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Abstract: The unmanned aerial vehicle (UAV), which is a typical multi-sensor closed-loop flight
control system, has the properties of multivariable, time-varying, strong coupling, and nonlinearity.
Therefore, it is very difficult to obtain an accurate mathematical diagnostic model based on the
traditional model-based method; this paper proposes a UAV sensor diagnostic method based on
data-driven methods, which greatly improves the reliability of the rotor UAV nonlinear flight control
system and achieves early warning. In order to realize the rapid on-line fault detection of the rotor
UAV flight system and solve the problems of over-fitting, limited generalization, and long training
time in the traditional shallow neural network for sensor fault diagnosis, a comprehensive fault
diagnosis method based on deep belief network (DBN) is proposed. Using the DBN to replace the
shallow neural network, a large amount of off-line historical sample data obtained from the rotor
UAV are trained to obtain the optimal DBN network parameters and complete the on-line intelligent
diagnosis to achieve the goal of early warning as possible as quickly. In the end, the two common
faults of the UAV sensor, namely the stuck fault and the constant deviation fault, are simulated and
compared with the back propagation (BP) neural network model represented by the shallow neural
network to verify the effectiveness of the proposed method in the paper.

Keywords: rotor UAV; data-driven; on-line; early warning; comprehensive fault diagnosis; DBN

1. Introduction

The rotor UAV [1] is an aircraft that does not carry a pilot. It has been widely used in military and
civilian fields for its unique advantages, so it is indispensable to ensure the safety and reliability of the
rotor UAV flight control system. As an important device for information acquisition, the sensors [2]
provide guarantees for the reliable safety of systems. Once faults occur, the flight safety of the rotor
UAV will be affected, which will inevitably bring about system control performance degradation.
Therefore, rapid detection of sensor failure [3] is a prerequisite for ensuring flight safety.

At present, for rotor UAV flight system sensors, the fault diagnosis method [4] is mostly model
based [5], which [6] relies on the accurate model of the system [7]. However, owing to the improvement
of computer capabilities, the advancement of artificial intelligence, and ultra-precision technology
recently, the rotor UAV flight system has emerged an increasingly complex development trend, which
is very difficult to obtain accurate mathematical models [8,9]. In contrast, the data-driven fault
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diagnosis method [10] has been proposed due to having no need for obtaining an accurate model
of the system. The fault diagnosis can be completed only by using the input and output data of the
system. Among them, the neural network method, which has self-association, self-adaptation, and
no need to establish accurate mathematical models, are widely used in data-driven fault diagnosis
methods. So far, researchers have used neural network methods to conduct extensive research on fault
detection technology. The paper [11] presents a method of classifying impact noises obtained from a
washer machine by obtaining the time frequency image of the sound signals, which is employed as the
input signal to an artificial neural network classifier. A convolutional neural network, which is used to
extract the residual signal from different sensor faults into the corresponding time-frequency map and
fault characteristics to realize the diagnosis of the UAV sensor, is proposed in the literature [12]. From
the visualization, the sensor failure information can be successfully constructed by the convolutional
neural network (CNN) extracting the fault diagnosis logic between the residual and the health state.
Reference [13] proposed wavelet packet threshold denoising and BP neural network methods for fault
diagnosis of rolling bearings. In this method, the Levenberg–Maquardt algorithm was used to improve
the traditional BP neural network, which greatly improves the diagnostic level. In reference [14],
a novel data-driven adaptive neuron fuzzy inference system (ANFIS)-based approach was proposed to
detect on-board navigation sensor faults in UAVs. The main advantages of this algorithm are that it
allows the Kalman filter to estimate real-time model-free residual and ANFIS to build a reliable fault
detection system. According to the experimental results, it was demonstrated that the method can not
only detect fault quickly, but also can be used in real-time applications.

Nevertheless, the traditional shallow neural network method [15] has the disadvantages of
over-fitting, local minimum, gradient attenuation, and poor generalization ability, which makes the
effect of fault detection unsatisfactory [16].

Therefore, this paper proposes a deep learning method, deep belief network (DBN), instead of
shallow neural network. As one of the classic algorithms for deep learning, DBN [17] solves problems
such as dimension reduction, information retrieval, and fault classification successfully because of
an excellent training algorithm and feature extraction. Therefore, it is applied to the field of fault
diagnosis and has certain practicability.

