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Abstract: In this short paper, we discuss the problem of resource allocation for cloud computing.
The cloud provides a variety of resources for users based on their requirements. Thus, one of the main
issues in cloud computing is to design an efficient resource allocation scheme. Each job generated by
a user in the cloud has some resource requirements. In this work, we propose a resource allocation
method which aims at maximizing the resource utilization and distributing the system’s resources in
a fast and fair way, by controlling the flow according to the resources available and by analyzing the
dominant demands of each job. Moreover, by parallelizing the computations required, the runtime
of the proposed strategy increases linearly as the number of jobs N increases. Here, we present
some initial experimental results for small sets of users, that have shown that our strategy allocates
the available resources among user jobs in a fair manner, while increasing the overall utilization of
each resource.

Keywords: cloud computing; resource allocation; allocation cost; job generation control; big data;
scheduling

1. Introduction

One of the most challenging problems in cloud computing is the efficient and cost effective
allocation of the available resources among a set of jobs with different requirements [1,2]. Due to the
heterogeneity of both the available resources (like CPU, bandwidth or memory) and the jobs themselves
(for example, other jobs are CPU-intensive while others are memory-intensive), the problem of
distributing the resources in a fast and fair way while increasing the resource utilization becomes
rather complex and important, as we are now in the big data era and intensive applications run in
cloud systems [3,4]. By fairness, we actually mean a measure of how well the resource allocation is
balanced between various jobs, based on their needs.

There is a lot of discussion on the way various applications can be moved and operated in a cloud
environment. In order for a cloud system to be beneficial, there must be an efficient and fair way of
mapping the virtual resources and the applications executed on them to the actual hardware resources.
In a competing environment, where a number of users run different types of applications, this resource
allocation problem is difficult to handle. Due to load variations, the cloud is expected to scale up and
down, to respond to load variations [5]. Scaling can cause network overheads due to data movement.
Other phenomena that need to be handled are the cold start and ping pong effects and spikes [6,7].

The fair allocation policy can be implemented for a single resource (however, this is rather
restrictive) or for multiple resources. The idea of an application’s dominant resource was initially
presented by Ghodsi, in [8]. For example, there are applications which are CPU intensive in the
sense that they mostly depend on CPU performance, like large, graph-based community detection
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schemes [9,10] or other applications which are I/O intensive, like date replication applications that
require large disk spaces to accommodate the required replicas [11]. When the dominant resources vary,
the resource scheduling problem becomes rather cumbersome, in the sense that, the policy employed
should not only satisfy the users’ requirements, but also balance each resource shared to be dominant
for some applications and as non-dominant by other.

This work presents a novel resource allocation policy with linear complexity, using a flow (or job
generation) control strategy. Our aim was to maximize the resource utilization, while assuring that the
resources are allocated in a fair way, based on the user’s needs. The main contributions of this work
are as follows:

1. At regular intervals, it can determine the rate of job generations that the system can afford, so that
its utilization is maximized and the system itself does not run out of resources.

2. The resources are fairly distributed based on a fair allocation mechanism.
3. The scheduling complexity is linear.
4. The proposed ideas can operate on a small or large number of different available resources.

The remainder of this work is organized as follows: Section 2 presents the related work on
resource allocation policies. Section 3 describes the necessary mathematical background behind the
proposed model and discusses the issues of fairness, utilization and flow control. Section 4 describes
the resource allocation policy and provides complexity analysis. Section 5 presents our experimental
results, and Section 6 concludes this paper and presents aspects for future work.

2. Related Work

A lot of effort has been focused on the resource allocation problem. Generally, the basic quality
criteria for a good resource allocation technique, as described in the literature, are the resource
allocation cost, the utilization and the job execution time. The techniques developed use different
approaches in order to address these three metrics. In [12], the authors treat the problem of resource
allocation as an optimization problem and aim at reducing the total cost while they introduce the
idea of increasing the overall reliability. The reliability is modeled on a per virtual machine (VM) basis
and depends on the number of failures per VM. In [13] the authors divide the resource allocation
technique into two phases: an open market-driven auction process and a preference-driven payment
process. When a user requests multiple resources from the market, the provider allocates them based
on the user’s payment capacity and preferences. The users pay for the VMs based on the quantity
and the duration used. The authors also aim at minimizing the total cost and allocate the resources in
an efficient manner. Another work that mainly focuses on the total cost and utilization maximization
was proposed by Lin et al. [14], where the authors propose a threshold-based strategy for monitoring
and predicting the users’ demands and for adjusting the VMs accordingly. Tran et al. [15] present a
three-stage scheme that allocates job classes to machine configurations, in order to attain an efficient
mapping between job resource requests of resource availability. The strategy aims at reducing the
total execution time as well as the cost of allocation decisions. Hu et al. [16] implemented a model
with two interactive job classes to determine the smallest number of servers required to meet the
service level agreements for two classes of arrived jobs. This model aims at reducing the total cost of
resource allocation.

