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Abstract: The powerful support vector regression framework is proposed in a novel method for
near-field focusing using antenna arrays. By using this machine-learning method, the set of weights
required in the elements of an array can be calculated to achieve an assigned near-field distribution
focused on one or more positions. The computational cost is concentrated in an initial training
process so that the trained system is fast enough for applications where moving devices are involved.
The increased learning capabilities of support vector machines allow using a reduced number of
training samples. Thus, these training samples may be generated with a prototype or a convenient
electromagnetic analysis tool, and hence realistic effects, such as coupling or the individual radiation
patterns of the elements of the arrays, are accounted for. Illustrative examples are presented.
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1. Introduction

Near-field focusing (NFF) [1–5] is one of the state-of-the-art topics related to antenna design that
is gaining more attention in the recent years. It has become one of the most interesting approaches
to emerging applications such as RFID [2,4], medical hyperthermia [6], wireless energy transfer
(WET) [7], wireless energy and information transfer (WEIT) [8,9], imaging, Internet of things (IoT)
or 5G mobile telephony, which are based on wireless links between devices usually located at short
distances. NFF allows antenna arrays to concentrate the energy on an assigned position or spot
in the near-field (NF) region of the antenna, reducing the waste of energy directed to positions
of space where it is not necessary. The conjugate-phase (CP) method proposed in [2,10,11] is an
excellent technique for calculating the phase-shift that must be applied to each array element so that
all the signal contributions from the individual elements arrive in-phase to the position of interest,
creating a constructive interference that increases the field level at such position. This is a robust and
simple approach whose performance has been undoubtedly proven. However, the CP method has
been lacking for certain cases where it is limited, for example in emerging applications with more
demanding specifications that require concentrating the field on more than one focal point or arbitrary
volumes. In such cases, near-field multi-focusing (NFMF) has arisen as an excellent alternative [12,13].

NFMF is based on the minimization of a proper cost function designed to account for all the
requirements. Different optimization techniques are used to calculate the set of weights that must be
applied to the array elements so that the resulting field distribution is focused on the assigned spots.
Although the resulting method is flexible and powerful with increased focusing performance, it is
time consuming due to the iterative nature of the optimization techniques involved. In the case of
applications requiring fast adaptation, for example because moving devices are involved, this could
represent an important limitation as the time required to calculate the new weights to focus on the
new positions could be unacceptable.
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Recently, in [14] neural networks (NN) [15] have been proposed as an alternative to optimization
for NFMF applications, adapting previous successful approaches used for far field (FF) synthesis
problems [16,17]. The resulting focusing performance is similar to that achieved using optimization
techniques, but its time–cost is strongly reduced once the NN has been trained; it is able to calculate
the weights required to achieve a given field distribution without relevant delay. All the computing
time is concentrated in the previous training step, but providing solutions almost in real time once
trained. The training or learning of any machine learning (ML) system consists of presenting known
pairs of inputs and outputs so that the system is able to extract the relationship between them and
provide outputs to new inputs. In [14], the training pairs presented to the NN are samples of the NF
distributions and the weights applied to the array to achieve them. Although NNs are a very popular
tool in the framework of ML methods, other alternatives have been shown to present improved learning
capabilities, avoiding the problem of overfitting [15] if the NN is trained excessively, and requiring
much less training data. In [14], the number of pairs required to train the NN is in the order of 5000.
If the training patterns are obtained through simulation, the time requested to obtain such a number of
patterns might be excessive; obtaining them through measurement of a real antenna is impossible in
practice. In this paper we propose the use of support vector regression (SVR), a powerful ML method
based on support vector machines (SVM) and the associated structural risk minimization principle
(SRM) [18] to obtain the weights to be applied to the array elements so that an antenna array is able to
multifocus or to generate a near-field (NF) distribution complying with the specifications. It requires a
strongly reduced set of training patterns with respect to NNs, so that obtaining them becomes easier,
and the system still operates fast enough for real time applications. Although SVR has been used
in [19] for NFF applications, it was only used as an auxiliary tool used to calculate a coupling matrix
required to model interaction between elements in the results of a conventional optimization method.
In this paper we propose using SVR directly to synthesize the weights required for focusing on some
assigned points.

This paper is organized as follows: Section 2 presents the use of SVR to create a model of the
array able to relate field samples and weights. In Section 3 this model is used to perform the synthesis.
Some illustrative results are presented in Section 4. These results and some conclusions are discussed
in Section 5.