In view of the above discussion, the fault diagnosis of rotor UAV flight control system sensor has
been taken as an example and a fault diagnosis method for DBN is presented by this paper. By training
a large number of offline historical sample data, the optimal network parameters obtained perform the
feature extraction of fault and analyze more essential data features to make it easy to detect faults.

2. Mathematical Model of the Rotor UAV Flight Control System

2.1. Four-Rotor UAV Model

The Quadrotor AUV [18] is a system controlled by six degrees of freedom with strong coupling,
nonlinearity, and interference sensitivity. The four rotors are symmetrically distributed in an “X” shape
or a “十” shape, and the center of gravity of the rotor UAV is at geometric center. The power of the UAV
is generated by four rotors [19], and the rotation of the rotor produces an upward lift, the magnitude of
which is proportional to the square of the angular velocity of the rotor rotation w, that is:

Fi = Kw2
i i = 1, 2, 3, 4 (1)

The Quadrotor AUV controls the attitude and position of the flight through four rotors. The two
sets of rotors rotate in the opposite direction to counteract the anti-torsion moment to maintain the
attitude stability. The total lift in the vertical direction is generated by four rotors [20], and the rotational
speed difference of all the rotors produces the torque of horizontal direction to cause a yawing motion;
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the difference in rotational speed between the front and rear rotors controls the pitching motion; the
left and right rotors controls the rolling motion [21]. The lift force are expressed as follows:

Uz = F1 + F2 + F3 + F4,
Uθ = bl(−F2 + F4),
Uφ = bl(F1 − F3),
Uϕ = d(−F1 + F2 − F3 + F4),

(2)

where b, d, l are respectively the rotor lift coefficient, the drag index, and the distance from the center of
gravity to the axis of the quadrotor UAV; Uz, Uθ, Uφ, Uϕ are respectively the total lift, rolling moment,
pitching moment, and yawing moment of the rotor UAV [22]. Through the Newton–Eulerian formula,
and assuming that the UAV is in slow flight or hover transition, the kinematics model is obtained.
The results are as follows: ..

X = (cosφsinθcosϕ+ sinφsinϕ)Uz/m,
..
Y = (cosφsinθcosϕ+ sinφsinϕ)Uz/m,
..
Z = g− (cosφcosθ)Uz/m,
..
φ =

( ..
θϕ(JY − JZ) + Uθ

)
/JX,

..
θ =

( ..
φϕ(JZ − JX) + Uφ

)
/JY,

..
ϕ =

( ..
θφ(JX − JY)

)
/JZ, . . .

(3)

where
..
X,

..
Y,

..
Z are the accelerations of the rotor UAV in the ground coordinates and θ,φ,ϕ are

respectively the roll, pitch, and yaw of the four-rotor UAV. m is the mass of the four-rotor UAV and g is
the acceleration of the UAV. JX, JY, JZ are the moment of inertia of the X shaft, Y shaft, and Z shaft.

2.2. Flight Coordinate System Model

2.2.1. North East Coast Coordinate System

The Northeast coordinate system [23] is the geodetic coordinate system used by the DJI aircraft.
Origin Og is the take-off point. The three axes of the coordinate system are marked as the right north
direction OgXg, the right east direction OgYg, and the vertical ground direction OgZg. In the attitude
data packet, the north, east, and downward speed curves can be found. In these curves, the value is
positive indicating that the speed is north, east, or down.

2.2.2. Aircraft Local Coordinate System

The aircraft center point Ob is regarded as the coordinate origin in the aircraft local coordinate
system. The three axes correspond to the front and back ObXb, left and right ObYb, and up and
down ObZb of the aircraft, respectively; positive and negative apply to the right hand screw rule, as
shown in Figure 1.
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and (c) the definition of Axis direction.

2.2.3. Speed Coordinate Systems

The origin is taken at the center of gravity of the aircraft, and the axis OaXa is in the same direction
as the flight speed V; the axis OaZa is located on the vertical axis OaXa of the plane of symmetry of the
aircraft, pointing to the belly; OaYa is perpendicular to the plane XaOaZa, pointing to the right [24].
In the attitude data packet, the north, east, and downward speed curves can be found. In these curves,
the value is positive indicating that the speed is north, east, or down.

2.2.4. Kinematic Equations for Angular Velocity

In order to describe the movement of the rotor UAV relative to the ground, the geometric
relationship between the triaxial attitude angle [25] change rate and the three angular velocity
components of the UAV is established as follows:

.
θ = p + qsinθtanφ+ cosθtanφ,
.
φ = qcosθ− rsinθ,
.
ϕ = qsinθ/cosφ+ rcosθ/cosφ,

(4)

where p represents the rolling rate, q represents the pitching rate, and r represents the yaw rate.

