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Abstract: In recent years, NAND Flash-based solid-state drives (SSDs) have become more widely used
in data centers and consumer markets. Data centers generally choose to provide high-quality storage
services by deploying a large number of SSDs, but there are no effective preventive measures to
reduce the impact of SSD failures currently. Some existing studies have analyzed the relevant factors
related to SSD failures from different angles, but the characteristics of reliability changes exhibited by
SSD throughout the life cycle have not been explored in depth. On the other hand, although the 3D
manufacturing process has increased the storage density of the SSD, the mutual influence between
the flash units has also increased, resulting in severe degradation of the performance and lifetime of
the SSD. Therefore, in order to fully understand the reliability varying process of SSD throughout the
life cycle, we first designed an SSD lifetime endurance test method, then conducted the endurance
test and collected the reliability data for the entire life cycle of the 3D TLC SSD in the laboratory
environment with reference to the JEDEC standard. Through the analysis of experimental data and
its statistical correlation, it is found that SSD will produce a large number of uncorrectable errors
before reaching the endurance limit, and there will be a phenomenon of continuous high operating
temperature, as well as showing some intrinsic relationships about SSD reliability data. The findings
in this paper are valuable for identifying whether an SSD is going to fail.

Keywords: correlation analysis; endurance test; reliability; SMART attributes; SSD failures; 3D
TLC SSDs

1. Introduction

Currently, the demand for solid-state drives (SSDs) based on NAND Flash technology is growing
in the consumer market, enterprise market, embedded product market, and so forth, and SSDs have
been widely used in various computer systems. From a technical point of view, all major flash memory
manufacturers focus on 3D stacking technology and 64-layer or 96-layer solutions. Compared to
2D planar technology, 3D nanotechnology is a step backward but it has reached the 20 nm–30 nm
level or even higher. Because of the continuous improvements in manufacturing technology, the cost
performance of SSDs has been rapidly improved in the past 10 years, and a large number of data
centers have begun to deploy SSDs to further optimize their storage services.

SSDs show multidimensional advantages compared to the hard drive disks that used to be
dominant in the storage industry. From the perspective of performance and power consumption,
SSDs can provide not only a faster read/write speed but also better random I/O access performance,
and SSDs are smaller with lower power consumption. From the perspective of reliability, the lack of
moving parts inside SSDs can eliminate reliability problems, such as head collision, dielectric scratch
or spindle electromechanical failure and these features can protect the SSD against physical impact.
On the other hand, NAND Flash-based SSDs have only a limited number of program/erase(P/E)
cycles, which means the aging problem of SSDs is unavoidable. The reliability indexes provided
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by the manufacturer are only a very general guarantee. Moreover, although the average capacity of
SSD increases with the development of the NAND production process, the increasing number of dies
also aggravates the interference among flash cells and thus the overall reliability of flash is affected.
Even though Hetzler et al. [1] have questioned the reliability of SSDs, increasingly more enterprises
have chosen to store data in SSDs; therefore, it is crucial to understand SSD reliability characteristics.

Recently, there have been several works analyzing the failure behavior of flash devices in
production environments under real workloads. Reference [2] studies the SSD failures in Microsoft’s
data center. Reference [3] focuses on the SSD uncorrectable bit errors in Facebook’s server fleet.
Reference [4] reports on the various software and hardware errors of SSDs from Google. In addition to
the studies published by large companies, people also use synthetic workloads and a small number of
flash chips to do the research in laboratory environments [5]. In the past few years, enterprise-class
SSDs have mainly been composed of SLC(Single-Level Cell) Flash or eMLC(enterprise Multi-Level Cell)
Flash. Now, many manufacturers have released 3D TLC SSDs for the enterprise market. The priority
of 3D TLC SSDs in data center storage is becoming higher and higher, but there is a lack of effective
preventive measures to further improve SSD reliability in a data center environment. To better
understand the reliability characteristics of 3D TLC Flash throughout its lifetime, we first designed an
SSD lifetime endurance test method and conducted an accelerated endurance test with a simulated
workload from real applications in a laboratory environment (following JEDEC JESD218 [6] and
JESD219 [7]) for several months, we then studied lifetime SSD reliability characteristics based on 1.5 PB
of data.

The purpose of this paper is to summarize the reliability characteristics of 3D TLC Flash that we
observed in the test and experiment processes, as well as to provide the relevant basis for improving
the storage reliability of SSDs in a data center environment and to study reliability assurance measures,
such as SSD failure prediction. By analyzing the data collected from the experiments, we found
the following phenomena. Firstly, uncorrectable bit errors do not occur in the early stages of the
SSD lifetime, but will suddenly increase to a large number when the SSD is close to its endurance
limit, which is impacted by high operating temperatures and the data written to the SSD. Secondly,
the controller of the 3D TLC SSD is integrated with a compression algorithm generally, and the write
amplification will be less than 1 but there will be a large increase when the SSD is close to its endurance
limit. Thirdly, under normal conditions, the SSD working temperature will follow natural temperature
fluctuations within a range but a sustained high working temperature state occurs when the SSD is
close to the endurance limit. Then, the SSD will change to “write protection” mode so that no more
data can be written and will return to a common working temperature. In addition, the Pearson,
Spearman, and Kendall correlation coefficients of the SATA downshift count between uncorrectable
errors, NAND writes, and so forth, are approximately 0.2 or less; therefore, we believe that the change
in these attributes have little to do with the reliability of NAND Flash and they are not suitable to be
used as the main metrics to determine whether an SSD will fail.