2. Support Vector Regression-Based Inverse Model of the Array

The field radiated at a certain position~r by an antenna array with N elements is given by the
superposition of the field radiated by its individual elements. A general and simple formulation
representing this sum of contributions is

E(~r) =
N

∑
n=1

ωn · gn(~r) = gT(~r) ·w (1)

where E(~r) is the value of the considered component of the field at~r, ωn is the feeding weight applied
to the n-th array element, whose contribution to the field at~r is gn(~r). These values are also represented
in vector form as w = [ω1, ω2, . . . , ωN ]

T and g(~r) = [g1(~r), g2(~r), . . . , gN(~r)]T , with (.)T representing
the transpose operator.

If M positions of the near-field region of the antenna are evaluated,~rm, m = 1 . . . M, Equation (1)
may be rewritten in matrix form as

e = G ·w (2)

with e = [E(~r1), E(~r2), . . . , E(~rM)]T and G = [g(~r1), g(~r2), . . . , g(~rM)]T . A proper modeling of the
array involves determining or calculating G. However, for synthesis purposes an inverse model is
more adequate.
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In the usual case of M > N (i.e., the number of positions where the field is evaluated is greater
than the number of elements in the array) Equation (2) represents an overdetermined system of linear
equations. If a least-squares criterion is chosen to find a solution, the problem becomes

minimize
w

||e−G ·w||2 (3)

where ||.|| stands for the Euclidean norm.
The solution to Equation (3) is well known [20] and given by

w = (GH ·G)−1 ·GH · e = G+ · e (4)

where G+ is the pseudoinverse matrix for the overdetermined problem, and it represents an inverse
model of the antenna array. Equation (4) shows that a linear model A = G+ may be obtained to
calculate the weights that must be applied to an antenna array so that it radiates according to a given
field distribution specified by its samples, w = A · e.

The SVR framework is proposed to calculate the mentioned model. Let us consider that a set of
P pairs {w(p), e(p)}, p = 1 . . . P, are available for training purposes. Each training pair (or training
pattern) consists of a vector of weights applied to the elements of the array and the corresponding
field distribution represented by its samples. In this training dataset, the inputs correspond to the field
distributions represented by their samples, so that the number of samples for each pattern is defined
by the number M of locations in the NF region of the antenna that are considered. The outputs are
represented by the complex weights applied to the elements of the array, i.e., a total of N complex
values for each sample. It is straightforward that the total number of values involved is M · P in the
inputs and N · P in the outputs. These training patterns may have been obtained by measurements,
EM simulations or by any means. If they are obtained using a method that accounts for the realistic
properties of the array (including coupling effects between elements, non-idealities, etc.), the training
patterns also take these properties into account, hence increasing its accuracy.

If we focus on the n-th element of the array in order to obtain the feeding weight that must
be applied to it, the SRM principle establishes that the n-th row of A, an, can be obtained through
minimizing a cost function given by [18]:

J(an) =
1
2
||an||2 + C

P

∑
p=1
|ω(p)

n − an · e(p)|ε (5)

where
|ω(p)

n − an · e(p)|ε = max (0, |ω(p)
n − an · e(p)| − ε) (6)

is Vapnik’s ε-insensitive loss function, and C > 0 is a penalty value used to balance the model
complexity (controlled by the first term of Equation (5)) and the cost of deviations larger than ε. This
parameter is related to the precision of the field sampling, the noise or any other uncertainty factor
that might affect the accuracy of the training patterns. This cost function implies the choice of a linear
kernel for the SVR [18]. This is a straightforward choice due to the linear relation between inputs and
outputs made explicit in Equation (4).

In order to solve this minimization problem, a set of positive slack variables ξp and ξ̃p are
introduced so that Equation (5) may be rewritten as a constrained minimization problem given by

minimize
an

1
2
||an||2 + C

P

∑
p=1

(ξp + ξ̃p) (7)
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subject to

an · e(p) −ω
(p)
n ≤ ε + ξp, ∀p = 1 . . . P

ω
(p)
n − an · e(p) ≤ ε + ξ̃p, ∀p = 1 . . . P

ξp, ξ̃p ≥ 0, ∀p = 1 . . . P

This problem is usually solved making use of the Lagrange multiplier technique [18], which
leads to an optimal regressor (i.e., the optimal values of the n-th row of model A) given by the
following expression:

ân =
P

∑
p=1

(α̃p − αp)e(p) (8)

which is a function of the field distribution training patterns, linearly combined using α̃p and
αp, positive Lagrange multipliers resulting from the maximization of the quadratic dual problem
expressed as

W(α̃, α) = −
P

∑
p=1

ε(α̃p + αp) +
P

∑
p=1

ω
(p)
n (α̃p + αp)−

1
2

P

∑
p,q=1

(α̃p + αp)(α̃q + αq)〈e(p), e(q)〉 (9)

subject to 0 ≤ α̃, α ≤ C. The expression 〈e(p), e(q)〉 stands for the inner product, and it is applied to
pairs of near-field distributions taken from the training patterns. The solution of this dual quadratic
programming (QP) problem can be efficiently found taking advantage of its convexity (for example,
using [21,22]). The support vector theory states that only some training patterns (typically less
than P) contribute to Equation (8) while the other terms in the summation are canceled because
their corresponding Lagrange multipliers are both zero-valued. The training patterns with non-null
multipliers are referred to as support vectors.

The solution to Equation (8) allows calculating the weight ωn that must be applied to the n-th
element of the array. This regression must be repeated for the total N elements, obtaining the rows of
the estimated model Â. Finally, the total set of weights to be applied to the array elements to produce
a given field distribution can be estimated as

ŵ = Â · e. (10)

The number of training patterns P used to perform the regression is a critical choice for the
accuracy of the model in ML methods. Unfortunately, none of the methods proposed in the literature for
the choice of P has been accepted as valid in general situations. A strategy based on the cross-evaluation
of an independent test or validation set (usually a subset of the available patterns not used for training)
is typically followed. In the examples presented along this paper, the validation set consists of new
patterns obtained using the same procedure as with the training set. In all cases, the number of
validation patterns has been chosen to be 10% of the training set, i.e., 0.1P. Although other machine
learning methods may be affected by the problem of overfitting (for example neural networks [15]),
the SRM principle applied in SVR guarantees robustness against overfitting if P is too high, and
improved learning capabilities (i.e., a smaller P is necessary for similar performance).

2.1. Handling Complex Values in Real-Valued Schemes

The optimization problems proposed in Equations (7) and (9) are complex-valued, as both the
field samples and the weights applied to the array are complex, and also the model relating them
is composed of complex values. Nowadays most optimization schemes and toolboxes are able to
handle complex values, but some ML methods are designed to work with real numbers. In such cases,
the regression can be reformulated to be handled by the real-valued algorithms.
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Let us consider a vector of real values w̃ = [<{wT} ={wT}]T obtained by stacking the real and
imaginary parts of the weight vector w. The real and imaginary parts of the samples of the field
distribution may also be stacked to create an extended real-valued vector ẽ = [<{eT} ={eT}]T so that
both extended vectors are related according to

w̃ = Ã · ẽ (11)

with an extended model relating both vectors given by

Ã =

[
<{A} −={A}
={A} <{A}

]
. (12)

The optimization problem Equation (7) can be adapted to deal with this extended model by
simply considering this real-valued formulation. The regression must be applied 2N times to calculate
the rows of the extended model Ã:

minimize
an′

1
2
||an′ ||2 + C

P

∑
p=1

(ξp + ξ̃p), for n′ = 1 . . . 2N (13)

subject to

an′ · e(p) −ω
(p)
n′ ≤ ε + ξp, ∀p = 1 . . . P

ω
(p)
n′ − an′ · e(p) ≤ ε + ξ̃p, ∀p = 1 . . . P

ξp, ξ̃p ≥ 0, ∀p = 1 . . . P.

From the extended model it is straightforward to calculate the complex-valued model.
It is interesting to notice that the training dataset has to be modified to use this real-valued

approach. In this case, instead of using the weight vector and the complex samples of the
corresponding field distribution, the real-valued version must also be used by stacking the real
and imaginary parts of both vectors, {w̃(p), ẽ(p)}, p = 1 . . . P, with w̃(p) = [<{w(p)T} ={w(p)T}]T
and ẽ(p) = [<{e(p)T} ={e(p)T}]T . In this training dataset, the inputs correspond again to the field
distributions represented by their samples, but the number of values for each pattern is 2M due to
the separation of real and imaginary parts. In the same way, the outputs are represented by 2N real
values for each sample. The total number of values involved is now 2M · P in the inputs and 2N · P in
the outputs.