2.3. Deep Confidence Network Model

The deep learning idea [26] is inspired by the biological nervous system. It is made up of an
input layer, multiple hidden layers, and an output layer. Each layer is connected to each other through
nodes or neurons. The output of the previous layer is regarded as the input of each hidden layer. DBN,
one of the classical algorithms for deep learning, can automatically extract low-level to high-level,
concrete-to-abstract features [27] from raw data through a series of nonlinear transformations and is
composed of a number of restricted Boltzmann machines (RBM) [28], which are commonly used to
initially set the parameters of the feedforward neural network in order to improve the generalization
ability of the model. The RBM network consists of n neurons and m hidden layer neurons. The
connection between nodes exists only between layers. RBM comes from the classical thermal theory.
The smaller the energy function is, the more stable the system is. The minimum energy of the network
is trained to obtain the optimal parameters of the network. The energy function is expressed as follow:

E(v, h) = −
n∑

i=1

aivi −

m∑
j=1

b jh j −
∑
i, j

vih jwi j, (5)

where vi, h j are respectively the random state of the i unit of the visible layer and the j unit of the
hidden layer; ai and b j are the corresponding bias; wi j are the weights between the two units. The
purpose of training the network is to derive the optimal parameters

(
wi j, ai, b j

)
. The core is the process

of using the layer-by-layer greedy learning algorithm to optimize the connection weight of the deep
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neural network, which firstly use the unsupervised layer-by-layer training method to effectively mine
the fault features in the device to be diagnosed, and then add the corresponding classifier based
through the way that reverse supervised fine-tuning to optimize the fault diagnosis capability of
DBN. Some nonlinear complex functions can be learned from unsupervised layer-by-layer training by
directly mapping data from input to output, which is the key to powerful feature extraction capabilities.
Typical network structure [29] is shown in Figure 2.
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3. Fault Diagnosis Method Based on Deep Confidence Network

3.1. Off-Line Training Based on the DBN Model

3.1.1. Deep Confidence Network Feature Extraction

Deep belief network, a self-learning feature extraction algorithm [30], has been widely used in
many application fields with its powerful feature extraction capability [31] and participation without
requiring a large amount of tag data. The process of DBN extracting fault features is shown in Figure 3.
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layer, (b) the RBM of the second layer, and (c) the RBM of the third layer.
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The data layer is the visible layer and the initial input data. First, the data vector Data and the first
layer hidden layer are used as the first RBM to train the weight w and bias a of the RBM, and then the
parameters of the RBM are fixed; h1 is regarded as the visible vector, and h2 is treated as the hidden
vector to train the second RBM to get its parameters, namely weight w and bias b, and then fix these
parameters; finally, to train RBM, which is composed of h1 and h2, the specific training algorithm is
shown in Algorithm 1.

Algorithm 1. Description of RBM update algorithm.

This is the RBM update procedure for binomial units. It can easily adapted to other types of units.

x1 is a sample from the training distribution for the RBM
λ is a learning rate for the stochastic gradient descent in Contrastive Divergence
w is the RBM weight matrix, of dimension(number of hidden units, number of inputs)
a is the RBM offset vector for input units
b is the RBM offset vector for hidden units
Notation: Q(h2 = 1

∣∣∣x2) is the vector with elements
Q(h2i = 1

∣∣∣x2)

for all hidden units i do
compute Q(h1i = 1

∣∣∣x1) (for binomial units, sigm(bi +
∑

j wi jx1 j))
sample h1iε{0, 1} from Q(h1i

∣∣∣x1)

end for
for all visible units j do

compute P(x2 j = 1
∣∣∣h1) (for binomial units, sigm

(
a j +

∑
i wi jh1i

)
)

sample x2 jε{0, 1} from P(x2 j = 1
∣∣∣h1)

end for
for all hidden units i do

compute Q(h2i = 1
∣∣∣x2) (for binomial units, sigm

(
bi +

∑
j wi jx2 j

)
)

end for

w← w + λ
(
h1x′1 −Q(h2 = 1 |x 2)x′2

)
a← a + λ(x1 − x2)

b = b + λ(h1 −Q(h2 = 1 |x 2))

3.1.2. Deep Confidence Network Training

In fact, the training of RBM is to find the probability distribution that produces the training
samples well. Therefore, in order to eliminate the error caused by the data difference between different
latitude and longitude, the original data need to be normalized.