This paper is organized as follows. Section 2 reviews the related work. Section 3 reviews the basic
technology. Section 4 reviews measurement methodology. Section 5 presents the graphical display and
analyses of SMART data. Section 6 discusses the correlation analyses of SMART attributes. Section 7
concludes the findings.

2. Related Work

Many studies have focused on the reliability of flash chips which involve many aspects.
References [5,8–13] studied the failure trend in flash chips. Other studies analyzed different factors in
flash failures, such as read disturb [14–17], program disturb [9,18], data retention [10,19] and power
faults [20,21]. Additionally, there are studies examining the influence of different factors on the error
rate of flash chips [13]. Meza et al. [3] explored the SSD failures in Facebook’s server fleet and they
used uncorrectable errors as an important metric to identify SSD failures. Schroeder et al. [22] studied
the SSD failures in Google’s data center and have the opposite opinion to that of Meza [3]; they believe



Electronics 2019, 8, 1357 3 of 19

that the generation of uncorrectable errors is not closely related to the program and the erasure of
SSDs, so UBER(uncorrectable bit error rate) is not a proper failure metric. Many studies analyzed
SSD failures from multiple perspectives but there are also some works that focused on one specific
SSD problem and provided the relevant optimization techniques, such as Cai et al. [8–11,14,18,19,23]
focusing on the MLC Flash chip error model and proposing some improved technologies to reduce the
impact of flash errors and improve flash reliability.

As 3D NAND technology matures gradually, many manufacturers have started to develop
SSDs based on 3D NAND Flash [24–27]. Some studies have discussed the architecture and working
principles of 3D NAND Flash cells [28–34]. Parat [35] introduced the Intel-Micron first generation 3D
NAND Flash with a vertical channel surround gate structure which has better cell characteristics than
2D NAND and presented some technical challenges in endurance and reliability that 3D NAND will
face. Venkatesan [36] discussed the fundamentals and electron properties of 3D NAND Flash from the
view of fabrication process integration and equipment engineering. References [11,37,38] compared 2D
NAND Flash and 3D NAND Flash in terms of physical structure and working principle, and analyzed
the advantages and problems brought by 3D technology. Seo [39] studied the interference between
flash cells in terms of the composition of 3D NAND Flash cells.

Although many studies have shown that 3D NAND Flash has advantages such as high storage
density and low price, the shortcomings in endurance and data error rate are also obvious. Ma [40]
tested and analyzed the RBER(raw bit error rate) of 3D TLC NAND Flash and also proposed a
life prediction scheme of 3D TLC NAND Flash based on RBER and SVM(support vector machine),
the experiment results showed that the prediction scheme can significantly extend the lifetime of
flash blocks. Q. Xiong et al. [37] studied the delay and raw bit error rate of 3D NAND based on
floating gate and they obtained similar results with 2D NAND. Toru [41] studied and analyzed the
problems that should be paid attention to when developing the next generation of 3D NAND Flash
from the perspective of power consumption, performance and reliability. Luo [42] described the effect
of temperature, the program interval and the program accuracy on 3D NAND Flash. According to the
characteristics of 3D NAND Flash, recent studies [16,17] have proposed remapping read-hot pages to
SLC blocks, which effectively alleviated the reliability impact caused by read disturb. The classification
of the above studies is organized in Table1.

Table 1. A classification based on different research categories of NAND Flash.

Classification References

General failures [2–5]
Failure trends [5,8–13]
Read disturb [14–17]

Program disturb [9,18]
Data retention [10,19]
Power faults [20,21]

Flash chip errors [3,8–11,14,18,19,22,23]
Basic idea of 3D NAND Flash [24–27,35,36]

Architecture of 3D NAND cells [28–34]
Comparison of 2D and 3D NAND [11,37,38]

Shortcomings and mitigation of 3D NAND [37,39–42]

However, these studies lack macro analyses of the variations in SSD reliability indexes throughout
the entire lifetime of the SSD. As far as we know, most of the previous related research has focused on
MLC, SLC, and other Flash types. This work is the first one that focuses on an endurance test of 3D
TLC SSDs throughout their entire lifetime. The work shows and analyzes changes in SSD reliability
data. Through the analysis of SSD reliability data, our opinions are similar to those in Reference [3].
We believe that uncorrectable errors are related to the flash program and UE is a good metric to judge
SSD failures. Meanwhile, we also believe that the special change in temperature is also valuable for
determining whether the SSD is about to fail.
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3. Basic Technology

To better describe the measurement process implemented in this article, we provide a brief
overview of several basic techniques in this section.

3.1. PostMark

PostMark [43] is a single-threaded synthetic benchmark program invented by NetApp in 1997.
It is designed to measure the performance of file systems with workloads dominated by small file
operations and a short file lifetime. This type of workload is typical for mail services, online news,
web business transactions and other application scenarios. Postmark does not perform any program
processing and only approximates the activity of the file system.