3. Near-Field Focusing Using the SVR-Based Inverse Model

Some previous methods proposed for near-field focusing aplications are based on the use of
models relating a target NF distribution and the weights applied to the array elements. For example,
the method presented in [13] makes use of a typical formulation based on a near-field array factor
represented in matrix form. In order to specify the NF requirements it builds a target field distribution
defined as a unitary value for the samples corresponding to the focal points and null values at any
other position. The same procedure for the specification of the NF was used in the NN method
proposed in [14]. It is a very flexible specification procedure as far as it allows assigning multiple spots
or arbitrary focusing volumes just by setting unitary values at different sets of samples. It is obvious
that such artificial target distribution with only 1 and 0 values is not physically feasible, but it has been
shown to be quite effective for NFF purposes, so it will be used as basis for the method proposed here.

In the method proposed in this paper, the SVR-based inverse model relates a target NF distribution
designed according to the NFF requirements, and the weights that must be applied to the array.
The design of the target NF distribution allows non-unitary values to be specified for the focal
points, so that different power densities can be assigned to them, or more complicated shaped
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field distributions can be requested. The resulting target distribution is built according to the
following formulation:

E(~rm) =

{
Cm, if~rm is a focal point
0, if~rm is not a focal point

(14)

where Cm is the field value required at the position~rm, provided that it is a point where non-vanishing
field is requested.

Once the target field distribution has been determined, the weights to be applied to the array can
be calculated using the SVR model according to Equation (10).

4. Results

Some experiments have been carried out in order to evaluate the performance of the proposed
method. A regular planar antenna array with 12 × 12 elements (N = 144) is considered in first
place. The aperture is placed centered in the plane z = 0, so that the broadside direction coincides
with the z-axis. The interelement distance is 0.6λ and λ is the operation wavelength. The chosen
individual radiating elements are hemispherical dielectric resonator antennas (DRA) [23], already used
in [14,19,24] for testing due to their low losses but relevant mutual coupling effects when included in
an array. The radius of each hemisphere is 12.5 mm and the relative permitivity is εr = 9.8. A metallic
pin with radius 0.63 mm, height 6.5 mm and offset 6.5 mm is used to feed the DRA. The working
frequency is 3.6 GHz, hence exciting the TE11 mode. The range of variation of S11 for the elements is
between −10.17 and −13.72 dB, being the maximum of the rest of S parameters −12.35 dB, so that
the coupling effects are relevant in the resulting field distribution. In the results presented in this
paper, the method of moments (MoM) [25] has been chosen to obtain the training patterns, as it is
able to analyze quasi-realistically the real properties of the radiating structure. An infinite ground
plane has been considered for the MoM analysis. A set of feeding voltages has been applied to each
element, then calculating the resulting NF distribution to create one of the P training patterns. The NF
distribution has been sampled around the antenna in a region limited to x ∈ [−5λ, 5λ], y ∈ [−5λ, 5λ]

and z ∈ [0.5λ, 10λ], with a sampling period λ/2 resulting in 8820 samples of the field distribution.
A set of 120 training patterns has been generated, each of them formed by a vector of 144 complex
weights and the corresponding samples of the NF distribution calculated using MoM. The SVR is used
to obtain an inverse model of the array able to relate field samples and weights applied to the array,
setting the trade-off parameter C = 1 and with ε = 0.001 (a low value as the results of simulations are
not affected by noise). The mean square error after the training is 0.038 for the training patterns and
0.04 for the validation set.

Once the inverse model of the antenna array is obtained, it is used to calculate the weights
that must be applied to the array in order to obtain a simultaneous focus on three focal points at
{x, y, z} = {2λ, 0, 7λ}, {−λ, 0, 4λ} and {−3λ, 0, 4λ}, to reproduce the experiment presented in [14].
A target field distribution is built using Equation (14), using Cm = 1 for the assigned focal points and 0
for any other position, and the resulting vector e is applied to Equation (10). The resulting weights
have been used in the MoM model of the antenna to evaluate the resulting radiated field. Figure 1
shows the NF power density distribution in the plane y = 0 where all the focal points have been
specified. The SVR-based model has been able to generate −3 dB focal spots containing the three focal
points, and spending 0.02 s. The NN presented in [14] and the optimization method proposed in [13]
have been used for comparison. The NN-based method has spent 0.19 s for the same problem, while
the optimization technique has spent 82.7 s (as stated in [14], this method presents a lower focusing
performance as one of the focal points lays out of a −3 dB spot with respect to the maximum field
power in the NF region). The calculations have been carried out in a conventional PC with an Intel Core
i5-7500 CPU, 3.4 GHz and 8 GB RAM, using MatLab R2019a as programming tool, and averaging 20
simulations for all the three methods. Both the SVR- and the NN-based methods spent times suitable
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for applications with moving devices, but the NN has required 5000 training pairs and the SVR has
used 120 pairs to achieve similar performance and faster operation.