X− = X.min( ),
X+ = X.max( ).

(6)

The DBN learning and training process is mainly divided into two parts:
1. Unsupervised pre-training based on restricted Boltzmann machines from the bottom to the top.

Since the deep belief network is a neural network based on probability model, the decisive factor
of its probability distribution depends on the weight w, so the goal of the training is to find the best
weight. The contrastive divergence (CD) algorithm that finds the best weight is to randomly initialize
the parameter set of RBM [32] wi j, ai, b j. Among them, ai is the bias of the i node of the visible layer; b j is
the bias of the j node of the hidden layer; wi j is the connection weight of the i node of the visible
layer; and the j node of the hidden layer. 〈 〉recon is a reconstructed sample obtained by sampling
Gibbs to the sample to estimate the expectation. The learning algorithm is as follows, in Equation (7).
Simultaneously, the description of the CD-k algorithm and train unsupervised DBN algorithm are
expressed in Algorithms 2 and 3, respectively.
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∆wi j = λ
(
〈vih j〉data − 〈vih j〉recon

)
,

∆ai = λ(
〈

vi〉data − 〈vi〉recon) ,
∆b j = λ

(〈
h j

〉
data
−

〈
h j

〉
recon

)
,

(7)

Algorithm 2. CD-k algorithm description.

Input: RBM(V1, . . . , Vn, H1, . . . , Hm), training batch S
Output: gradient approximation ∆wi j, ∆ai and ∆b j for i = 1, . . . , n; j = 1, . . . , m.

1 initialize ∆wi j = ∆ai = ∆b j = 0 for i = 1, . . . , n; j = 1, . . . , m
2 for all the vεS do

3 v(0) ← v
4 for t = 0, . . . , k− 1 do

5 for i = 1, . . . , n do sample h(t)i ∼ p(hi

∣∣∣∣v(t))
6 for j = 1, . . . , m do sample v(t+1)

j ∼ p(v j

∣∣∣∣h(t))
7 for i = 1, . . . , n; j = 1, . . . , m do

8 ∆wi j ← ∆wi j + p
(
Hi = 1

∣∣∣v(0))·v0
j − p

(
Hi = 1

∣∣∣v(k))·v(k)j

9 ∆ai ← ∆ai + v(0)j − v(k)j

10 ∆b j ← ∆b j + p
(
Hi = 1

∣∣∣v(0))− p
(
Hi = 1

∣∣∣v(k))

Algorithm 3. Description of the train unsupervised DBN algorithm.

Train a DBN in a purely unsupervised way, with the greedy layer-wise procedure in which each added
layer is trained as an RBM.

P̂ is the input training distribution for the network
λ is a learning rate for the RBM training
η is the number of layers to train
wk is the weight matrix for k, for k from 1 to η
ak is the visible units offset vector for RBM at level k, for k from 1 to η
bk is the hidden units offset vector for RBM at level k, for k from 1 to η
Mean_field_computation is Boolean that is true if training data at each additional level is obtained by a
mean-field approximation instead of stochastic sampling

for k = 1 to η do
initialize wk = 0, ak = 0, bk = 0
while not stopping criterion do

sample h0 = x from P̂
for i = 1 to k− 1 do

if mean_field_computation then

assign hi
j to Q(hi

j = 1
∣∣∣∣hi−1) , for all elements j of hi

else
sample hi

j from Q(h i
j

∣∣∣∣ hi−1) , for all elements j of hi

end if
end for

RBMupdate(hk−1,λ, Wk, ak, bk) {thus providing Q(hk
∣∣∣hk−1) for future use}

end while
end for

The CD algorithm is used to train layer by layer for DBN, obtaining the parameters of each layer
and initializing the DBN, and then fine-tuning the parameters with the supervised learning algorithm.
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2. Supervised tuning training from the top to the bottom.
For supervised tuning training, the forward propagation algorithm is used to obtain a certain

output value from the input firstly, and then the backward propagation algorithm is used to update
the weights and bias values of the network.
• Forward Propagation Algorithm

1. Pre-trained w, b with the CD algorithm to determine the opening and closing of the corresponding
hidden elements. Calculating the stimulus values for each hidden element are as follows:

h(l) = w(l)
· v + b(l) (8)

where l is the layer index of the neural network. The values of w and b are as follows:

w =


w1,1 w2,1

w1,2 w2,2

. . .