The PostMark starts by creating a random file pool, where the files are composed of characters,
numbers, and so on. The file size is evenly distributed within the specified range. After the file
is created, a series of “transactions” (this is a PostMark term referring to something similar to an
operation, not a database concept) are executed. The number of files, subdirectories, file size range,
and number of transactions are all set by the user. Each PostMark transaction has two parts—file
creation/deletion and file reading/appending. The incidence of each transaction type and the files
affected by it are randomly selected to minimize the impact of file system caching, read-ahead files,
disk-level caching and trace caching. Additionally, PostMark is able to adjust that correlation by setting
read parameters or creating deviation parameters to produce the desired results. The file creation
operation creates random text content and writes it to the file. The file deletion operation randomly
selects files from the active set for deletion. The file read operation randomly selects the file and reads
the entire file (using the set block size). The file write operation randomly selects a file and appends a
random length to it. The user can also choose whether or not to use buffered I/O.

3.2. SMART Technology

SMART (Self-Monitoring, Analysis and Reporting Technology) is a kind of disk self-analysis and
detection Technology [44]. It monitors the disk hardware (head, platters, motor et al.) status by the test
commands in disk firmware and compares it with the threshold value set by the manufacturers.
If a monitored value has exceeded the threshold, a warning will be sent to the users by the
hardware/software monitors in the host and an automatic repair will be slightly done to ensure
the reliability of data. Except for some old hard drive disks, most hard drive disks have this technology.
SMART is also found in most SSDs and it can access some SSD parameters, such as model number,
capacity, working temperature, data volume, error count, and so on.

4. Measurement Methodology

This measurement-driven study aims to better understand the reliability characteristics of 3D TLC
Flash. To make the measurement process as realistic as possible, the measurement needs a workload
that matches the real scenario. The rest of this section details our measurement methodology.

4.1. Overview of an SSD Sample

We selected 3D TLC SSDs with the capacity of 120G from Intel (Figure 1) as the samples
for endurance test. There are several major components on the board like power and data
interfaces, controller, DRAM, NAND, and so forth. All the components may contain multiple NAND
ICs(integrated circuits). The controller is a microprocessor using an external DRAM for its working
memory and running the logic in firmware. The controller communicates with both NAND and host,
it is responsible for converting the read and write requests from the host to the I/O operations of
the NAND. The NAND flash chips were connected by a channel and each chip consists of one or
more dies and each die consists of multiple planes. Normally a plane is composed of a number of
blocks which are the units for erase operation and a block is composed of multiple pages, which are
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the smallest unit to read or write. The parallelism of data transfer contains four main levels which
are channel-level, chip-level, die-level and plane-level. The DRAM is typically used to temporarily
buffer the write requests or accessed data and the mapping table, which is used to map the logical
address from the file system and the physical address on the flash. The other basic parameters of SSD
are shown in Table 2. These parameters show the type of SSD and the corresponding NAND process.

NAND

Power Connection 

and SATA Interface

Controller

DRAM

Figure 1. A solid-state drive (SSD) sample with case removed and notable components identified.

Table 2. SSD Architecture And Baseline Parameters.

Basic Parameter Value

Interface SATA 3.0 6 Gb/S
FTL Overhead Latency 50 µs

Channels 1 (Support 4)
Dies per Channel 4

Capacity 120 GB
Feature Size 16 nm

Cell Type TLC

4.2. Measurement Setup

Each SSD was connected to a single machine in order to avoid interference from other devices or
programs. There was only one HDD (for data storage) and one SSD mounted on each machine, and no
other tasks occupied the CPU or disk I/O resources. The whole process was an accelerated SSD aging
process, so we wanted the process to simulate a real scenario and also be as quickly as possible. While
setting the workload for a benchmark, we consulted the characteristics of the Oracle Archive system’s
workload [45] in which the write operation, more than read operation, can accelerate SSD circulation.
Oracle Archive is the archiving mode of an Oracle database. In this mode, the database will back up
the previous online redo logs first then erase the backup logs and start writing new online redo logs
(redo files). The characteristics of this application’s workload are typically writing dominant. The read
operation accounts for approximately 0%–20%, and most of the random read and the write operations
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account for approximately 80%–100%, most of which are random writes. The processed files were
mainly small files with file sizes distributed in ranges of 0–2 kb, 8–16 kb and 32–64 kb.

According to the characteristics of Oracle Archive’s workload, we set up related parameters for
the PostMark benchmark, as shown in Table 3, and the file sizes were randomly generated and they
ranged from 32–64 KB, with a read/write ratio of 2/8, the read and write operations block size was
8 KB, the number of concurrent file operations was 100,000, the number of transactions was 400,000
and the number of working directories was 50. The default PostMark parameters were not large
enough; therefore, the parameters we set were scaled up.

Table 3. PostMark Configuration Details.

Parameter Value

File sizes 32,768–65,536 bytes
Number of files 100,000

Number of transactions 400,000
Read/write block size 8192 bytes

Read/Write ratio 2/8
Buffered I/O Yes

PostMark version 1.51

4.3. Measurement Flow

The JESD218 standard aims to provide an endurance test of SSDs. This standard covers the
complete endurance test and data retention test for SSDs Figure 2 but it does not cover all aspects
of SSD reliability, such as circuit board failures, controller failures or soft errors caused by radiation.
The purpose of our measurement was to obtain a series of reliability data when SSDs were worn to
their endurance limit; therefore, we only conducted the accelerated endurance test at room temperature
and excluded the data retention test.