Khanna and Sarishma [17] presented the RAS (resource allocation system), a dynamic resource
allocation system, to provide and maintain resources in an optimized way. RAS is organized into
three functions: discovery of resources, monitoring of resources and dynamic allocation. The main
goal is to achieve high utilization. The total resource allocation cost is not taken into account and
the VM having minimum resource requirements incurs lower delay. In case of similar requirements,
the VMs have a random, equal waiting time.

Two strategies focusing on the total execution time are found in [5,18]. Saraswathi et al. present
a resource allocation scheme, which is based on the job features. The jobs are assigned priorities and
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high-priority jobs may well take the place of jobs with low priorities. In [5], the authors use the concept
of “skewness” to measure the unevenness in the multidimensional resource utilization of a server.
Different types of workloads are combined by minimizing the skewness and the strategy aims at
achieving low execution times by balancing the load distributed over time. Table 1 summarizes the
discussion so far, by indicating the metrics considered by the papers described.

Table 1. Summary of related papers, based on the metrics used to evaluate resource allocation (RA).

Resource Allocation Scheme Cost Execution Time Utilization

RA as optimization problem, Alam et al., [12] Yes No No

Open market-driven auction/preference-driven
payment process, Kumar et al. [13] Yes No Yes

Threshold-based strategy for monitoring and
predicting the users’ demands, Lin et al. [14] Yes Yes No

Job class-based strategy, Hu et al. [16] Yes No No

Dynamic RAS (Resource Allocation System),
Khanna et al. [17] No No Yes

3-stage mapping scheme, Tran et al. [15] Yes Yes No

Job feature-based strategy, Saraswathia et al. [18] No No Yes

Skewness minimization, Xiao et al. [5] No No Yes

Our work No No Yes

Apart from the typical issues of cost, utilization and execution times studied in resource allocation
strategies, there are some issues that need attention. In [6], the authors introduced AdaFrame, a library
which supports the decision-making of rule-based elasticity controllers to detect actual runtime changes
in a timely manner, in the load of cloud services being monitored. Auto-scaling is a rather difficult
issue, especially in cases where there is a need to determine if a scaling alert is issued due to dynamic
changes in the resource demands of certain application. Additionally, spikes on sensitive data can cause
the so-called “ping-pong” effects (fast provisioning/de-provisioned of resources). In [7], the authors
introduces ADVISE, a framework for estimating and evaluating cloud service elasticity behavior.

This work presents a new resource allocation scheme equipped with a flow (or job generation)
control strategy. Our focus was to study the effect of the flow control strategy on the percentage of
resources consumed and to study the overall resource utilization achieved by the strategy we propose.
Some very important issues that need to be researched are mentioned in the Conclusions and Future
Work section.

3. Resource Allocation Model

Consider a set S = {1, . . . , m} of m available resources. We denote by Tr the total amount of
a resource r available in the cloud. In our performance model, computing resources are modeled as
servers. Each resource type r is modeled as a single server Sr, and each server has a single queue Qr

of user jobs that require the specific resource. The jobs enter a queue Qr to request a resource type
according to a Poisson arrival process with rate λr and the service time distribution (the time required
for a job to obtain a certain resource) is exponential with mean 1/µ. A cloud has an infinite number
of users and each user executes a number of jobs [19]. Each job is described by its demand vector
Vi = {Vi1, Vi2, . . . Vim}, that shows the resource amount demanded by each job. For the purposes of our
model, we usde the notion of job dominant resource, as the resource mostly needed by a job. For example,
some jobs are CPU-intensive, while others require more memory. This notion has been introduced in
a number of papers (for example, see [8,20]). Accordingly, we define the dominant server queue (DSQ)
as the queue of the dominant resource server. All the jobs require a dominant resource enter the DSQ
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before entering any other queue to ask for other resources. In the example of Figure 1, the DSQ is Q1.
The remaining queues correspond to non-dominant resources.
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Figure 1. Resource allocation model with three resources; i = 1 is the dominant resource.