The assigned focal points are shown in Figure 1 along with the resulting synthesized spots
and the points where the radiated field power is actually maximum. For comparison purposes,
the results obtained in [13,14] have been reproduced. The proposed SVR model generates a solution
with an NF distribution with the three assigned focal points into −3dB spots, and maximum values
of radiated field power density at the positions {1.8λ, 0, 6λ}, {−λ, 0, 3.3λ} and {−2.8λ, 0, 3.65λ}.
These points are located at an average distance of 0.7λ from the assigned focal points. The NN
method outputs a set of weights corresponding to an NF distribution with three maxima located in the
positions {1.8λ, 0, 5.8λ}, {−1λ, 0, 3.3λ} and {−2.8λ, 0, 3.7λ}, with an average distance 0.75λ between
the assigned focal points and the actual maximum points. The optimization method, not accounting
for coupling effects, provides a set of weights that correspond to a radiated NF distribution with −3dB
spots including only two of the three assigned focal points; its maximum points are located at the
positions {2λ, 0, 6λ}, {−λ, 0, 3λ} and {−3λ, 0, 3.25λ} with an average distance to the assigned focal
points 0.91λ, considering also the focal point out of the −3 dB spot. The size of the resulting −3 dB
spots is summarized in Table 1.

From these results it may be observed that the use the use of training patterns obtained including
the realistic properties of the array leads to improved focusing accuracy without requiring complicated
formulations. This is actually one of the main advantages of using machine learning tools for the
modeling of the array.

(a) (b) (c)

Figure 1. Example #1. Normalized near-field power density at y = 0 for the support vector regression
(SVR) method (a), the neural network in [14] (b) and the optimization in [13] using a non-coupling
model (c). The symbols + and ◦ represent the focal and synthesized maximum points respectively.

Table 1. Example #1. Axis length (major, minor) using SVR, neural networks (NN) and optimization
(non-coupling).

Focal Point {2λ, 0, 7λ} {−λ, 0, 4λ} {−3λ, 0, 4λ}
Axis length SVR 3.95λ, 0.99λ 2.54λ, 1.09λ 3.10λ, 1.02λ
Axis length NN 4.85λ, 1.22λ 2.74λ, 0.84λ 2.97λ, 0.94λ
Axis length Opt 3.53λ, 1.09λ no 3.21λ, 0.92λ

In order to verify the ability of the proposed method to deal with different sizes of arrays,
the number of elements of the array has been increased to 32× 32 elements, and the interelement
distance has been set to 0.7λ so that the resulting aperture is reasonably larger than the first structure,
and hence its focusing capabilities are increased. All the other properties of the array and its elements
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remain the same, as well as the specifications. The higher number of degrees of freedom should lead,
if properly handled by the method, to better focusing performance. The number of training patterns
used to obtain the model is 150, and MoM has been used to calculate them. The hyperparameters of
the regression remain C = 1 and ε = 0.001. The training process stops with a square mean error of
0.036 and 0.037 for the training and validation sets respectively.

Figure 2 shows the resulting NF distribution at the plane y = 0 where all the focal points are
assigned. Both the focal points and the resulting maxima are also plotted. It may be observed that the
field is much more concentrated around the assigned points, and that the accuracy in the location of the
maximum power density points is much higher than using the smaller structure. The positions where
the maximum power density is found are {2λ, 0, 7λ}, {−λ, 0, 4λ} and {−3λ, 0, 4λ}, all of them exactly
at the positions where the focal points are assigned, resulting in an average distance of 0. The axis
lengths for the −3 dB spots are summarized in Table 2.

Table 2. Example #1. Axis length (major, minor) using SVR and a 32× 32 element array.

Focal Point {2λ, 0, 7λ} {−λ, 0, 4λ} {−3λ, 0, 4λ}
Axis length SVR 32× 32 1.4λ, 0.55λ 1.25λ, 0.5λ 1.25λ, 0.5λ

Figure 2. Example #1. Normalized near-field power density at y = 0 for the SVR method using a 32× 32
element array. The symbols + and ◦ represent the focal and synthesized maximum points respectively.