. . .
. . . . . . . . .

wn,1

wn,2

. . .
w1,m w2,m . . . wn,m

, b =


b1

b2

. . .
bm

, (9)

where wi, j represents the weight from the i explicit element to the j hidden element.
2. Spread out layer by layer, calculate the excitation value of each hidden element in the hidden

layer layer by layer, and standardize it with sigmoid function, as shown below:

σ
(
h j

)(l)
=

1

1 + e−h j
. (10)

3. Finally, the excitation value and output of the output layer are calculated as follows:

h(l) = w(l)
·h(l−1) + b(l),

X̂ = f
(
h(l)

)
,

(11)

where f (·) represents the activation function of the output layer and the output value of the output
layer is X̂.
• Back Propagation Algorithm

1. The error back propagation algorithm of the reconstruction error criterion is used to update
the parameters of the whole network and evaluate whether the RBM is trained in the paper.
The reconstruction error is the difference between the training data and the original data after
the Gibbs sampling by RBM, as shown below:

J =
∑n

k=1 ‖ v− v(k) ‖. (12)

The reconstruction error is continuously reduced by iteration times until all RBM training is
completed. Finally, the global fine-tuning is performed. Since the last layer of the deep confidence
network is used for parameter fitting, the activation function of the last layer selects the hyperbolic
tangent function, namely:

f (x) = 1− 1/
(
1 + e2x

)
. (13)

The output value of the network between −1 and 1 is made. The process of fine-tuning the deep
belief network parameters is the process of tuning using the back propagation algorithm. Given the
input and output samples, the gradient descent algorithm is used to update the network weights and
bias parameters as follows: (

wl, bl
)
←

(
wl, bl

)
− λ·

∂E
∂(wl, bl)

, (14)

whereλ is the learning rate whose numerical value represents the step size of each parameter adjustment.
It is generally between 0.005 and 0.200, where λ = 0.10. In order to overcome the problem that the
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training process easily falls into the local minimum value, the impulse term is introduced, and the
parameter update direction is inconsistent with the gradient direction. The method is as follows:

wt+1
i j = mwt

i j + λ
∂θ
∂wi j

, (15)

where m is the momentum term, where m = 0.5; t is the number of iterations for the sample.

3.2. Objective Function Establishment of DBN Fault Diagnosis Model

The deep belief network model is essentially a mapping relationship between input data and
output data, that is,

θx = f
(
Hx−1,

.
Hx−1, Wx, px, qx,φx, θx−1

)
,

φx = f
(
Hx−1,

.
Hx−1, Wx, qx, rx, θx,φx−1

)
,

ϕx = f
(
Hx−1,

.
Hx−1, Wx, qx, rx, θx,ϕx−1

)
,

(16)

where H stands for the flight height of the aircraft;
.

H expresses the rate of change of altitude; W expresses
the wind speed.

3.3. Online Diagnosis Based on the DBN Model

After the offline training of the deep confidence network is completed, the online estimation
can be performed, and the residual between the estimated value and the real value is used to judge
whether the fault is faulty. The residual at a certain moment is specifically described as follows:

e(t) = õ(t) − o(t). (17)

The detection threshold Kt is set for each parameter sensor. By comparing the residual and the
threshold, we can determine if there is a fault. When

∣∣∣e(t)∣∣∣ < Kt, it is judged to be faultless; when∣∣∣e(t)∣∣∣ ≥ Kt, it is determined to be faulty. The value of Kt depends on the specific parameters as the case
may be. The sensor output value can intuitively determine the stuck fault within a certain period of
time, but other sensor fault types such as the constant deviation fault needs to satisfy the mathematical
expression of the unknown fault type, as follows:

Y(t) = ky(t) + a, t ≥ T (18)

where k is the failure factor, a is the deviation, and t is the time at which the failure occurred.
Different fault types correspond to different parameters k and a in Equation (18). In the case of a

fault within a certain period of time, the DBN estimated value ỹ(t) is used instead of the true value y(t)
in Equation (18), that is:

Y(t) = kỹ(t) + a, t ≥ T. (19)

As long as the values of the parameters k and a are known and the estimated values k̃ and ã are
obtained by a function fitting, the category of the fault can be distinguished. The specific fault type
and parameter are as follows in Table 1.

Table 1. Corresponding of fault type and parameter.

Fault Type Parameter

Constant deviation fault k = 1, |a| ≥ Kt

Constant gain fault k , 1, |a| < Kt
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When the sensor fault is detected by the deep confidence network, the signal reconstruction
should be taken in time; that is, the output signal of the sensor is disconnected, and the output of the
sensor is replaced by the output estimated by the DBN to ensure that the aircraft continues to fly safely.