The interconnections between the three servers show the path each job has to follow, in order to
obtain the requested resources (or a portion of them). As shown in Figure 1, the jobs enter, initially,
the DSQ and they leave the dominant resource provider, S1, in time represented by µ1. After obtaining
the dominant resource, the job either moves to Q2 to request an amount of the second resource or
moves to Q3 to request an amount of the third resource. When the job gets the requested amounts
of other resources, it can return to the DSQ if it needs additional dominant resources or its resource
allocation terminates.

The system’s state is expressed as a vector K = (K1, K2, . . . , Km), where K is the amount of
resources available in every server. Let us consider the conditional probability of moving from state K
to K′, denoted as p(K, t| K, t + δ), where δ is a very short period, enough to accommodate only one
change of state. The overall probability of reaching a state K′ is

p(K′1, K′2 . . . K′m) = p1(K′1) · p2(K′2) · · · · · pm(K′m), (1)

where
pj(K′j) = p

K′j
j (1− pj), (2)

with

pj =
λj

µj
≤ 1, the utilization of a resource server. (3)

Next, based on the model formulation described above, we will discuss the issues of fairness,
utilization and flow control.

3.1. Fairness and Overall Utilization

It is common knowledge that groups of jobs contend mostly for one type of resource in cloud
computing. To address this issue, our scheme introduces a max − job fair policy, which initially
generates the maximum number of jobs based on the demands on the dominant resource. In this
paragraph, we initially show how we apply our fairness policy and then we show that this policy
maximizes utilization.

First, let us define U = {U1, . . . , Un} as the set of n users that content for the dominant resource r̂.
Our fairness policy is applied as follows:

Step 1 We sort the users with increasing order of their demands for the dominant resource into vector
V̂r and we compute Ui max, the maximum number of jobs assigned to each user:

Ui max =
T̂r
Vir̂

, for all users i. (4)
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Step 2 We find the sum of all the jobs computed in the first step, N = ∑n
i=1

T̂r
Vir̂

, and we find the fair
resource allocation f for each of these jobs as follows:

f =
T̂r
N

. (5)

Step 3 We compute the resources allocated fairly to each user i, Fi as follows:

Fi = f ×U(n+1−i)max. (6)

Let us use an example to illustrate the process described. Assume that four users content with
their dominant resource, CPU, and the cloud system, have 18 CPUs available and their demands
are: four CPUS for U1, nine CPUs for U2, six CPUs for U3 and five CPUs for U4. By sorting in
ascending order, we have: V = [U1 = 4, U4 = 5, U3 = 6, U2 = 9]. From Equation (4), we find that
U1 max = 18

4 = 4.5, U2 max = 18
5 = 3.6, U1 max = 18

6 = 3, and U4 max = 18
9 = 2. The sum of these jobs is

N = 4.5 + 3.6 + 3 + 2 = 13.1 jobs. Then, f = 18
13.1 = 1.374. Thus, from Equation (6), we get:

F1 = 1.374×U4 max = 1.374× 2 = 2.748,

F2 = 1.374×U3 max = 1.374× 3 = 4.122,

F3 = 1.374×U2 max = 1.374× 3.6 = 4.97,

F4 = 1.374×U1 max = 1.374× 2 = 6.18.

The values [F1, F2, F3, F4] correspond to users [U1, U4, U3, U2] (recall that the users have been sorted
based on their requests, from Step 1). Thus, U1 will get three CPUs, U2 will get six CPUs, U3 will get
five CPUs and U4 will get four CPUs.