In example #2, a wider coverage area is requested in the NF region of the antenna. To specify it,
a set of focal points representing samples of the coverage area has been selected. The assigned focal
points are placed at y = 0, z = 5λ and x = [3λ, 2λ, λ, 0,−λ,−2λ,−3λ,−4λ], resulting in eight focal
points. In all the cases the corresponding value Cm has been set to 1. The same regular array with
12× 12 DRA elements separated 0.6λ has been considered, operating again at 3.6 GHz. A set of 140
training patterns was obtained using MoM as analysis tool. The hyperparameters of the regression are
again C = 1 and ε = 0.001. The training process leads to a square mean error of 0.037 and 0.039 for the
training and validation sets respectively. The obtained inverse model is used to calculate the set of
weights corresponding to the field distribution shown in Figure 3a. It can be observed how a wider
region is obtained over −3 dB, with all the assigned focal points but one into it. The focal point out of
the −3 dB spot receives a power density −3.2 dB with respect to the maximum power in the NF region.
In order to verify that larger arrays have increased focusing capabilities, the number of elements of the
array has been increased to 16× 16, and the interelement distance has been set to 0.7λ, again to create
a larger aperture. The resulting field distribution is plotted in Figure 3b, where the coverage area can
be observed clearly defined in a −3 dB spot containing all the assigned focal points.
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(a) (b)

Figure 3. Example #2. Normalized near-field power density at y = 0 for the SVR method considering
a coverage area defined by the assigned focal points represented by the symbol +. The number of
elements of the array is 12× 12 separated 0.6λ in (a) and 16× 16 separated 0.7λ in (b).

5. Discussion

A machine learning approach to near-field focusing based on the powerful and elegant support
vector machines framework is presented. Support vector regression is performed to develop an
accurate NF inverse model of a given antenna array. It is calculated from a set of training patterns
consisting on known pairs of weights applied to the array elements and the corresponding NF
distribution. These patterns may be obtained through measurements or simulation. The necessary
number of patterns is strongly reduced with respect to other ML alternatives such as neural networks,
due the increased learning capabilities of SVM techniques.

Once the model has been obtained, it can be used for synthesis of focused distributions by
following a simple strategy, and without relevant computational cost or time, as synthesis becomes a
simple matrix-vector product. The resulting method is suitable for applications requiring fast synthesis
to operate in scenarios where real-time calculations are required, for example where moving devices
in a near environment are involved (e.g., 5G femtocells, Internet of things, etc.). Although the most
popular approach to NFF, conjugate-phase, is very fast, simple and accurate, it cannot deal with
multiple specifications; an optimization method, able to account for multifocus requirements, is not
fast enough to be used in real-time applications due to its iterative nature; the NN approach is able
to be accurate, fast and deal with multifocus, but requires thousands of training pairs, that might
overflow many applications and make impossible the use of measured training data. The proposed
SVR method overcomes all these difficulties due to the reduced number of required training patterns,
its fast operation once trained, and its ability to deal with NF distributions specified in different ways.
Additionally, it is able to account for the real properties of the array (realistic effects, coupling effects,
individual radiation patterns, non-uniformities, etc.) provided that the method for generating the
training patterns also accounts for all of them.

As a future work to be addressed in future developments, more sophisticated specifications such
as a mask or template, phase-only distributions or additional constraints to be considered, may be
included in the synthesis scheme; by doing so, the resulting method will become much more flexible
and powerful. Meanwhile, SVR represents an interesting step for applications where different devices
are involved and located in the near-field region of the antenna, even when some of them are moving.

Funding: This work was partially supported by the Spanish Ministerio de Ciencia, Innovacion y Universidades
under the project TEC2017-86619-R (ARTEINE), and by the Gobierno del Principado de Asturias under project
GRUPIN-IDI-2018-000191.



Electronics 2019, 8, 1352 10 of 11

Conflicts of Interest: The author declares no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

NF Near-Field
FF Far-Field
NFF Near-Field Focusing
CP Conjugate-Phase
NFMF Near-Field Multi-Focusing
WET Wireless Power Transfer
WEIT Wireless Power and Information Transfer
IoT Internet of Things
SVM Support Vector Machine
SVR Support Vector Regression
SRM Structural Risk Minimization
NN Neural Network
ML Machine Learning
EM Electromagnetic
RFID Radio Frequency Identification
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