SSD Samples

Endurance 
stressing at 

room temperature

Endurance 
stressing at 

high temperature

50%50%

Room temperature
rentention 
evaluation

Room temperature
rentention
evaluation

High temperature
rentention bake

Figure 2. Simplified JESD218 endurance test. The “Endurance stressing at room temperature” is the
one that we conducted.

We designed a control process of the measurement flow including the procedure to generate the
workload to perform the test and data collection. The benchmark was continuously executed and the
SSD reliability data was collected until the data could no longer be written into SSDs within a few
months. The overview of measurement flow and data collection is shown in Figure 3.

During the endurance test, the workloads were generated continuously by the PostMark to keep
the SSDs in working state, and the execution of the program was an automated process, which is
shown in Figure 4. Firstly, the control scripts for setting the parameters of PostMark and other related
programs were initialized. Secondly, the execution of PostMark was started and the results were saved
when the execution finishes. Then the program would check whether the SSD entered the “write
protection” mode. If it was “Yes,” it meant that SSD had reached its endurance limit, the test process
of this SSD sample was ended. If it was “No,” the execution of PostMark was triggered again to
keep testing.
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FTL
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Physical 

address space

SMART 

Command
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Figure 3. Overview of our measurement flow and data collection.

Start

Initialize control scripts

Wait for the 

end of execution
Y

N
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"Write Protection" 
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Y

N

Is PostMark 

finished executing?

Start executing PostMark

End

Figure 4. The auto-execution procedure of PostMark in the measurement flow.

4.4. Data Collection

During the measurement procedure, the SMART data and the device statistics data from the
SSD were acquired using Smartmontools [44]. Because the SSDs from different manufacturers have
different SMART attributes, some SMART attributes could not be obtained. Some SMART attributes
only had a name and there were no corresponding values.

The problem is similar for the device statistics data. In the list of the statistics, some attributes
do not contain any values, and these kinds of SMART attributes or device statistics attributes are not
included in the scope of this work. Table 4 lists some SMART attributes that were collected and used
in this research, and type represents the types of information collected, cumulative represents aging
over time, and normalized values represent the ranges of 1–100 in which the lower values are worse
and the higher values are better.

A portion of the device statistics data collected and used in the research is listed in Table 5,
which reflects the statistical information from devices such as temperature statistics, error statistics,
transmission statistics and summary statistics. We implemented the program in Python to process the
data into MySQL format and save them in the database. We also developed some Linux Shell scripts
to store the execution results for PostMark and the corresponding data in file format. The collection
interval is one hour.
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Table 4. SMART Attributes.

Attribute SMART Value Type

Reallocated Sectors Count Raw value Cumulative
Power On Hours Raw value Cumulative

Power Cycle Count Raw value Cumulative
Available Reserved Space Value Normalized

Program Fail Count Raw value Cumulative
Erase Fail Count Raw value Cumulative

SATA Downshift Count Raw value Cumulative
Airflow Temperature Raw value Cumulative

Power-off Retract Count Raw value Cumulative
Host Writes Raw value Cumulative

Total LBAs Written Raw value Cumulative
Total LBAs Read Raw value Cumulative

Media Wearout Indicator Value Normalized
NAND Writes Raw value Cumulative

Table 5. Device Statistics.

Description Type

Logical Sectors Written Cumulative
Number of Write Commands Cumulative

Logical Sectors Read Cumulative
Number of Read Commands Cumulative

Uncorrectable Errors Cumulative
Current Temperature Cumulative

Number of Interface CRC Errors Cumulative
Percentage Used Endurance Indicator Cumulative

5. Graphical Display and Analyses of SMART Data

NAND Flash cells can undergo a limited number of P/E cycles that vary with the process, which
is also referred to as its endurance rating. The flash wears out permanently when its P/E cycles are
all consumed. Generally, an SSD adopts wear-leveling to distribute the wear evenly in each flash
cell to average the overall wear. However, as time goes by, the overall wear will eventually lead to
SSD failures.

In this section, we present some SMART attributes collected from the measurements and analyze
the changes in the attributes and related phenomena. There were 10 machines used for the test
including three different hardware configurations, Type-A × 4, Type-B × 4 and Type-C × 2. All the
machines used the same version of the operating system and other related software, the detail of the
configuration is shown in Table 6. The SSDs were used for testing and have been described in Section
IV. The measurement in this work contains 10 SSDs, but 3 of them failed during the measurement due
to a sudden power cut. Therefore, we only show and analyze the changing trends of SSD SMART
attributes from 7 samples. The attributes are displayed in Figure 4 where the x-axis is time and the
y-axis is the normalized values of each attribute.

Table 6. Detail Configuration of Experimental Environment.

Parameter Type-A Type-B Type-C

Processor Xeon E5-2609 v4 1.7GHz Core i5-4590 3.3GHz Core E7500 2.93GHz
HDD Storage Seagate 2T WD 1T Toshiba 1T

SSD Intel 540s Intel 540s Intel 540s
Memory Capacity 16GB 8GB 8GB
Operating System CentOS 7.4 CentOS 7.4 CentOS 7.4
MySQL Version 5.6 5.6 5.6
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Figure 5. Joint display of all samples.