3.2. Flow Control and Utilization

Assume that a system has three resources, like the example of Figure 1. As will be described
in the next section, our resource allocator has a set of such queues, each with a different DSQ. Thus,
each queue handles a percentage of the overall available resources. Let us name these percentages b1

for the dominant server queue, Q1, and b2 and b3 for the remaining queues Q2 and Q3. Based on the
the way a job requests resources (starting from DSQ, "moving" across the other queues to request the
corresponding resources and probably "returning" back to DSQ to request more dominant resources),
as described in the beginning of this section, we obtain the following equation set:

λ1 = λ + (µ2 + µ3)b1,

λ2 = b1λ1, (7)

λ3 = b2λ2,

where λ denotes the total number of all the jobs with Q1 as their DSQ.
The solution to the system of Equation (7) will give us the maximum arrival rate that each queue

can handle, when the percentages bi of the available resources at each queue and the service times
are known. For the sake of simplicity, we assume that the service rates mi of each queue are constant
and the b′is are recomputed each time a resource is allocated to a job or it is released. In this regard,
Proposition 1 states that, under a flow control mechanism, the resource allocation system utilization
can be maximized.
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Proposition 1. The flow control mechanism described by Equation (7) gives us a set of threshold values λi
(maximum arrival rates) during a short time duration, for which the resource services are not saturated and the
utilization is maximized.

Proof. From queue theory, we know that the system utilization is given by Equation (3), and the proof is
straightforward, as the λi values obtained from Equation (7) are the maximum affordable, with constant
µi values and known percentages of available resources in every server queue, bi. Recall again, that the
bi’s are regularly recalculated, as resources are allocated and de-allocated.

The advantage of the proposed flow control system is that it can easily be extended to a larger
number of different resources and the system of equations derived is simple and can be solved easily
at a high speed.

4. Our Resource Allocation Scheduling Policy

Our resource allocation scheme separates the user demands into classes, based on the dominant
resource. Thus, there are m classes. The resource allocator is a central system that handles a set of
queue systems. Generally, the resource allocator has m queue systems, with a structure similar to the
one shown in Figure 1, one for each dominant resource. For m = 3, Figure 1 shows the structure of
each queue system exactly. Figure 2 shows the general structure of the resource allocator.

queue systemClass 1 End

queue systemClass 2 End

.

.

.
queue systemClass m End

User requests

Tasks with 

allocated 

resources

Figure 2. Resource allocator with m queue systems.

Obviously, inside each queue system j, j ∈ [1, . . . , m], there are m queues in total, where Qj1
(queue system j, queue 1) is the DSQ for class j and Qj2−Qjm are the non-dominant queues. We define
the threshold values Φj, j ∈ [1, . . . , m] as the maximum amounts of dominant resources that will
be allocated to users in each queue system of the allocator. For example, Φ1 shows the maximum
amount of resource 1 (dominant resource in queue system 1) that will be allocated, Φ2 shows the
maximum amount of resource 2 (dominant resource in queue system 2) that will be allocated, and so on.
These values are necessary, because a resource which is dominant for some users is also requested
as non-dominant by other users, so some amount should be saved for this purpose. This amount is
expressed by Φ′j = Tj −Φj and can be incremented, if any dominant amounts are left unallocated.
An intuitive way to define the Φ values is to consider them as percentages of the total amounts
of the resources available, based on the users’ requests; in other words, they can be expressed as
Tj × bj, where the bjs are the percentages of available resources per queue, as described in the flow
control mechanism.
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4.1. An Illustrative Example

To show how our policy can be applied, consider a cloud with three resources available, (CPU,
Memory and Disk) = (40, 80 and 50). The mean service rate in all queues is µ = 20 jobs per time unit.
The amounts are given in units; a memory and disk unit can have a certain size. There are nine users
that compete for these resources and their demands are given in Table 2.

Table 2. Data for our illustrative example.

User CPU Memory Disk

1 4 3 2
2 6 4 5
3 8 5 6 CPU-intensive
4 9 6 7
5 10 2 8
6 3 18 10

Memory-intensive7 3 21 8
8 5 24 10
9 5 30 12

Obviously, the jobs to be generated will either be CPU-intensive or memory-intensive. This means
that our allocator will use two of the three available queue systems, 1 and 2. Each of the two systems
will have three queues, Q11, . . . , Q13 and Q21, . . . , Q23, where Q11 and Q21 are the DSQs of the two
systems. In the first system, Q11 will accommodate the CPU-intensive jobs, while in the second system,
Q21 will accommodate the memory-intensive jobs.