4. Experiment and Analysis

4.1. Experimental Platform

The experiment is run on the Windows Operating System, which is configured as Intel Core i7,
16G memory. The encoding is done on the PyCharm platform that include the TensorFlow Framework.
By comparing the model of the traditional BP neural network and the DBN network in the paper, the
results will be analyzed accordingly.

The data used in this experiment are derived from the DJI four-rotor UAV. The data in the rotor
UAV flight control data record mainly consist of eight parts, namely attitude data, on-screen display
(OSD) data, controller data, remote control data, motor data, motor governor data, battery data,
and obstacle avoidance data. The data are collected mainly from the attitude data as the source of
experimental data in the paper. The attitude data mainly include information on sensors such as
position, velocity, angular velocity, accelerometer, gyroscope, magnetometer, barometer, and so on.

The flight data are obtained from the flight attitude data of the rotor UAV. Via the process of
normalization, the training samples and the test samples are established. First, the training samples
are used for model training, and the weight and bias are continuously adjusted to make it converge
quickly, and then the test samples is tested for the fault diagnosis effect to obtain the optimal DBN
model. The fault diagnosis process is shown in Figure 4. When collecting data [33], data obtained in
various flight state as much as possible, including altitude, altitude change rate, wind speed, pitch,
yaw, roll pitch rate, yaw rate, and roll rate. When collecting training data, the flight altitude is 200 m,
the flight speed is 40 m/s, the sampling time is 600 s, and the sampling period is 0.1 s.
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4.2. Model Evaluation Index Determination

In order to better analyze the model in the paper, root mean square error (RMSE) and coefficient
of determination (R2) are used for the index of regression evaluation. The description is defined
as follows.

4.2.1. The Description of the RMSE

RMSE is a measure that reflects the degree of difference between predicted value and actual value.
The larger the value is, the larger the difference is. The formula is as follows:

RMSE(yi, ŷi) =

√√
1
n

n∑
i=1

(yi − ŷi)
2, (20)

where n is the dimension of the sequence, ŷi represents the prediction value of sensor angular rate, and
yi represents the actual value of sensor angular rate.

4.2.2. The Description of the R2

R2 is also called the goodness of fit. The larger the goodness of fit, the denser the observation
point is near the regression line. R2 is in the range between 0 and 1. The larger the value, the better the
prediction effect. The expression formula is as follows:

R2(yi, ŷi) = 1−

∑m
i=1(yi − ŷi)

2∑m
i=1(yi − yi)

2 , (21)

where yi is expressed as the average value of sensor angular rate.

4.3. Model Structure Selection and Training Results

In the testing, the accuracy of fault diagnosis has a certain relationship with the training samples
and the number of RBM layers in the network. When the training samples is different, the RBM layers
of the network will also change accordingly. The relationship between the three variables is shown in
Figure 5. Firstly, the underlying RBM is constructed with a network model of 3 to 10 layers. The number
of neurons in the middle layer is initialized by the random number between 10 and 100. After an
overwhelming number of training tests, the iteration times and the reconstruction error convergence
curve are as shown in Figure 6.
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As can be seen from Figure 6, in the initial stage, as the number of iteration times increases, the
reconstruction error decreases rapidly. When the number of iteration time is greater than 200 times,
the error reduction gradually stabilizes. Therefore, the number of RBM iteration time per layer is set to
200. On the premise that the training samples is fixed and the number of RBM iterations per layer is
set to 200, the diagnostic accuracy of different RBM layers is tested. Change the number of RBM layers,
starting at level 0 and modeling only the top level classifier until level 10. The correct relationship
diagram is shown in Figure 7.
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Figure 7 shows that with the increase of RBM layers, the accuracy of fault dignosis is on the rise,
and the trend gradually becomes slow. When the RBM is 0 layer, the classification result has the lowest
correct rate, only 30%. As the number of layers increases, the discriminative performance of the model
increases continuously. However, when the effect of seven layers is reached, the correct rate curve
almost no longer rises. The number of bottom RBM layers is six layers and it has reached 95% or more,
so the number of RBM layers of the selected model is six layers. Lastly, using the roll sensor, the yaw
sensor, and the pitch sensor under normal working conditions, the shallow neural network BP [34] is
compared with the deep neural network DBN proposed in the paper, as shown in Figures 8–10.
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Figure 8. The test of roll.