5.1. Host Writes and NAND Writes

As explained earlier, the endurance rating of flash cells is related to the number of P/E cycles they
can consume. The accumulative P/E cycles of an SSD are directly affected by the volume of the data
written to it. The accumulative P/E cycles of an SSD can be estimated according to the amount of data
written to an SSD. In a sense, the amount of data written to an SSD can be equivalent to P/E cycles.

There are two types of data written to an SSD. One is the host writes, which represents the amount
of data to be written to an SSD transmitted by the operating system through the interface. Another one
is NAND writes, which represents the amount of data actually written to the NAND Flash. Figure 5
shows the variations in the host writes and NAND writes for an SSD sample. Under normal program
conditions, since the controller of 3D TLC SSD has a compression algorithm, the write amplification
(WAF) can be less than 1, that is, the amount of NAND writes is less than the host writes.

For a long period, SSDs present a stable state of programming and, as the execution of benchmark,
the host writes keep increasing up to about the 80%–90% stage of the measurement, the growing rate
of host writes slows down and, due to the wear, SSDs cannot accept the previously requested volume
of data. At the same time, the growing rate of NAND writes is dramatically increased. The reason for
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this increase is that when the SSD approaches permanent wear-out, most blocks are actually worn out
already, and only a few blocks can still be programmed. In this phase, the available space in an SSD
cannot meet the program request generated by the benchmark program.

5.2. Write Amplification

For the sake of writing the same volume of data as written previously, the SSD needs to perform
more garbage collection to provide empty space within blocks that have not been thoroughly worn out
for data programs. This process also leads to a rapid increase in an SSD’s WAF(write amplification).
When the NAND writes grow towards the end in Figure 5, the SSD is extremely close to wearing out
and any more program operations may lead to SSD failures. In cases of losing data, an SSD enters the
“write protection” mode and cannot perform any program operations (NAND writes stop growing).
The variation process of WAF is shown in Figure 6. It can be seen from the figure that the WAF of each
sample is in a relatively stable state for a long time but they increase significantly at similar rates when
the SSDs are close to their endurance limit. Equation (1) is used to calculate the WAF corresponding
to the daily data volume, where i represents days, NW represents NAND writes, HW represents
host writes.

WAFi =
NWi+1 − NWi
HWi+1 − HWi

(i = 1, 2 · · · n) (1)

Figure 6. SSD Write Amplification(WAF).

5.3. Media Wear-Out Indicator

Each SSD manufacturer has multiple types of products for different markets and sets the basic
parameters based on the rating. Due to the limited lifetime of SSDs, manufacturers often define
the terabytes written (TBW) of an SSD according to flash type, capacity, warranty period and other
indicators and use it as the endurance rating for an SSD.

Media wear-out indicator is a normalized value that indicates the SSD wear degree. The value of
a new SSD starts from 100 and decreases to 1 with an increase in P/E cycles. Figure 5 illustrates the
changes in this attribute, it can be seen that the value has decreased to 1 after approximately 40% of
the measurement and the volume of the data written to the SSD has reached the threshold declared
by the manufacturer. In a later time, SSDs still maintain a stable state of the data program; thus, we
believe the threshold declared by manufacturers is too conservative. The value of the media wear-out
indicator falling to 1 is insufficient to declare that an SSD has reached the end of its lifetime.

5.4. Uncorrectable Errors

The Facebook study [3] focuses on the MLC NAND Flash due to its lower age and less usage of
SSDs; the SSD age is between 0.5 to 2.4 years on average across different hardware platforms, and
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SSDs have less than 100 P/E cycles. Their report shows that the “old” SSDs have more uncorrectable
errors than the “young” SSDs and for each platform, most of the errors are produced by a few SSDs
while the uncorrectable bit error rates (UBERs) are between 10−9 and 10−11.

Google counted the proportion of SSDs affected by uncorrectable errors within four years in their
study [4] and showed that it is common for SSDs to have uncorrectable errors. According to different
types of SSDs, 26% to 90% of SSDs experience at least one uncorrectable error.

We observe that uncorrectable errors are inevitable along with the wear of SSDs, and all samples
in the measurement more or less have uncorrectable errors. The uncorrectable errors do not occur
immediately when SSDs are put into use and they will suddenly increase to a large number when an
SSD is close to its endurance limit, as shown in Figure 5, for a long period of time and the SSDs have no
uncorrectable errors. The uncorrectable errors appear at approximately 80% stage of the measurement
and, in the following stage, the cumulative number of uncorrectable errors increases rapidly and
finally stops at a value. The UBERs of our samples are 3×10−14 according to the observation, which
are similar to the results from Microsoft and Facebook that show all rates are more than an order of
magnitude above the 10−15 and 10−16 that are required by the JEDEC standard [6] for consumer and
enterprise class drives, respectively. The reasons for these wide ranges of UBERs might be different
from our conjecture.