Algorithm 1 starts with the threshold values Φ1 and Φ2. As discussed in the beginning of this
section, an intuitive idea to define Φ1 would be to find the percentage of CPUs requested as dominant
from the total number of requested CPUs. In this example, 37 CPUs are requested as dominant
resources (users 1–5) and another 16 as non-dominant resources. In total, 53 CPUs are required; thus,
37/53 =≈ 70% of the CPU requests are for dominant resources. Thus, Φ1 = 0.7 × 40 = 28 and
Φ′1 = 40− 28 = 12. Similarly, 93 out of the 115 in total memory requests are for dominant resources.
This is ≈ 81%, so Φ2 = 0.81× 80 = 65, so Φ′2 = 80− 65 = 15.

Algorithm 1: Describes the resource allocation policy.

1. Find the threshold values Φj, j ∈ [1, . . . , m];
2. Compute Φ′j = Tj −Φj; // Non-dominant resources.
3. For all DSQ’s in parallel do
4. Implement the fair policy; // (Steps 1–3; see Section 2.1).
5. Compute ∑n

i=1 Fi; // The total amount of dominant resources
// allocated.

6. Φ′j = Φ′j +
[
Φj −∑n

i=1 Fi

]
; // Amounts of dominant resources

// left unallocated.
7. End For;
8. For all non-DSQ’s in parallel do
9. Implement the fair policy using Φ′j, the resources

not allocated as dominant;
10. End For;

The two queue systems execute in parallel, implementing the three steps of our fair policy described
in Paragraph II.A. We get V = [4, 6, 8, 9, 10]. From Equation (4), we get the maximum number of jobs for
each user, U1 max = 28

4 = 7, U2 max = 28
6 = 4.67, U3 max = 28

8 = 3.5, U4 max = 28
9 = 3.11, and U5 max =

28
10 = 2.8 and N = ∑n

i=1 Ui max = 7 + 4.67 + 3.5 + 3.11 + 2.8 = 21.08 jobs. From Equation (5), the fair
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allocations for each job f = T̂r
N = Φ

N (as the available resources for the dominant resource, CPU) are
Φ1 = 28/21.08 = 1.33. Thus,

F1 = 1.33×U5 max = 3.72,

F2 = 1.33×U4 max = 4.13,

F3 = 1.33×U3 max = 4.65,

F4 = 1.33×U2 max = 6.20,

F5 = 1.33×U1 max = 9.30.

Thus, U1 will get four CPUs, U2 will get four CPUs, U3 will get five CPUs, U4 will get six CPUs
and U5 will get nine CPUs. The total amount of resources allocated is 28 CPUs (step 5 of Algorithm 1);
thus, no more resources are added to Φ′ (Step 6). The dominant server’s utilization p11 (queue system
1, queue 1) can be found from Equation (7), and it is 95.47%. Thus the maximum rate at which the
jobs are generated in Q11 for CPU-intensive jobs is λ11 =19 jobs per time unit. Similarly, we repeat
steps 3 to 6 of Algorithm 1, and find that the second queue system will allocate 12 memory units to
U6, 15 memory units to U7, 17 memory units to U8 and 20 memory units to U9. In total, 64 memory
units will be allocated to user jobs having the memory as the dominant resource; thus, from step 6 of
the algorithm, we add one more unit to Φ′2. That is, one more memory unit will be available for jobs
whose dominant resource is not the memory. Thus, Φ′2 = 16. The parameters computed for the second
queue system are shown in Table 3. The dominant server’s utilization p21 (queue system 2, queue 1)
can be found from Equation (7), and it is 92%. Thus, the maximum rate at which the jobs are generated
in Q21 for memory-intensive jobs is λ21 =18.4 jobs per time unit.

Table 3. Computed values for memory (dominant resource) allocation by the second queue system of
our example.

Demand Vector (Sorted) Max. No of Jobs/User Fair Allocation/Job, f Allocation Per User, Fi

18 U6 max = 65/18 = 3.61 5.61 12
21 U7 max = 65/21 = 3.10 15
24 U8 max = 65/24 = 2.71 17
30 U9 max = 65/30 = 2.17 20

Returning to the first queue system, it has to allocate memory and disk units to the users with
CPUs as their dominant resource demanded. To allocate memory units, it needs to read the value
of Φ′2 = 16 (the number of memory units not allocated as dominant resources in the second queue
system). These 16 units will be allocated using our fair allocation policy (lines 8 and 9 of Algorithm 1).
Table 4 shows the computed values. The jobs will be generated in Q12 of the first queue system. The
server’s utilization p12 (queue system 1, queue 2) can be found from Equation (7), and it is ≈ 96%.
Thus, the maximum rate at which the jobs are generated in Q12 to allocate memory for CPU-intensive
jobs is λ12 =19.7 jobs per time unit.

