance value
used in the controller is set to 3 mH, and the capacitance value used in the controller is set to 15 uF,
which means that there are +50% parameter mismatch.

The results of the first group experiment are shown in Figure 7, where (a) shows the waveforms
of Vo and its reference Voref, (b) shows the waveform of the estimated value of N1, (c) shows the
waveform of the estimated value of N2, (d) shows the waveforms of the two capacitor voltages in the
dc side. And the results of the second group experiment are shown in Figure 8.

It can be seen that the good tracking effect of the output voltage are maintained with the help
of the designed Luenberger observer, even if there are ±50% parameter mismatches. Furthermore,
the well capacitor voltage balancing is also achieved against the parameter mismatches. Thus the
strong robustness is also verified by the experiment results.
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6. Discussion

In Section 3.1, it can be seen that all the uncertain terms in Equation (12) can be divided into three
categories, which are the ones related to the load current, the ones related to the uncertain parameters,
and the ones related to both the load current and the uncertain parameters. In Sections 5.1 and 5.2,
there are no parameter uncertainties or mismatches, then the designed observer only estimates the
uncertain term related to the load current. In this way, the observer operates as a load current observer,
and the two subsections of 5.1 and 5.2 focus on the steady-state and dynamic performance of the
designed observer and the proposed two-layer MPC. In Section 5.3, parameter uncertainties exist,
and the designed observer estimates the sum of all the uncertain terms. Thus Section 5.3 focuses on the
robustness performance against the parameter mismatches of the LC filter.

Compared with the dual observers used method in [31] and the additional current sensors based
method in [32], only one observer is used to observer all the uncertain terms caused by the parameter
uncertainties and the load current in a centralized way. This not only improves the system robustness
against both the parameter uncertainties of the filter inductor and the filter capacitor, but also avoids
the use of additional load current sensors and observers. And this also leads to a reduction in both the
amount of calculation and the economic cost for the hardware configuration. In addition, the layered
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structure of the proposed MPC further reduces the computation. It can be inferred that the proposed
robust MPC can also be extended to general inverters with LC filters, which are widely used in
distributed generation systems, energy storage systems, and uninterruptible power supplies.

7. Conclusions

In this paper, a robust multilayer MPC, which can achieve decoupling control of the output voltage
and capacitor voltage balancing simultaneously in different layers against the parameter uncertainties
or mismatches of the LC filter, is proposed for the full-bridge NPC inverter-based CDAs. The errors
caused by the parameter mismatches or uncertainties of the LC filter and the load current are regarded
as lumped disturbance and estimated by the designed Luenberger observer. Based on the estimated
disturbance, a two-layer MPC is proposed, where the output voltage tracking and the capacitor voltage
balancing are achieved in the first layer and the second layer, respectively. Finally, the steady state
performance, the dynamic performance and the robust performance are verified on the designed 2 kW
experiment prototype.

Compared with existing methods, the proposed robust two-layer MPC uses only one observer
to observe the lumped disturbance caused by the parameter mismatch and the load current, which
simplifies the control system and reduces the calculation of the system. The layered structure further
reduces the computation without affecting the dynamic performance of the MPC. However, the control
delay is not considered, which may affect the control effect and calls for further research.
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