In Figure 8, it can be seen that at 22 s of flight time (x = 22), the flying hand hits about 2% of the
crossbar (y = −2.1◦) to the left. Then, it leaned to the right again. Corresponding to the actual flight
situation, the flying hand went to the left and rolled the bar, but it was released again. According to
this situation, the DBN model proposed in this paper can respond well to the stroke situation and has
a strong generalization ability.
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Figure 9. The test of yaw.

As can be seen in the trend of the curve in Figure 9, the aircraft yaw is −68◦ (y = −68◦) at 9 s of
flight time (x = 9). Nevertheless, at about 10 s, the yaw changes and the value increases from small to
large, indicating that the aircraft has rotated clockwise.
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Figure 10. The test of pitch.

In Figure 10, the aircraft pitch is stable in the beginning, but between 6 s and 13 s, the aircaft
pitch fluctuates violently, which shows that the flying hand went to the left and right continuously.
The method DBN proposed in the paper can fit the measured value more accurately.
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Table 2 presents the RMSE value and the R2 value between the predicted value and the actual
value calculated by the BP neural network and the DBN network of Figures 7–9. As can be seen from
Table 2, the RMSE is lower and the R2 is more accurate based on the DBN network. It can be shown
that DBN proposed in the paper can better fit the real value of the system compared with the traditional
shallow BP neural network, so as to quickly diagnose faults for providing a good foundation.

Table 2. Comparison of root mean square error (RMSE) (◦)/s and R2 of the two models.

Models Roll Yaw Pitch R2

BP 10.34 156.34 74.75 0.82
DBN 1.65 89.4 25.64 0.94

4.4. Experimental Results

After the training of the DBN model is completed, it can be used for online diagnosis of angle
sensor faults. The following is a simulation verification of the pitch, roll, and yaw three sensor in the
injection faults.

4.4.1. Sensor Stuck Fault Diagnosis

1. Pitch injection failure
In Figure 11, after the 10 s injection fault, the measurement value does not change any more.

The method DBN proposed in the paper can fit the measured value more accurately. When the sensor
fault is detected, the output value estimated by the DBN is used to replace the measurement value of
the sensor, which provides a guarantee for the safe flight of the UAV.
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2. Roll injection failure
In Figure 12, at 10 s of flight time (x = 10), the flying hand hits about 2% of the crossbar (y = 2.2◦)

to the right, and the duration of the entire crossbar is about 8 s to 10 s. Then, it leaned to the left again.
Corresponding to the actual flight situation, the flying hand went to the right and rolled the bar, but it
was released again. Therefore, the embodiment of the posture is to tilt to the right and immediately
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reverse the brake to slow down. According to this situation, the DBN model proposed in this paper
can respond well to the stroke situation. When the sensor fault is detected, the output value estimated
by the DBN is used to replace the measurement value of the sensor.
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3. Yaw injection Failure
As can be seen in the trend of the curve in Figure 13, the aircraft yaw is −68◦ (y = −68◦) at 9 s of

flight time (x = 9). Nevertheless, at about 10 s, the yaw changes and the value increases from small to
large, indicating that the aircraft has rotated clockwise. When the sensor fault is detected, the output
value estimated by the DBN is used to replace the measurement value of the sensor.
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4.4.2. Sensor Constant Deviation Fault Diagnosis

1. Pitch injection failure
Taking the pitch sensor fault as an example, 2◦/s constant deviation fault is injected at 10 s, and

other simulation conditions are unchanged. The results are as follows.
As can be seen from Figure 15, the DBN network has a smaller and more accurate estimation error

than the BP network. In order to further judge the type of fault, linearity fitting is used to obtain k̃ and
ã. The fault fitting result shown in Figure 14 is k̃ = 0.957, ã = 2.135, and the fault corresponding to the
deviation is about 2. It can be obtained from Figure 15 that the Kt is set to 1.8. By fitting the parameter
ã, it can be quickly inferred that the fault type is the sensor constant deviation fault. After the constant
deviation fault is identified, the deviation of ã is corrected based on the sensor fault signal to achieve
reconstruction of the fault signal.
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2. Roll injection failure
Taking the roll sensor fault as an example, 0.3◦/s constant deviation fault is injected at 18 s, and

other simulation conditions are unchanged. The results are as follows.
From Figure 16, the fault fitting result is k̃ = 1.023, ã = 0.295, and the corresponding deviation