Table 4. Computed values for memory (non dominant resource) allocation by the first queue system of
our example.

Demand Vector (Sorted) Max. No of Jobs/User Fair Allocation/Job, f Allocation Per User, Fi

2 U1 max = 16/2 = 8 0.69 2
3 U2 max = 16/3 = 5.33 2
4 U3 max = 16/4 = 4 3
5 U4 max = 16/5 = 3.20 4
6 U4 max = 16/6 = 2.67 5
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Returning to the second queue system, it has to allocate CPU and disk units to the users with
memory as the dominant resource demanded. To allocate CPU units, the value of Φ′1 = 12 needs to be
read (the amount of CPU units not allocated as dominant resources in the first queue system). These
12 units will be allocated again using our fair allocation policy. Table 5 shows the computed values.
The jobs will be generated in Q22 of the second queue system. The server’s utilization p22 (queue
system 2, queue 2) can be found from Equation (7), and it is ≈ 96%. Thus, the maximum rate at which
the jobs are generated in Q22 to allocate memory for CPU-intensive jobs is λ22 =19.7 jobs per time unit.
Allocations in queues Q12 and Q22 are also performed in parallel.

Table 5. Computed values for CPU (non dominant resource) allocation by the second queue system of
our example.

Demand Vector (Sorted) Max. No of Jobs/User Fair Allocation/Job, f Allocation Per User, Fi

3 U6 max = 12/3 = 4 0.69 2
3 U7 max = 12/3 = 4 2
5 U8 max = 12/5 = 2.4 3
5 U9 max = 12/5 = 2.4 3

Finally, the two systems have to allocate disks to all users. The disk is not the dominant resource
for any of the users. Disk allocation will be performed separately based on our fair policy. In total,
68 disk units have been requested by all users: 28 (≈ 41%) from users whose dominant resource
was the CPU and 40 (≈ 59%) from users whose dominant resource was the memory. Intuitively,
the Φ3 values are 20 disk units for the first queue system and 30 for the second. As a result, users
1–5 get 1,4,4,5 and 6 disks respectively, from the first system and the system utilization is 0.957%.
The maximum rate at which the jobs are generated in Q31 for the CPU-intensive jobs to which the
disks are allocated is 19.15 jobs. Finally, users 6–9 get 6,7,7 and 9 disks respectively from the second
system, and the system utilization is 0.925%. The maximum rate at which the jobs are generated in Q32

for the memory-intensive jobs to which the disks are allocated is 19.5 jobs.

4.2. The Complexity of Our Scheduling Policy

To compute the complexity of the proposed scheduling policy, we have to consider that each
queue system has m queues and there are at most m queue systems executing for a resource allocation
problem. This gives m2 queues in total, but since the queue systems can efficiently be executed
in parallel (specifically m queues are executed in parallel), the time required to complete the scheduling
is O(mNmax), where Nmax is the maximum number of jobs generated during the allocation process.
The solution to Equation (7) also depends on m. Since m is generally limited compared to the number
of jobs that can be generated, our scheduling policy can be implemented in O(N) time; that is, linear to
the number of jobs generated.

5. Experimental Results

This section provides details about our simulation configuration and our results. For our simulation
environment, we used an Intel Core i7-8559U Processor system, with clock speed at 2.7 GHz, equipped
with four cores and eight threads/core, for a total of 32 logical processors. In our simulations, each user
was entitled of up to four CPUs, 4 GB RAM and 40 GB of system disk. We also set one CPU as one CPU
unit, 1 GB RAM as one memory unit and 10 GB disk as one disk unit. Thus, the demand (two CPUs,
1 GB RAM and 10 GB disk) would be translated into (2,1,1) and it is CPU-intensive. The demand
(one CPU, 3 GB RAM and 20 GB disk) is translated into (1,3,2) and it is memory-intensive. Another
idea would be to randomly characterize the jobs, but we preferred the way just described. In our
experimental results, we studied the effects of the job generation control rate and the system utilization.
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5.1. The Effect of Job Generation Rate Control

To study the effect of job generation rate, we worked as follows:

1. We generated a random number of users, from 50 to 1000, and a set of requests for each user.
Additionally, we set different values for the total amount of each available resource, so that,
in some cases, the resources available were enough to satisfy all user requests, while in other
cases, they were not.