5.5. Temperature

There is a common view that high temperatures may have negative effects on SSD performance
and accelerate the aging of flash cells. The influence of external temperature is particularly important
to SSDs and data centers have appropriate cooling methods according to the characteristics of the
flash. In addition to the factors of external temperature, it is also necessary to understand the
variation characteristics of SSD internal temperature, since the drives are deployed until final wear-out.
We can obtain the real-time working temperature of the SSD controller through the sensor set by the
manufacturer inside the SSD, which can better indicate the changes in SSD internal temperature.

Figure 5 shows the variation of SSD internal temperature, since we initialize the measurement
until SSDs wear to their endurance limit. The overall trend is similar to uncorrectable errors, NAND
writes and other attributes. For a long period of time, the temperature fluctuates steadily in a range
of 40 ◦C–50 ◦C, and at approximately 90% of the measurement, the temperature begins to increase
significantly and rises to a range of 50 ◦C–55 ◦C. After SSD controllers are in this temperature range
and last for about half a week, the SSDs enter “write protection” mode and are unable to be written
anymore, then the temperature returns to the previous range spanning 40 ◦C–50 ◦C. The specific
reasons will be discussed in the following paragraphs.

5.6. SATA Downshift Error

The SATA interface may downgrade to a lower signaling rate (e.g., from 6 Gbps to 3 Gbps)
when too many errors are encountered. Such a low signaling rate will result in SSD performance
degradation. The reason for this phenomenon could be temporary or permanent errors. According
to our observations, some SSDs select a lower signaling rate when they are reaching their endurance
limit. Furthermore, as listed in Table 7, more than half of the SSDs downgraded once and a few of the
SSDs never downgraded. The time points for this phenomenon’s appearance usually occur after the
SSDs enter the “write protection” mode and Figure 5 displays the changing processes in the SATA
downshift error count for an SSD in its lifetime.
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Table 7. SATA Downshift Count.

Sample SATA Downshift Count

Sample 1 1
Sample 2 1
Sample 3 1
Sample 4 0
Sample 5 0
Sample 6 0
Sample 7 1

5.7. Joint Analysis of SMART Attributes

As shown in Figure 5, some attributes such as temperature, NAND writes, wear-out, SATA
downshift error count, uncorrectable errors and power-on-hours are displayed to better compare some
changes and phenomena of different attributes. Some obvious changes can be seen from the figure.
The change of the wear-out has been explained earlier, so we will not explain it too much here.

There are strong connections among NAND writes, temperature and uncorrectable errors, and
NAND writes experienced a rapid increase at approximately 80%–90% of the measurement process.
As mentioned before, the SSDs need to perform more garbage collection to provide enough empty space
for a data program while their P/E cycles have been frequently consumed. However, the program
process for NAND Flash requires applying a high voltage at the control gate of the floating gate
transistor to allow the charge to pass through the oxide layer from the channel into the floating gate
layer. Due to the wear of an SSD, the oxide layer of flash cells is unable to effectively provide the
function to isolate the charge. After a program operation, the controller will find that the flash cells
cannot effectively distinguish the voltage represented by the data, which results in a program failure.
The program process will be longer, even though the volume of data is the same as before.

The frequent voltage adjustment for the program operation makes the SSD controller very busy,
so the overall temperature of the chips will increase significantly. At the last stage, SSDs have reached
their endurance limit completely and enter “write protection” mode; thus, no more data could be
programmed. The value of NAND writes stops growing and only read operations could be done; thus,
the overall temperature of SSD drops back to a normal state.

Figure 7 shows the relationship between uncorrectable errors and P/E cycles for all of the samples.
It can be seen that the P/E cycles experienced by the samples are around 1500 to 2000, the one with the
most P/E cycles is more than 2500; they are all in line with the characteristics of TLC NAND Flash with
an average P/E cycles of 1000 to 3000. The uncorrectable errors of each SSD appear at a later stage of its
lifetime, it is also the time point that temperature and NAND writes show sharp increases. The sudden
increase in uncorrectable errors in the following short time is also due to severe SSD wear. Most of the
cells are still usable before they reach their endurance limits, but they are also very vulnerable. Data
errors may occur more frequently than before when reading or programming the flash cells.

To verify the influence of environment temperature fluctuation on the changing trends of SSD
reliability, two SSDs are in the condition of normal room temperature and others are in the condition of
constant room temperature, which is 25 ◦C. As shown in Figure 5, the temperatures of first two SSDs
(a and b) fluctuate over a wider range than others but the overall trends are similar, so we believe that
the environment temperature fluctuation has little impact on the changing trends of SSD reliability.

The analysis of the diagrams in the above paragraphs clearly show that many SMART attributes
change significantly as SSDs are close to their endurance limits. A number of phenomena such as the
rapid growth of UE and the continuous high operating temperature of the controller, all indicate that
SSDs are going to fail.

Some studies compared and analyzed the features of different types of flash chips. Cai et al. [11]
studied the characteristics of TLC NAND Flash and MLC NAND Flash in terms of threshold voltage
distribution trends, program errors, data retention errors, read disturb errors and others; they think
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that TLC NAND Flash and MLC NAND Flash show similar behaviors. Mielke et al. [13] studied two
series of SSDs (S3500 and S3610) in data retention, bit errors, failure mechanisms and they showed
similar characteristics. Schroeder et al. [4] and Narayanan et al. [2] studied various SSD drive models
with different types of flash chips in Google and Microsoft data centers respectively and discussed
multiple SSD reliability characteristics. The conclusion indicated that a number of different types
of SSDs showed similar reliability characteristics or trends partially. Therefore, we believe that the
changing trends of reliability characteristics of 3D TLC NAND Flash presented in this paper have a
certain representativeness and can reflect some reliability characteristics of other types of flash chips to
a certain extent.