is about 0.3. It can be obtained from Figure 17 that the Kt is set to 0.3. By fitting the parameter ã, it
can be quickly inferred that the fault type is the sensor constant deviation fault. After the constant
deviation fault is identified, the deviation of ã is corrected based on the sensor fault signal to achieve
reconstruction of the fault signal.
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3. Yaw injection failure
Taking the yaw sensor fault as an example, 0.08◦/s constant deviation fault is injected at 21 s, and

other simulation conditions are unchanged. The results are as follows.
The fault fitting result obtained by Figure 18 is k̃ = 0.975, ã = 0.078, and the corresponding deviation

is about 0.08. It can be obtained from Figure 19 that the Kt is set to 0.07. By fitting the parameter ã, it
can be quickly inferred that the fault type is the sensor constant deviation fault. After the constant
deviation fault is identified, the deviation of ã is corrected based on the sensor fault signal to achieve
reconstruction of the fault signal.

Electronics 2019, 8, 1350 19 of 22 

From Figure 16, the fault fitting result is 𝑘෨  = 1.023，𝑎෤ = 0.295, and the corresponding deviation 
is about 0.3. It can be obtained from Figure 17 that the 𝐾௧ is set to 0.3. By fitting the parameter 𝑎෤, it 
can be quickly inferred that the fault type is the sensor constant deviation fault. After the constant 
deviation fault is identified, the deviation of 𝑎෤ is corrected based on the sensor fault signal to achieve 
reconstruction of the fault signal. 
3. Yaw injection failure 

Taking the yaw sensor fault as an example, 0.08°/s constant deviation fault is injected at 21 s, and 
other simulation conditions are unchanged. The results are as follows. 

 
Figure 18. Sensor deviation 0.08°/s yaw response curve. 

 
Figure 19. 0.08°/s error curve. 

Figure 18. Sensor deviation 0.08◦/s yaw response curve.

Electronics 2019, 8, 1350 19 of 22 

From Figure 16, the fault fitting result is 𝑘෨  = 1.023，𝑎෤ = 0.295, and the corresponding deviation 
is about 0.3. It can be obtained from Figure 17 that the 𝐾௧ is set to 0.3. By fitting the parameter 𝑎෤, it 
can be quickly inferred that the fault type is the sensor constant deviation fault. After the constant 
deviation fault is identified, the deviation of 𝑎෤ is corrected based on the sensor fault signal to achieve 
reconstruction of the fault signal. 
3. Yaw injection failure 

Taking the yaw sensor fault as an example, 0.08°/s constant deviation fault is injected at 21 s, and 
other simulation conditions are unchanged. The results are as follows. 

 
Figure 18. Sensor deviation 0.08°/s yaw response curve. 

 
Figure 19. 0.08°/s error curve. Figure 19. 0.08◦/s error curve.



Electronics 2019, 8, 1350 20 of 22

From all the above simulation figures, it can be concluded that compared with the traditional
BP network model, the DBN network model proposed in the paper can more accurately estimate the
UAV’s pitch, yaw, roll, and actively respond to the UAV’s stroke. Whether the sensor is faulty or not
depends on whether the measured value is a fixed value at a certain time. When it comes to faults,
fault isolation is immediately performed to ensure safe operation of the rotor UAV flight system.

5. Conclusions and Future Works

In the paper, the DBN method based on data-driven methods is applied to the fault diagnosis
of the rotor UAV flight system sensors, which effectively solves the problems of the shallow neural
networks, such as over-fitting, local minimum, generalization ability, complex functions, insufficient
representation ability, and so on, by establishing a deep network structure. The simulation results
show that compared with the BP model, the fault diagnosis model has higher convergence speed and
diagnostic accuracy and can be extended to sensor diagnosis of other systems. The method currently
realizes the real-time fault diagnosis and is applicable to complex the rotor UAV nonlinear systems.
On the basis of this, the memory characteristics of long- short-term memory networks (LSTM) can be
used to explore the short-term fault prediction of sensors, and to curb the working state of the sensor
anytime and anywhere and enable the fault to be effectively prevented before it occurs, which is a
necessary means to ensure safe and efficient operation of the rotor UAV. Therefore, the current state of
the rotor UAV flight system sensor is estimated in terms of big data mining to realize the system’s
conditional maintenance and avoid major safety accidents.

In a word, based on the research of the paper, it is indispensable to analyze the different models of
different models of UAVs to verify the applicability of the model. In addition, in terms of improving
system reliability, it is necessary to carry out deep excavation of the rotor UAV flight data in order to
realize the conditional maintenance and life prediction of the equipment.
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