2. We set the maximum value of µ equal to 30 jobs per second; thus, the system’s rate of job
generation in the queue systems could not be more than λ = 30 jobs per second.

3. We kept tracking the system’s state at regular time intervals h and recorded the percentages
of resources consumed between consecutive time intervals; thus, we computed the bi values.
Every time a job i leaves a queue, the system’s state changes. For example, if a job leaves the DSQ,
it means that it has consumed F units of the dominant resource, changing the system’s state from
K = K1, K2, . . . Km to K′ = K1 − F, K2, . . . Km. On the other hand, job generation and entrance in
the queues over a period of time means that the system’s job generation rate may change.

After running sets of simulations for different user numbers, we averaged the percentages
of resources consumed during all the recorded time intervals, for different recorded values of λi.
The results showed that, when the value of λi increased up to the thresholds defined by Equation (7),
the percentage of resources consumed during this interval increased, due to increased utilization.
The results are shown in Figure 3. When the number of users is relatively small, an average value of
λi = 15 was enough to consume almost 100% of the resources during this period. For larger number
of users (up to 1000), an average job generation rate of up to λi = 28 (among all queues) was necessary
to exhaust the resources requested over the time intervals.
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Figure 3. The effect of the job generation rate.

5.2. Resource Utilization

In the second set of experiments, we studied the utilization of each resource independently.
The requests were generated in such a manner that the CPU was dominant for 50% of the cases,
the memory was dominant for 30% of the cases and the disk was dominant in 20% of the cases.
The number of users ranged between 500 and 1000, so that they could exhaust all the resources
available. In all the simulation sets, the duration period was one hour, 3600 s. As the time proceeded
and resources were being consumed, fewer jobs were generated and the overall resource utilization
decreased, but it never dropped below 90%. As can be seen in Figure 4, the CPU utilization began
dropping after about 160 s, while the utilization of memory and disk seemed to be dropping in
a smoother way and at later times (200 and 240 s, respectively). The peaks seen in this graph represent
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the cases where some more resources became available and returned to the pool, either due to the
scheduling policy or due to returns from finished jobs that returned the resources back to the pool.
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Figure 4. Individual resource utilization over a period of one hour.

In our last set of experiments, we averaged the utilization of all (see Figure 5) the resources under
our policy using a small number of users (up to 20), to fairly compare the utilization provided by
our policy to the utilization provided by a new algorithm, DRBF [20] (the authors present simulation
results for a set of six users). From the results, we see that our policy outperforms the DRBF strategy
and achieves utilization of about 98%–99%, while the changes are very small (notice that the line is
rather smooth). The DRBF policy achieves a utilization of about 94%–98%, with some peaks where
the utilization drops off in a non-smooth fashion. Additionally, note that our strategy was found to
achieve a utilization of over 90%, even for a large number of users.
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Figure 5. Average resource utilization with a small number of users (up to 20).

6. Conclusions and Future Work

In this short paper, we present a fair resource allocation policy for cloud computing, which
includes a job generation (or flow) control to determine the maximum number of affordable user-tasks
at a given time period. The performance analysis showed that the flow control can help to improve the
resource utilization. The resource allocator is a central system composed of a total of m2 queues, for m
different resources in the cloud. Because the proposed allocation policy can easily be organized in such
a way that batches of m queues can execute in parallel, the complexity of the allocation policy is linear.
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In the future, we plan to expand our policy, so that it addresses other important issues, such as the
cost of each resource allocated and the execution time. One idea to work on in order to reduce the total
execution time, is to pipeline the computations, but careful design is required to avoid delays between
the pipeline stages. An interesting research topic would be to try to combine our work with an adaptive
monitoring estimation model , such as [6], to include auto-scaling support in our work. That may help
with resolving real-life phenomena, such as ping-pong effects or spikes. Since this model includes
probabilistic weighting factors, possible incorporation into our model could be examined. Finally,
we need to obtain comparable results from other works (including flow control schemes) and compare
the total execution time of our policy to the total execution times of other published policies.
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