In addition, NAND Flash-based SSDs have a great possibility of failure due to sudden power
faults. Although manufacturers can deploy a protective capacity on the SSD motherboard to cope with
this problem, it is still necessary to enhance the protection mechanism.

Figure 7. P/E(program/erase) cycles and Uncorrectable Errors.

6. Correlation Analyses of SMART Attributes

In this section, we aim to explore the internal relations among SMART attributes and whether
some SMART attributes are dominant in SSD failures and we also provide support for parameter
selection of SSD failure prediction, which will be researched soon. We analyze the relationships among
different SMART attributes filtered by our analysis and through visual inspection of the Pearson,
Spearman, Kendall correlation coefficients.

6.1. Pearson Correlation Coefficient

In statistics, the Pearson correlation coefficient is widely used in the sciences as a measure of the
linear correlation between two variables X and Y as follows:

ρ =
cov(X, Y)√

var(X)× var(Y)
(2)

where the cov(X, Y) is the covariance, var(X) is the variance of X, var(Y) is the variance of
Y. The Pearson correlation coefficient is symmetric: P(X, Y) = P(Y, X), and according to the
Cauchy-Schwarz inequality, it has a value between 1 and −1, where 1 is total positive linear correlation,
0 is no linear correlation and −1 is total negative linear correlation.

6.2. Spearman’s Rank Correlation Coefficient

In statistics, the Spearman’s rank correlation coefficient is a nonparametric index to measure the
dependence of two variables, and it uses monotonic functions to evaluate the relationship between
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two variables. If there are no repeated data values, a perfect Spearman correlation of 1 or −1 occurs
when each of the variables is a perfect monotone function of the other.

For two variables, X and Y (or two sets), the number of elements in them are all N. The i-th
(1 <= i <= N) values of the two variables are represented by Xi and Yi. The two ranked sets x
and y are obtained after sequencing X and Y (ascending or descending), where xi and yi are the
rank of Xi in X and Yi in Y, respectively. A ranking difference set d is obtained by subtracting the
corresponding elements in set x and y, where di = xi − yi, (1 <= i <= N). The Spearman’s rank
correlation coefficient is calculated as follows:

ρs = 1 −
6

N
∑

i=1
d2

i

N(N2 − 1)
(3)

6.3. Kendall Rank Correlation Coefficient

In statistics, the Kendall rank correlation coefficient—which is commonly referred to as Kendall’s
tau coefficient—is a statistic used to measure the ordinal association between two measured quantities.
A tau test is a nonparametric hypothesis test for statistical dependence based on the tau coefficient.
The Kendall correlation coefficient value ranges from −1 to 1, and it means that the two variables have
consistent or opposite rank correlation when τ is 1 or −1, respectively, and it means the two variables
are independent when τ is 0.

For two variables, X and Y (or two sets), the number of elements in them are all N. The i-th
(1 <= i <= N) values of the two variables are represented by Xi and Yi. The corresponding elements
in X and Y form a pair of set XY, in which the elements are (Xi, Yi)(1 <= i <= N). When any two
elements (Xi, Yi) and (Xj, Yj) from the set XY have the same rank, that is, case 1 or case 2 (case 1:
Xi > Xj and Yi > Yj, case 2: Xi < Xj and Yi < Yj), these two elements are consistent. When case
3 or case 4 occurs (case 3: Xi > Xj and Yi < Yj, case 4: Xi < Xj and Yi > Yj), the two elements are
inconsistent. When case 5 or case 6 occurs (case 5: Xi = Xj, case 6: Yi = Yj), the two elements are
neither consistent nor inconsistent. The Kendall’s tau coefficient is calculated as follows:

τs =
C − D

0.5N(N − 1)
(4)

where C is the number of consistent element pairs in XY and D is the number of the inconsistent
element pairs in XY.

6.4. Analysis of Three Correlation Coefficients

We select SATA downshift counts, uncorrectable errors, temperature, NAND writes, wear-out
and host writes for the correlation analysis. We implement the program in Matlab [46] with reference
to Equations (2)–(4) to calculate the correlation coefficients. The value of Pearson, Spearman and
Kendall correlation coefficients between the selected SMART attributes are shown in Table 8, Table 9,
and Table 10 respectively. As shown in the tables, the three correlation coefficients of NAND writes
and host writes are all close to or equal to 1, which shows a strong positive correlation that is consistent
with our intuitive comprehension. The three correlation coefficients of NAND writes and wear-out
are all close to −1, which shows a strong negative correlation and is also consistent with the intuitive
observation results. The SATA downshift error appears relatively late in visual inspection and the three
correlation coefficients between SATA downshift count and uncorrectable errors are approximately 0.2,
which is weak, and the relationship between SATA downshift count and other attributes are weaker or
even irrelevant.
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Table 8. Pearson Correlation Coefficient.

Attribute SATA Downshift UE Temperature NAND Write Wearout Host Write

SATA Downshift 1 0.2117 −0.0561 0.1329 −0.0426 0.0931
UE 0.2117 1 0.7727 0.5671 −0.2266 0.4889

Temperature −0.0561 0.7727 1 0.3028 −0.0696 0.2321
NAND Write 0.1326 0.5671 0.3028 1 −0.8341 0.9933

Wearout −0.0426 −0.2267 −0.0696 −0.8341 1 −0.8589
Host Write 0.0931 0.4889 0.2321 0.9933 −0.8589 1

Table 9. Spearman Correlation Coefficient.

Attribute SATA Downshift UE Temperature NAND Write Wearout Host Write

SATA Downshift 1 0.1903 −0.0911 0.1061 −0.0505 0.1061
UE 0.1903 1 0.2633 0.5578 −0.2981 0.5578

Temperature −0.0911 0.2633 1 −1.45 × 10−5 −0.0181 −1.45 × 10−5
NAND Write 0.1061 0.5578 −1.45 × 10−5 1 −0.9013 1

Wearout −0.0505 −0.2981 −0.0181 −0.9013 1 −0.9013
Host Write 0.1061 0.5578 −1.45 × 10−5 1 −0.9013 1

Table 10. Kendall Correlation Coefficient.

Attribute SATA Downshift UE Temperature NAND Write Wearout Host Write

SATA Downshift 1 0.1857 −0.0848 0.0867 −0.0454 0.0867
UE 0.1857 1 0.2293 0.4668 −0.2615 0.4668

Temperature −0.0848 0.2293 1 −0.0145 −0.0065 −0.0145
NAND Write 0.0867 0.4668 −0.0145 1 −0.819 1

Wearout −0.0454 −0.2615 −0.0065 −0.819 1 −0.819
Host Write 0.0867 0.4668 −0.0145 1 −0.819 1

The three correlation coefficients between uncorrectable errors and NAND writes or host writes
range from 0.4 to 0.6, which indicates a moderate degree of correlation. The Pearson correlation
coefficient between uncorrectable errors and temperature is 0.77, which indicates a strong correlation.
However, the Spearman and Kendall correlation coefficients are in a range of 0.2 to 0.4, which is only
a weak correlation. So, the overall volume of the data written to the SSD has a significant impact on
the uncorrectable errors. There is a strong relationship between temperature with both NAND writes
and uncorrectable errors in the visual inspection. The Pearson correlation coefficient of temperature
and NAND writes is approximately 0.3, but the Spearman and the Kendall correlation coefficient are
very low, and the reason should be that the Spearman and Kendall correlation coefficient are rank
correlation coefficients, whereas the temperature fluctuates in a small range, so the corresponding
rank’s change is not obvious.

In summary, as the correlation between the SATA downshift counts and other attributes is weak,
we believe that the change in the SATA downshift counts is not related to the NAND Flash reliability,
and it is not suitable as the main metric to identify SSD failures. The wear-out only has a strong
correlation with the attributes related to data writes and the manufacturer’s estimation of the threshold
value is conservative, which is also not a proper metric to determine the SSD reliability. Some attributes
related to data volume are normally affected by the workload, but they can more or less reflect
the overall SSD reliability. The uncorrectable errors show a certain degree of correlation with other
attributes, the correlation coefficients between uncorrectable errors and other attributes are around
0.5–0.8, which are strong. Specifically, the correlation coefficients among uncorrectable errors, NAND
write and temperature are obviously higher than the others and they are closely related to the SSD
reliability changes. Therefore, we believe that uncorrectable errors, NAND write and temperature
are dominant metrics for identifying SSD failures and are of great value to monitor in estimating the
SSD reliability.
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7. Conclusions

This paper designs an SSD lifetime endurance test method and conducts an endurance test
for 3D TLC SSDs throughout their lifetime and analyzes the phenomena caused by the changes of
SSD reliability data. We first present the endurance test flow, the data collection method and the
introduction of SSD reliability data. Next, we analyze the data collected from the measurements
and the results reveal some valuable phenomena about the changes in the reliability data for SSDs
throughout their lifetime, some of which have not been provided by the existing research. We also
conducted the correlation analysis for some SMART attributes. By analyzing the correlation coefficients
between different values, we show some internal relationships between the SMART attributes of SSDs,
which are helpful for understanding the characteristics of SSD failures.

The findings in this paper are helpful for performing the model analysis and parameter selection
when building the SSD failure prediction model, which can improve the reliability of the storage
services in a data center by reducing the risk of data loss. Furthermore, the analysis of SSD reliability
changing trends and the corresponding correlation analysis can provide directions for the SSD flash
translation layer design optimization. Although our work focuses on TLC NAND Flash, data are
collected from real flash chips and we believe that the findings will also be applicable to the emerging
3D NAND technology.
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Notation

WAF write amplification
NW NAND Writes
HW Host Writes
ρ Pearson correlation coefficient
ρs Spearman rank correlation coefficient
τs Kendall rank correlation coefficient

Acronyms

SSD solid-state drives
TBW terabytes written
P/E program/erase
RBER raw bit error rate
UBER uncorrectable bit error rate
UE uncorrectable errors
SMART self-monitoring, analysis and reporting technology
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